Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T13:06:28.030Z Has data issue: false hasContentIssue false

23 - The kidney and pre-eclampsia

from Part II - Clinical Practice

Published online by Cambridge University Press:  03 September 2009

Fiona Lyall
Affiliation:
University of Glasgow
Michael Belfort
Affiliation:
University of Utah
Get access

Summary

The healthy kidney undergoes considerable vascular adaptation in pregnancy and it is therefore not surprising that pre-eclampsia, with widespread endothelial dysfunction, is associated with substantial renal consequences, an understanding of which provides insight into the overall vascular pathology. It is important to interpret impaired renal function secondary to pre-eclampsia in the context of the substantially enhanced renal performance of normal pregnancy, otherwise significant end organ damage in pre-eclamptic patients will go unrecognized.

The pathological renal characteristics of pre-eclampsia

It has been recognized for almost a century that pre-eclampsia is associated with morphological renal changes. Lohlein in 1918 noticed that glomeruli in autopsy specimens from pre-eclamptic patients were enlarged and had a thickened basement membrane. The precise nature of the pathological lesion was not determined until the introduction of the electron microscope. The classical pathology we now recognize to be associated with pre-eclampsia is that of endothelial vacuolization and hypertrophy of the cytoplasmic organelles classically described by Spargo et al. (1959) as “glomerular capillary endotheliosis.” Many original studies used biopsy specimens but there is one particularly notable post-mortem series by Sheehan and Lynch (1973). This was remarkable in that the autopsies were generally performed between 15 min and 2 h following death, thus minimizing histological artefact from tissue decomposition and biopsy techniques.

The ultrastructural renal consequences of pre-eclampsia are primarily seen in the glomerulus. The glomerulus is large and bloodless, an appearance compatible with gestational hypertension of any cause, but it is particularly marked in pre-eclamptic specimens.

Type
Chapter
Information
Pre-eclampsia
Etiology and Clinical Practice
, pp. 339 - 356
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, B. T., Miller, M. T., Kassab, S., et al. (1999). Differential expression of renal nitric oxide synthase isoforms during pregnancy in rats. Hypertension, 33, 435–9.CrossRefGoogle ScholarPubMed
Assali, N., Dignam, W. and Dasgupta, K. (1959). Renal function in human pregnancy. J. Lab. Clin. Med., 54, 394–408.Google ScholarPubMed
Baylis, C. (1980). The mechanism of the increase in glomerular filtration rate in the twelve-day pregnant rat. J. Physiol., 305, 405–14.CrossRefGoogle ScholarPubMed
Baylis, C. (1987). The determinants of renal hemodynamics in pregnancy. Am. J. Kidney Dis., 9, 260–4.CrossRefGoogle ScholarPubMed
Baylis, C. (1994). Glomerular filtration and volume regulation in gravid animal models. Baill. Clin. Obstet. Gynaecol., 8, 235–64.CrossRefGoogle ScholarPubMed
Baylis, C. (1999). Relaxin may be the “elusive” renal vasodilatory agent of normal pregnancy. Am. J. Kidney Dis., 34, 1142–4; discussion 1144–5.CrossRefGoogle ScholarPubMed
Baylis, C. and Reckelhoff, J. F. (1991). Renal hemodynamics in normal and hypertensive pregnancy: lessons from micropuncture. Am. J. Kidney Dis., 17, 98–104.CrossRefGoogle ScholarPubMed
Belfort, M., Uys, P., Dommisse, J. and Davey, D. A. (1989). Haemodynamic changes in gestational proteinuric hypertension: the effects of rapid volume expansion and vasodilator therapy. Br. J. Obstet. Gynaecol., 96, 634–41.CrossRefGoogle ScholarPubMed
Bell, S. C., Halligan, A. W., Martin, A., et al. (1999). The role of observer error in antenatal dipstick proteinuria analysis. Br. J. Obstet. Gynaecol., 106, 1177–80.CrossRefGoogle ScholarPubMed
Brown, C. B., Ogg, C. S. and Cameron, J. S. (1981). High dose frusemide in acute renal failure: a controlled trial. Clin. Nephrol., 15, 90–6.Google ScholarPubMed
Brown, M. A. and Gallery, E. D. (1994). Volume homeostasis in normal pregnancy and pre-eclampsia: physiology and clinical implications. Baill. Clin. Obstet. Gynaecol., 8, 287–310.CrossRefGoogle ScholarPubMed
Brown, M. A., Lindheimer, M. D., Swiet, M., Assche, A. and Moutquin, J. M. (2001). The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens. Pregn., 20, IX–XIV.CrossRefGoogle Scholar
Bryans, C. I. Jr. (1966). The remote prognosis in toxemia of pregnancy. Clin. Obstet. Gynecol., 9, 973–90.CrossRefGoogle ScholarPubMed
Bucht, H. (1951). Studies on renal function in man with special reference to glomerular filtration and renal plasma flow in pregnancy. Scand. J. Clin. Lab. Invest., 3 (Suppl.), 1–64.Google ScholarPubMed
Buttar, H. S. (1997). An overview of the influence of ACE inhibitors on fetal–placental circulation and perinatal development. Mol. Cell. Biochem., 176, 61–71.CrossRefGoogle ScholarPubMed
Chapman, A. B., Zamudio, S., Woodmansee, W., et al. (1997). Systemic and renal hemodynamic changes in the luteal phase of the menstrual cycle mimic early pregnancy. Am. J. Physiol., 273, F777–82.Google ScholarPubMed
Chapman, A. B., Abraham, W. T., Zamudio, S., et al. (1998). Temporal relationships between hormonal and hemodynamic changes in early human pregnancy. Kidney Int., 54, 2056–63.CrossRefGoogle ScholarPubMed
Chesley, L. C. (1980). Hypertension in pregnancy: definitions, familial factor, and remote prognosis. Kidney Int., 18, 234–40.CrossRefGoogle ScholarPubMed
Coll, E., Botey, A., Alvarez, L., et al. (2000). Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment. Am. J. Kidney Dis., 36, 29–34.CrossRefGoogle ScholarPubMed
Conger, J. (1990). Does haemodialysis delay recovery from acute renal failure?Semin. Dial., 3, 146–7.CrossRefGoogle Scholar
Connon, A. F. and Wadsworth, R. J. (1968). An evaluation of serum uric acid estimations in toxaemia of pregnancy. Aust. N. Z. J. Obstet. Gynaecol., 8, 197–201.CrossRefGoogle ScholarPubMed
Conrad, K. P. (1984). Renal hemodynamics during pregnancy in chronically catheterized, conscious rats. Kidney Int., 26, 24–9.CrossRefGoogle ScholarPubMed
Conrad, K. P. (1987). Possible mechanisms for changes in renal hemodynamics during pregnancy: studies from animal models. Am. J. Kidney Dis., 9, 253–9.CrossRefGoogle ScholarPubMed
Conrad, K. P. and Lindheimer, M. D. (1999). Renal and cardiovascular alterations. In Chesleys Hypertensive Disorders of Pregnancy, ed. Cunningham, F. G.. Stanford, CT: Appleton & Lange.Google Scholar
Chua, S. and Redman, C. W. (1992). Prognosis for pre-eclampsia complicated by 5 g or more of proteinuria in 24 hours. Eur. J. Obstet. Gynecol. Reprod. Biol., 43, 9–12.CrossRefGoogle ScholarPubMed
Danielson, L. A. and Conrad, K. P. (1995). Acute blockade of nitric oxide synthase inhibits renal vasodilation and hyperfiltration during pregnancy in chronically instrumented conscious rats. J. Clin. Invest., 96, 482–90.CrossRefGoogle ScholarPubMed
Danielson, L. A., Sherwood, O. D. and Conrad, K. P. (1999). Relaxin is a potent renal vasodilator in conscious rats. J. Clin. Invest., 103, 525–33.CrossRefGoogle ScholarPubMed
Davison, J. M. (1984). Renal haemodynamics and volume homeostasis in pregnancy. Scand. J. Clin. Lab. Invest. Suppl., 169, 15–27.CrossRefGoogle ScholarPubMed
Davison, J. M. (1997). Edema in pregnancy. Kidney Int. Suppl., 59, S90–6.Google ScholarPubMed
Davison, J. M. and Hytten, F. E. (1974). Glomerular filtration during and after pregnancy. J. Obstet. Gynaecol. Br. Commonw., 81, 588–95.CrossRefGoogle ScholarPubMed
Davison, J. M. and Noble, M. C. (1981). Serial changes in 24 hour creatinine clearance during normal menstrual cycles and the first trimester of pregnancy. Br. J. Obstet. Gynaecol., 88, 10–17.CrossRefGoogle ScholarPubMed
Davison, J. M., Gilmore, E. A., Durr, J., Robertson, G. L. and Lindheimer, M. D. (1984). Altered osmotic thresholds for vasopressin secretion and thirst in human pregnancy. Am. J. Physiol., 246, F105–9.Google ScholarPubMed
Alvarez, R. (1958). Renal glomerulotubular mechanisms during normal pregnancy. Am. J. Obstet. Gynecol., 75, 931–44.CrossRefGoogle Scholar
Deen, W. M., Robertson, C. R. and Brenner, B. M. (1972). A model of glomerular ultrafiltration in the rat. Am. J. Physiol., 223, 1178–83.Google ScholarPubMed
Deen, W. M., Bohrer, M. P. and Brenner, B. M. (1979). Macromolecule transport across glomerular capillaries: application of pore theory. Kidney Int., 16, 353–65.CrossRefGoogle ScholarPubMed
Deen, W. M., Bridges, C. R., Brenner, B. M. and Myers, B. D. (1985). Heteroporous model of glomerular size selectivity: application to normal and nephrotic humans. Am. J. Physiol., 249, F374–89.Google ScholarPubMed
Dennis, E. J., McIver, F. A. and Smythe, C. M. (1968). Renal biopsy in pregnancy. Clin. Obstet. Gynecol., 11, 473–86.Google ScholarPubMed
Dharnidharka, V. R., Kwon, C. and Stevens, G. (2002). Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am. J. Kidney Dis., 40, 221–6.CrossRefGoogle ScholarPubMed
Dunlop, W. (1981). Serial changes in renal haemodynamics during normal human pregnancy. Br. J. Obstet. Gynaecol., 88, 1–9.CrossRefGoogle ScholarPubMed
Dunlop, W., Hill, L. M., Landon, M. J., Oxley, A. and Jones, P. (1978). Clinical relevance of coagulation and renal changes in pre-eclampsia. Lancet, 2, 346–9.CrossRefGoogle ScholarPubMed
Durnwald, C. and Mercer, B. (2003). A prospective comparison of total protein/creatine ratio versus 24-hour urine protein in women with suspected pre-eclampsia. Am. J. Obstet. Gynecol., 189(3), 848–52.CrossRefGoogle Scholar
Durr, J. A. and Lindheimer, M. D. (1996). Diagnosis and management of diabetes insipidus in pregnancy. Endocrine Practice, 2, 353–61.CrossRefGoogle Scholar
Durr, J. A., Stamoutsos, B. and Lindheimer, M. D. (1981). Osmoregulation during pregnancy in the rat. Evidence for resetting of the threshold for vasopressin secretion during gestation. J. Clin. Invest., 68, 337–46.CrossRefGoogle ScholarPubMed
Durr, J. A., Hoggard, J. G., Hunt, J. M. and Schrier, R. W. (1987). Diabetes insipidus in pregnancy associated with abnormally high circulating vasopressinase activity. N. Engl. J. Med., 316, 1070–4.CrossRefGoogle ScholarPubMed
Duvekot, J. J., Cheriex, E. C., Pieters, F. A. and Peeters, L. L. (1995). Severely impaired fetal growth is preceded by maternal hemodynamic maladaptation in very early pregnancy. Acta Obstet. Gynecol. Scand., 74, 693–7.CrossRefGoogle ScholarPubMed
Dworkin, L. D. (2001). Serum cystatin C as a marker of glomerular filtration rate. Curr. Opin. Nephrol. Hypertens., 10, 551–3.CrossRefGoogle ScholarPubMed
Easterling, T. R., Benedetti, T. J., Schmucker, B. C. and Millard, S. P. (1990). Maternal hemodynamics in normal and preeclamptic pregnancies: a longitudinal study. Obstet. Gynecol., 76, 1061–9.Google ScholarPubMed
Edwards, A., Daniels, B. S. and Deen, W. M. (1999). Ultrastructural model for size selectivity in glomerular filtration. Am. J. Physiol., 276, F892–902.Google ScholarPubMed
Ezimokhai, M., Davison, J. M., Philips, P. R. and Dunlop, W. (1981). Non-postural serial changes in renal function during the third trimester of normal human pregnancy. Br. J. Obstet. Gynaecol., 88, 465–71.CrossRefGoogle ScholarPubMed
Fadel, H. E., Sabour, M. S., Mahran, M., Seif el-Din, D. and el-Mahallawi, M. N. (1969). Reversibility of the renal lesion and functional impairment in preeclampsia diagnosed by renal biopsy. Obstet. Gynecol., 33, 528–34.Google ScholarPubMed
Fisher, K. A., Luger, A., Spargo, B. H. and Lindheimer, M. D. (1981). Hypertension in pregnancy: clinical–pathological correlations and remote prognosis. Medicine, 60, 267–76.CrossRefGoogle ScholarPubMed
Furukawa, T., Shigematsu, H., Aizawa, T., Oguchi, H. and Furuta, S. (1983). Residual glomerular lesions in postpartal women with toxemia of pregnancy. Acta Pathol. Jpn., 33, 1159–69.Google ScholarPubMed
Gaber, L. W. and Lindheimer, M. D. (1999). Pathology of the kidney, liver and brain. In Chesley's Hypertensive Disorders in Pregnancy, ed. Cunningham, F. G.. Stamford, CT: Appleton & Lange.Google Scholar
Gandley, R. E., Conrad, K. P. and McLaughlin, M. K. (2001). Endothelin and nitric oxide mediate reduced myogenic reactivity of small renal arteries from pregnant rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 280, R1–7.CrossRefGoogle ScholarPubMed
Halligan, A. W., Bell, S. C. and Taylor, D. J. (1999). Dipstick proteinuria: caveat emptor. Br. J. Obstet. Gynaecol., 106, 1113–15.CrossRefGoogle ScholarPubMed
Higby, K., Suiter, C. R., Phelps, J. Y., Siler-Khodr, T. and Langer, O. (1994). Normal values of urinary albumin and total protein excretion during pregnancy. Am. J. Obstet. Gynecol., 171, 984–9.CrossRefGoogle ScholarPubMed
Hytten, F. E. and Leitch, I. (1971). The Physiology of Human Pregnancy. London: Blackwell Scientific.Google Scholar
Katz, A. I., Davison, J. M., Hayslett, J. P., Singson, E. and Lindheimer, M. D. (1980). Pregnancy in women with kidney disease. Kidney Int., 18, 192–206.CrossRefGoogle ScholarPubMed
Kuller, J. A., D'Andrea, N. M. and McMahon, M. J. (2001). Renal biopsy and pregnancy. Am. J. Obstet. Gynecol., 184, 1093–6.CrossRefGoogle Scholar
Lafayette, R. A., Druzin, M. and Sibley, R., et al. (1998). Nature of glomerular dysfunction in pre-eclampsia. Kidney Int., 54, 1240–9.CrossRefGoogle ScholarPubMed
Lindheimer, M. D., Cunningham, F. G., Roberts, J. M. and Chesley, L. C. (1999). Chesley's Hypertensive Disorders in Pregnancy. Stamford, CT: Appleton & Lange.Google Scholar
Lohlein, M. (1918). Zur Pathogense der Neirenkrankheiten; Nephritis und Nephrose mit besonderer Berucksichtigung der Nephropathia gravidarum. Deut. Med. Wochenschr., 44, 1187–9.CrossRefGoogle Scholar
Lopez-Espinoza, I., Dhar, H., Humphreys, S. and Redman, C. W. (1986). Urinary albumin excretion in pregnancy. Br. J. Obstet. Gynaecol., 93, 176–81.CrossRefGoogle ScholarPubMed
McFarlane, C. N. (1963). An evaluation of the serum uric acid level in pregnancy. J. Obstet. Gynaecol. Br. Emp., 70, 63–8.CrossRefGoogle Scholar
Meyer, N. L., Mercer, B. M., Friedman, S. A. and Sibai, B. M. (1994). Urinary dipstick protein: a poor predictor of absent or severe proteinuria. Am. J. Obstet. Gynecol., 170, 137–41.CrossRefGoogle ScholarPubMed
Milne, F., Redman, C., Walker, J., et al. (2005). The pre-eclampsia community guideline (PRECOG): how to screen for and predict onset of pre-eclampsia in the community. Br. Med. J., 330(7491), 576–80.CrossRefGoogle Scholar
Milne, J. E., Lindheimer, M. D. and Davison, J. M. (2002). Glomerular heteroporous membrane modeling in third trimester and postpartum before and during amino acid infusion. Am. J. Physiol. Renal Physiol., 282, F170–5.CrossRefGoogle ScholarPubMed
Mindell, J. A. and Chertow, G. M. (1997). A practical approach to acute renal failure. Med. Clin. North Am., 81, 731–48.CrossRefGoogle ScholarPubMed
Moran, P., Baylis, P. H., Lindheimer, M. D. and Davison, J. M. (2003). Glomerular ultrafiltration in normal and preeclamptic pregnancy. J. Am. Soc. Nephrol., 14, 648–52.CrossRefGoogle ScholarPubMed
Newman, M. G., Robichaux, A. G., Stedman, C. M., et al. (2003). Perinatal outcomes in preeclampsia that is complicated by massive proteinuria. Am. J. Obstet. Gynecol., 188, 264–8.CrossRefGoogle ScholarPubMed
Novak, J., Danielson, L. A., Kerchner, L. J., et al. (2001). Relaxin is essential for renal vasodilation during pregnancy in conscious rats. J. Clin. Invest., 107, 1469–75.CrossRefGoogle ScholarPubMed
Odendaal, H. J., Pattinson, R. C., Bam, R., Grove, D. and Kotze, T. J. (1990). Aggressive or expectant management for patients with severe preeclampsia between 28–34 weeks' gestation: a randomized controlled trial. Obstet. Gynecol., 76, 1070–5.Google ScholarPubMed
Oe, P. L., Ooms, E. C., Uttendorfsky, O. T., Stolte, L. A., Delden, L. and Graaff, P. (1980). Postpartum resolution of glomerular changes in edema–proteinuria–hypertension gestosis. Ren. Physiol., 3, 375–9.Google ScholarPubMed
Packham, D. and Fairley, K. F. (1987). Renal biopsy, indications and complications in pregnancy. Br. J. Obstet. Gynaecol., 94, 935–9.CrossRefGoogle ScholarPubMed
Pollak, V. and Nettles, J. (1960). The kidney in toxaemia of pregnancy: a clinical and pathological study based on renal biopsy. Medicine, 39, 469–525.CrossRefGoogle Scholar
Pryde, P. G., Sedman, A. B., Nugent, C. E. and Barr, M. Jr. (1993). Angiotensin-converting enzyme inhibitor fetopathy. J. Am. Soc. Nephrol., 3, 1575–82.Google ScholarPubMed
Randeree, I. G., Czarnocki, A., Moodley, J., Seedat, Y. K. and Naiker, I. P. (1995). Acute renal failure in pregnancy in South Africa. Ren. Fail., 17, 147–53.CrossRefGoogle ScholarPubMed
Roberts, M., Lindheimer, M. D. and Davison, J. M. (1996). Altered glomerular permselectivity to neutral dextrans and heteroporous membrane modeling in human pregnancy. Am. J. Physiol., 270, F338–43.Google ScholarPubMed
Rodriguez-Thompson, D. and Lieberman, E. S. (2001). Use of a random urinary protein-to-creatinine ratio for the diagnosis of significant proteinuria during pregnancy. Am. J. Obstet. Gynecol., 185, 808–11.CrossRefGoogle Scholar
Redman, C. W., Beilin, L. J., Bonnar, J. and Wilkinson, R. H. (1976). Plasma-urate measurements in predicting fetal death in hypertensive pregnancy. Lancet, 1, 1370–3.CrossRefGoogle ScholarPubMed
Sagen, N., Haram, K. and Nilsen, S. T. (1984). Serum urate as a predictor of fetal outcome in severe pre-eclampsia. Acta Obstet. Gynecol. Scand., 63, 71–5.CrossRefGoogle ScholarPubMed
Saudan, P. J., Brown, M. A., Farrell, T. and Shaw, L. (1997). Improved methods of assessing proteinuria in hypertensive pregnancy. Br. J. Obstet. Gynaecol., 104, 1159–64.CrossRefGoogle ScholarPubMed
Schiff, E., Friedman, S. A., Kao, L. and Sibai, B. M. (1996). The importance of urinary protein excretion during conservative management of severe preeclampsia. Am. J. Obstet. Gynecol., 175, 1313–16.CrossRefGoogle ScholarPubMed
Shilliday, I. R., Quinn, K. J. and Allison, M. E. (1997). Loop diuretics in the management of acute renal failure: a prospective, double-blind, placebo-controlled, randomized study. Nephrol. Dial. Transplant., 12, 2592–6.CrossRefGoogle ScholarPubMed
Sibai, B. M., Mercer, B. M., Schiff, E. and Friedman, S. A. (1994). Aggressive versus expectant management of severe preeclampsia at 28 to 32 weeks' gestation: a randomized controlled trial. Am. J. Obstet. Gynecol., 171, 818–22.CrossRefGoogle ScholarPubMed
Sims, E. A. H. and Krantz, K. (1958). Serial studies of renal function during pregnancy and the pverperium in normal women. J. Clin. Invest., 37, 1764–74.CrossRefGoogle ScholarPubMed
Smith, H. (1951). The Kidney. New York: Oxford University Press.Google Scholar
Sheehan, H. and Lynch, J. (1973). Pathology of Toxaemia of Pregnancy. Baltimore: Williams & Wilkins Co.Google Scholar
Spargo, B., Potter, E. and McCartney, C. (1973). Renal biopsies from patients with toxaemia of pregnancy. Arch. Pathol., 13, 593–9.Google Scholar
Strevens, H., Wide-Swensson, D. and Grubb, A. (2001). Serum cystatin C is a better marker for preeclampsia than serum creatinine or serum urate. Scand. J. Clin. Lab. Invest., 61, 575–80.CrossRefGoogle ScholarPubMed
Strevens, H., Wide-Swensson, D., Torffvit, O. and Grubb, A. (2002). Serum cystatin C for assessment of glomerular filtration rate in pregnant and non-pregnant women. Indications of altered filtration process in pregnancy. Scand. J. Clin. Lab. Invest., 62, 141–7.CrossRefGoogle ScholarPubMed
Strevens, H., Wide-Swensson, D., Ingemarsson, I., Grubb, A., Wilner, J. and Horn, T. (2003). Serum Cystatin C reflects glomerular endotheliosis in normal, hypertensive and preeclamptic pregnancies. Society of Maternal–Fetal Medicine. San Francisco, California.Google Scholar
Taylor, A. A. and Davison, J. M. (1997). Albumin excretion in normal pregnancy. Am. J. Obstet. Gynecol., 177, 1559–60.Google ScholarPubMed
Walker, J. J. (2000). Severe pre-eclampsia and eclampsia. Baill. Best Pract. Res. Clin. Obstet. Gynaecol., 14, 57–71.CrossRefGoogle ScholarPubMed
Waugh, J., Bell, S. C., Kilby, M. D., et al. (2003). Urinary microalbumin/creatinine ratios: reference range in uncomplicated pregnancy. Clin. Sci. (Lond.), 104, 103–7.CrossRefGoogle ScholarPubMed
Widholm, O. and Kuhlback, B. (1964). The prognosis of the fetus in relation to the serum uric acid in toxaemia of pregnancy. Acta Obstet. Gynecol. Scand., 43, 137–9.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×