Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T09:39:19.231Z Has data issue: false hasContentIssue false

7 - Space constancy: the rise and fall of perceptual compensation

from Part I - Time–space during action: perisaccadic mislocalization and reaching

Published online by Cambridge University Press:  05 October 2010

Romi Nijhawan
Affiliation:
University of Sussex
Beena Khurana
Affiliation:
University of Sussex
Get access

Summary

Summary

Information about eye position comes from efference copy, a record of the innervation to the extraocular muscles that move the eye and proprioceptive signals from sensors in the extraocular muscles. Together they define extraretinal signals and indicate the position of the eye. By pressing on the eyelid of a viewing eye, the extraocular muscles can be activated to maintain a steady gaze position without rotation of the eye. This procedure decouples efference copy from gaze position, making it possible to measure the gain of the efference copy signal. The gain is 0.61; the gain of oculomotor proprioception, measured by a similar eye press technique, is 0.26. The two signals together sum to only 0.87, leading to the conclusion that humans underestimate the deviations of their own eyes and that extraretinal signals cannot be the mechanisms underlying space constancy (the perception that the world remains stable despite eye movements). The underregistration of eye deviation accounts quantitatively for a previously unexplained illusion of visual direction. Extraretinal signals are used in static conditions, especially for controlling motor behavior. The role of extraretinal signals during a saccade, if any, is not to compensate the previous retinal position but to destroy it. Then perception can begin with a clean slate during the next fixation interval.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, C. (1823/1974). Idea of a new anatomy of the brain. In P., Cranefield (ed.), Francois Magendie, Charles Bell and the Course of the Spinal Nerves. Mt. Kisco, NY: Futura.Google Scholar
Bridgeman, B. (1981). Cognitive factors in subjective stabilization of the visual world. Acta Psychol 48: 111–121.CrossRefGoogle ScholarPubMed
Bridgeman, B. (1995). Extraretinal signals in visual orientation. In W., Prinz & B., Bridgeman (eds.), Handbook of Perception and Action Vol. 1: Perception. London: Academic Press.Google Scholar
Bridgeman, B., Hendry, D., & Stark, L. (1975). Failure to detect displacement of the visual world during saccadic eye movements. Vision Res 15: 719–722.CrossRefGoogle ScholarPubMed
Bridgeman, B., & Stark, L. (1991). Ocular proprioception and efference copy in registering visual direction. Vision Res 31: 1903–1913.CrossRefGoogle ScholarPubMed
Bridgeman, B., van der Heijden, A. H. C., & Velichkovsky, B. (1994a). Visual stability and saccadic eye movements. Behav Brain Sci 17: 247–258.CrossRefGoogle Scholar
Bridgeman, B., van der Heijden, A. H. C., & Velichkovsky, B. (1994b). How our world remains stable despite disturbing influences. Behav Brain Sci 17: 282–292.CrossRefGoogle Scholar
Brune, F., & Lücking, C. (1969). Okulomotorik, Bewegungs wahrnehmung und Raumkonstanz der Sehdinge. Der Nerverarzt 240: 692–700.Google Scholar
Deubel, H., Bridgeman, B., & Schneider, W. X. (2004). Different effects of eyelid blinks and target blanking on saccadic suppression of displacement. Perception & Psychophysics 66: 772–778.CrossRefGoogle ScholarPubMed
Grüsser, O.-J., Krizic, A., & Weiss, L.-R. (1984). Afterimage movement during saccades in the dark. Vision Res 27: 215–226.CrossRefGoogle Scholar
Ilg, U., Bridgeman, B., & Hoffman, K.-P. (1989). Influence of mechanical disturbance on oculomotor behavior. Vision Res 29: 545–551.CrossRefGoogle ScholarPubMed
Leibowitz, H. W., Shupert, C. L., Post, R. B., & Dichgans, J. (1983). Autokinetic drifts and gaze deviation. Perception & Psychophysics 33: 455–459.CrossRefGoogle ScholarPubMed
Mach, E. (1906). Die Analyse der Empfindungen und das Verhältnis des Physischen zum Psychischen (5th ed.).Google Scholar
Mack, A. (1970). An investigation of the relationship between eye and retinal image movement in the perception of movement. Perception & Psychophysics 8: 291–298.CrossRefGoogle Scholar
Matin, E. (1974). Saccadic suppression: a review and an analysis. Psychol Bull 81: 899–917.CrossRefGoogle ScholarPubMed
Matin, L. (1972). Eye movements and perceived visual direction. In D., Jameson & L., Hurvich (eds.), Handbook of Sensory Physiology (331–380, vol. 7, part 3). New York: Springer.Google Scholar
Morgan, C. L. (1978). Constancy of egocentric visual direction. Perception & Psychophysics 23: 61–68.CrossRefGoogle ScholarPubMed
Nagle, M., Bridgeman, B., & Stark, L. (1980). Voluntary nystagmus, saccadic suppression, and stabilization of the visual world. Vision Res 20: 1195–1198.CrossRefGoogle ScholarPubMed
O'Regan, J. K., Rensink, R. A., & Clark, J. J. (1999). Change-blindness as a result of “mud-splashes.”Nature 398: 34.CrossRefGoogle Scholar
Purkinje, J. (1825). Über die Scheinbewegungen, welche im subjectiven Umfang des Gesichtsinnes vorkommen. Bulletin der naturwessenschaftlichen Sektion der Schlesischen Gesellschaft 4: 9–10.Google Scholar
Rensink, R. A., O'Regan, J. K., & Clark, J. J. (1997). To see or not see: the need for attention to perceive changes in scene. Psychol Sci 8: 368–373.CrossRefGoogle Scholar
Simons, D. J. (1996). In sight, out of mind: when object representation fails. Psychol Sci 7: 301–305.CrossRefGoogle Scholar
Sperry, R. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43: 482–489.CrossRefGoogle ScholarPubMed
Stark, L., & Bridgeman, B. (1983). Role of corollary discharge in space constancy. Perception & Psychophysics 34: 371–380.CrossRefGoogle ScholarPubMed
Teuber, H.-L. (1960). Perception. In J., Field & H., Magoun (eds.), Handbook of Physiology, sect. 1; Neurophysiology, vol. 3 (1595–1668). Washington, DC: American Physiological Society.Google Scholar
Turatto, M., Betella, S., Umilta', C., & Bridgeman, B. (2003). Perceptual conditions necessary to induce change blindness. Visual Cognition 10: 233–255.CrossRefGoogle Scholar
von Helmholtz, H. (1866). Handbuch der physiologischen Optik. Leipzig: Voss.Google Scholar
von Holst, E., & Mittelstaedt, H. (1950). Das Reafferenzprinzip. Wechselwirkungen zwischen Zerntalnervensystem und Peripherie. Naturwissenschaften 27: 464–476.CrossRefGoogle Scholar
Wallach, H., & Lewis, C. (1965). The effect of abnormal displacement of the retinal image during eye movements. Perception & Psychophysics 81: 25–29.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×