Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T20:28:55.302Z Has data issue: false hasContentIssue false

7 - Botanic Gardens and Solutions to Global Challenges

Published online by Cambridge University Press:  30 August 2017

Stephen Blackmore
Affiliation:
Botanic Gardens Conservation International (BGCI)
Sara Oldfield
Affiliation:
International Union for Conservation of Nature (IUCN)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Plant Conservation Science and Practice
The Role of Botanic Gardens
, pp. 166 - 191
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balas, B. and Momsen, J. L. (2014). Attention ‘blinks’ differently for plants and animals. CBE–Life Sciences Education, 13: 437443.CrossRefGoogle ScholarPubMed
Bombelli, P., Iyer, D. M. R., Covshoff, S., McCormick, A. J., Yunus, K., Hibberd, J. M., Fisher, A. C. and Howe, C. J. (2013). Comparison of power output by rice (Oryza sativa) and an associated weed (Echinochloa glabrescens) in vascular plant bio-photovoltaic (VP-BPV) systems. Applied Microbiology and Biotechnology, 97: 429438.CrossRefGoogle Scholar
Borowitzka, M. (1999). Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology, 70: 313321.CrossRefGoogle Scholar
British Nutrition Foundation (2013). National Pupil Survey 2013. UK Survey Results. www.nutrition.org.uk/attachments/608_uk%20Pupil%20Survey%20Results%202013.pdfGoogle Scholar
Brockway, L. H. (1979). Science and colonial expansion: the role of the British Royal Botanic Gardens. American Ethnologist, 6: 449465.CrossRefGoogle Scholar
Brown, N. J., Newell, C. A., Stanley, S., Chen, J. E., Perrin, A. J., Kajala, K. and Hibberd, J. M. (2011). Independent and parallel recruitment of preexisting mechanisms underlying C4 photosynthesis. Science, 331: 14361439.CrossRefGoogle ScholarPubMed
Charpentier, M. and Oldroyd, G. (2010). How close are we to nitrogen-fixing cereals? Current Opinion in Plant Biology, 13: 556564.CrossRefGoogle ScholarPubMed
Chen, M.-S., Wang, G.-J., Wang, R.-L., Wang, J., Song, S.-Q. and Xu, Z.-F. (2011). Analysis of expressed sequence tags from biodiesel plant Jatropha curcas embryos at different developmental stages. Plant Science, 181: 696700.Google Scholar
Christin, P.-A., Salamin, N., Savolainen, V., Duvall, M. R. and Besnard, G. (2007). C4 photosynthesis evolved in grasses via parallel adaptive genetic changes. CURBIO, 17: 12411247.Google ScholarPubMed
Christin, P.-A., Petitpierre, B., Salamin, N., Büchi, L. and Besnard, G. (2009). Evolution of C(4) phosphoenolpyruvate carboxykinase in grasses, from genotype to phenotype. Molecular Biology and Evolution, 26: 357365.CrossRefGoogle ScholarPubMed
Christin, P.-A., Freckleton, R. P. and Osborne, C. P. (2010). Can phylogenetics identify C(4) origins and reversals? Trends in Ecology and Evolution, 25: 403409.CrossRefGoogle ScholarPubMed
Christin, P.-A., Boxall, S. F., Gregory, R., Edwards, E. J., Hartwell, J. and Osborne, C. P. (2013). Parallel recruitment of multiple genes into C4 photosynthesis. Genome Biology and Evolution, 5: 21742187.CrossRefGoogle ScholarPubMed
Christin, P.-A., Arakaki, M., Osborne, C. P. and Edwards, E. J. (2015). Genetic enablers underlying the clustered evolutionary origins of C4 photosynthesis in angiosperms. Molecular Biology and Evolution, 32: 410858.Google Scholar
Cornille, A., Gladieux, P., Smulders, M. J. M. et al. (2012). New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genetics, 8: e1002703.CrossRefGoogle Scholar
Cornille, A., Giraud, T., Smulders, M. J. M., Roldán-Ruiz, I. and Gladieux, P. (2014). The domestication and evolutionary ecology of apples. Trends in Genetics, 30: 5765.Google Scholar
Doebley, J. (1992). Molecular systematics and crop evolution. In: Soltis, P. S., Soltis, D. E. and Doyle, J. J. (Eds), Molecular Systematics of Plants. New York: Chapman and Hall, pp. 202222.CrossRefGoogle Scholar
Doyle, J. J. (2011). Phylogenetic perspectives on the origins of nodulation. Molecular Plant–Microbe Interactions, 24: 12891295.CrossRefGoogle ScholarPubMed
FAO (1996). The State of Food and Agriculture 1996. FAO, Rome, Italy.Google Scholar
Godfray, H. C. J., Beddington, J. R., Crute, I. R. et al. (2010). Food security: the challenge of feeding 9 billion people. Science, 327: 812818.CrossRefGoogle ScholarPubMed
Gouveia, L. and Oliveira, A. C. (2009). Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology and Biotechnology, 36: 269274.Google Scholar
Harris, S. A., Robinson, J. P. and Juniper, B. E. (2002). Genetic clues to the origin of the apple. Trends in Genetics, 18: 426430.Google Scholar
Heaton, E. A., Dohleman, F. G. and Long, S. P. (2008). Meeting US biofuel goals with less land: the potential of Miscanthus. Global Change Biology, 14: 20002014.CrossRefGoogle Scholar
Hibberd, J. M., Sheehy, J. E. and Langdale, J. A. (2008). Using C4 photosynthesis to increase the yield of rice–rationale and feasibility. Current Opinion in Plant Biology, 11: 228231.Google Scholar
Hill, J., Nelson, E., Tilman, D., Polasky, S. and Tiffany, D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the Natural Academy of Science, USA, 103: 1120611210.Google Scholar
Hoekstra, B. (2000). Plant blindness: the ultimate challenge to botanists. The American Biology Teacher, 62(2): 8283.Google Scholar
International Energy Agency (2006). World Energy Outlook. Available online at: https://www.iea.org/publications/freepublications/publication/weo-2006.html [accessed March 2017].CrossRefGoogle Scholar
Johnson, J., Coleman, M. D., Gesch, R. and Jaradat, A. (2007). Biomass-bioenergy crops in the United States: A changing paradigm. The Americas Journal of Plant Science and Biotechnolog, 1: 128.Google Scholar
Jones, A., Ragone, D. and Bernotas, D. W. (2011). Beyond the Bounty: breadfruit (Artocarpus altilis) for food security and novel foods in the 21st century. Ethnobotany Research and Applications, 9: 129149.Google Scholar
Jones, A. M. P., Murch, S. J. and Ragone, D. (2010) Diversity of breadfruit (Artocarpus altilis, Moraceae) seasonality: a resource for year-round nutrition. Economic Botany, 64, 340351.CrossRefGoogle Scholar
Kumar, A. and Sharma, S. (2008). An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. Industrial Crops and Products, 28: 110.CrossRefGoogle Scholar
Leahy, M., Barden, J. L., Murphy, B. T. and Slater-Thompson, N. (2013). International Energy Outlook 2013. Washington, DC: US Department of Energy: The US Energy Information Administration.Google Scholar
Li, C., Luo, L., Fu, Q., Niu, L. and Xu, Z.-F. (2014). Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas. BMC Plant Biology, 14: 125.CrossRefGoogle Scholar
Li, D.-Z. and Pritchard, H. W. (2009). The science and economics of ex situ plant conservation. Trends in Plant Science, 14: 614621.Google Scholar
Liu, Y., Ragone, D. and Murch, S. J. (2015). Breadfruit (Artocarpus altilis): a source of high-quality protein for food security and novel food products. Amino Acids, 47: 847856.Google Scholar
Long, S. P. (2014). We need winners in the race to increase photosynthesis in rice, whether from conventional breeding, biotechnology or both. Plant, Cell and Environment, 37: 1921.Google Scholar
Long, S. P., Marshall-Colon, A. and Zhu, X.-G. (2015). Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell, 161: 5666.CrossRefGoogle ScholarPubMed
Miller, R. G. and Sorrell, S. R. (2014). The future of oil supply. Philosophical Transactions of the Royal Society A, 372: 20130179.CrossRefGoogle ScholarPubMed
Moser, B. R. (2009). Biodiesel production, properties, and feedstocks. In Vitro Cellular and Developmental Biology – Plant, 45: 229266.Google Scholar
Murch, S. J., Ragone, D., Shi, W. L., Alan, A. R. and Saxena, P. K. (2008). In vitro conservation and sustained production of breadfruit (Artocarpus altilis, Moraceae): modern technologies for a traditional tropical crop. Naturwissenschaften, 95: 99107.Google Scholar
Ni, J., Gao, C., Chen, M.-S., Pan, B.-Z., Ye, K. and Xu, Z.-F. (2015). Gibberellin promotes shoot branching in the perennial woody plant Jatropha curcas. Plant and Cell Physiology, 56: 16551666.Google Scholar
Omar, S. A., Elsheery, N. I., Kalaji, H. M., Xu, Z.-F., Song-Quan, S., Carpentier, R., Lee, C.-H. and Allakhverdiev, S. I. (2012). Dehydroascorbate reductase and glutathione reductase play an important role in scavenging hydrogen peroxide during natural and artificial dehydration of Jatropha curcas seeds. Journal of Plant Biology, 55: 469480.Google Scholar
Pan, J., Fu, Q. and Xu, Z. F. (2010). Agrobacterium tumefaciens-mediated transformation of biofuel plant Jatropha curcas using kanamycin selection. African Journal of Biotechnology, 9: 64776481.Google Scholar
Pauly, M. and Keegstra, K. (2008). Cell wall carbohydrates and their modification as a resource for biofuels. The Plant Journal, 54: 559568.Google Scholar
Paschalidou, A., Tsatiris, M. and Kitikidou, K. (2016). Energy crops for biofuel production or for food? Swot analysis (Case Study: Greece) Renewable energy, 93: 636647.Google Scholar
Pickett, J., Anderson, D., Bowles, D., Bridgwater, T. and Jarvis, P. (2008). Sustainable Biofuels: Prospects and Challenges, London: The Royal Society.Google Scholar
Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. and Foley, J. A. (2012). Recent patterns of crop yield growth and stagnation. Nature Communications, 3: 1293.Google Scholar
Ray, D. K., Mueller, N. D., West, P. C. and Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 8, e66428.CrossRefGoogle ScholarPubMed
Russell, Sir E. J. (1966). A History of Agricultural Science in Great Britain, 1620–1954. London: George Allen & Unwin Ltd.Google Scholar
Sage, R. F. (2004). The Evolution of C4 Photosynthesis. The New Phytologist, 161: 341370.Google Scholar
Sage, R. F., Christin, P. A. and Edwards, E. J. (2011). The C4 plant lineages of planet Earth. Journal of Experimental Botany, 62: 31553169.Google Scholar
Schoen, D. J. and Brown, A. (2001). The conservation of wild plant species in seed banks. Bioscience, 51: 960966.Google Scholar
Schussler, E. E. and Olzak, L. A. (2010). It’s not easy being green: student recall of plant and animal images. Journal of Biological Education, 42: 112119.CrossRefGoogle Scholar
Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J. and Smith, A. G. (2010). Biodiesel from algae: challenges and prospects. Current Opinion in Biotechnology, 21: 277286.CrossRefGoogle ScholarPubMed
Sharrock, S. (2013). Botanic gardens and food security: the results of the BGCI’s survey. BGJournal, 10, 2.Google Scholar
Silveira, L. F., Olmos, F. and Long, A. J. (2004). Taxonomy, history, and status of Alagoas curassow Mitu mitu (Linnaeus, 1766), the world’s most threatened cracid. Revista Brasileira de Ornitologia, 12: 4350.Google Scholar
Sivakumar, G., Vail, D. R., Xu, J., Burner, D. M., Lay, J. O., Ge, X. and Weathers, P. J. (2010). Bioethanol and biodiesel: alternative liquid fuels for future generations. Engineering in Life Sciences, 10: 818.Google Scholar
Soltis, D. E., Soltis, P. S., Morgan, D. R., Swensen, S. M., Mullin, B. C., Dowd, J. M. and Martin, P. G. (1995). Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proceedings of the National Academy of Sciences of the USA, 92: 26472651.Google Scholar
Sprent, J. I. (2007). Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytologist, 174: 1125.CrossRefGoogle ScholarPubMed
Tilman, D., Balzer, C., Hill, J. and Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108: 2026020264.CrossRefGoogle ScholarPubMed
Turi, C. E., Liu, Y., Ragone, D. and Murch, S. J. (2015). Breadfruit (Artocarpus altilis and hybrids): A traditional crop with the potential to prevent hunger and mitigate diabetes in Oceania. Trends in Food Science and Technology, 45: 264272.CrossRefGoogle Scholar
USBC (2015). World population 1950–2050. International Database (Washington, DC: U.S. Department of Commerce, Census Bureau).Google Scholar
Wagner, L., Ross, I., Foster, J. and Hankamer, B. (2016). Trading Off Global Fuel Supply, CO2 Emissions and Sustainable Development. PLoS ONE, 11(3), e0149406.Google Scholar
Wandersee, J. H. and Schussler, E. E. (1999). Preventing plant blindness. The American Biology Teacher, 61: 8286.Google Scholar
Zerega, N. J. C., Ragone, D. and Motley, T. J. (2005). Systematics and species limits of breadfruit (Artocarpus, Moraceae). Systematic Botany, 30, 603615.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×