Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T15:24:36.553Z Has data issue: false hasContentIssue false

2 - Stochastic resonance: its definition, history, and debates

Published online by Cambridge University Press:  23 October 2009

Mark D. McDonnell
Affiliation:
Institute for Telecommunications Research, University of South Australia and University of Adelaide
Nigel G. Stocks
Affiliation:
University of Warwick
Charles E. M. Pearce
Affiliation:
University of Adelaide
Derek Abbott
Affiliation:
University of Adelaide
Get access

Summary

Stochastic resonance (SR), being an interdisciplinary and evolving subject, has seen many debates. Indeed, the term SR itself has been difficult to comprehensively define to everyone's satisfaction. In this chapter we look at the problem of defining stochastic resonance, as well as exploring its history. Given that the bulk of this book is focused on suprathreshold stochastic resonance (SSR), we give particular emphasis to forms of stochastic resonance where thresholding of random signals occurs. An important example where thresholding occurs is in the generation of action potentials by spiking neurons. In addition, we outline and comment on some of the confusions and controversies surrounding stochastic resonance and what can be achieved by exploiting the effect. This chapter is intentionally qualitative. Illustrative examples of stochastic resonance in threshold systems are given, but fuller mathematical and numerical details are left for subsequent chapters.

Introducing stochastic resonance

Stochastic resonance, although a term originally used in a very specific context, is now broadly applied to describe any phenomenon where the presence of internal noise or external input noise in a nonlinear system provides a better system response to a certain input signal than in the absence of noise. The key term here is nonlinear. Stochastic resonance cannot occur in a linear system – linear in this sense means that the output of the system is a linear transformation of the input of the system. A wide variety of performance measures have been used – we shall discuss some of these later.

Type
Chapter
Information
Stochastic Resonance
From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization
, pp. 6 - 46
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×