Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T15:21:45.027Z Has data issue: false hasContentIssue false

4 - The Differentiation of Executive Functioning Across Development: Insights from Developmental Cognitive Neuroscience

from Part I - Cognitive Development

Published online by Cambridge University Press:  11 May 2017

Nancy Budwig
Affiliation:
Clark University, Massachusetts
Elliot Turiel
Affiliation:
University of California, Berkeley
Philip David Zelazo
Affiliation:
University of Minnesota
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostino, A., Johnson, J., & Pascual-Leone, J. (2010). Executive functions underlying multiplicative reasoning: Problem type matters. Journal of Experimental Child Psychology, 105, 286305. doi: 10.1016/j.jecp.2009.09.006CrossRefGoogle ScholarPubMed
Aron, A. R. (2008). Progress in executive-function research from tasks to functions to regions to networks. Current Directions in Psychological Science, 17, 124129. doi: 10.1111/j.1467-8721.2008.00561.xGoogle Scholar
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170177. doi: 10.1016/j.tics.2004.02.010CrossRefGoogle ScholarPubMed
Booth, J. R., Burman, D. D., Meyer, J. R., Lei, Z., Trommer, B. L., Davenport, N. D., … & Mesulam, M. M. (2003). Neural development of selective attention and response inhibition. NeuroImage, 20, 737751. doi: 10.1016/S1053-8119(03)00404-XCrossRefGoogle ScholarPubMed
Brydges, C. R., Anderson, M., Reid, C. L., & Fox, A. M. (2013). Maturation of cognitive control: delineating response inhibition and interference suppression. PloS one, 8, e69826. doi: 10.1371/journal.pone.0069826Google Scholar
Brydges, C. R., Fox, A. M., Reid, C. L., & Anderson, M. (2014). The differentiation of executive functions in middle and late childhood: A longitudinal latent-variable analysis. Intelligence, 47, 3443. doi: 10.1016/j.intell.2014.08.010Google Scholar
Bunge, S. A., Dudukovic, N. M., Thomason, M. E., & Vaidya, C. J. (2002). Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron, 33, 301311. doi: 10.1016/S0896-6273(01)00583-9CrossRefGoogle ScholarPubMed
Bunge, S. A., & Zelazo, P. D. (2006). A brain-based account of the development of rule use in childhood. Current Directions in Psychological Science, 15, 118121. doi: 10.1111/j.0963-7214.2006.00419.xCrossRefGoogle Scholar
Casey, B. J., Cohen, J. D., Jezzard, P., Turner, R., Noll, D. C., … & Rapoport, J. L. (1995) Activation of prefrontal cortex in children during a nonspatial working memory task with functional MRI. Neuroimage, 2, 221229. doi: 10.1006/nimg.1995.1029Google Scholar
Casey, B. J., Davidson, M. C., Hara, Y., Thomas, K. M., Martinez, A., Galvan, A., … & Tottenham, N. (2004). Early development of subcortical regions involved in non‐cued attention switching. Developmental Science, 7, 534542. doi: 10.1111/j.1467-7687.2004.00377.x/fullCrossRefGoogle ScholarPubMed
Ciesielski, K. T., Lesnik, P. G., Savoy, R. L., Grant, E. P., & Ahlfors, S. P. (2006). Developmental neural networks in children performing a Categorical N-Back Task. NeuroImage, 33, 980990. doi: 10.1016/j.neuroimage.2006.07.028CrossRefGoogle ScholarPubMed
Collette, F., Hogge, M., Salmon, E., & Van der Linden, M. (2006). Exploration of the neural substrates of executive functioning by functional neuroimaging. Neuroscience, 139, 209221. doi: 10.1016/j.neuroscience.2005.05.035Google Scholar
Collette, F., Van der Linden, M., Laureys, S., Delfiore, G., Degueldre, C., Luxen, A., & Salmon, E. (2005). Exploring the unity and diversity of the neural substrates of executive functioning. Human Brain Mapping, 25, 409423. doi: 10.1002/hbm.20118Google Scholar
Cragg, L., & Chevalier, N. (2012). The processes underlying flexibility in childhood. The Quarterly Journal of Experimental Psychology, 65, 209232. doi.org/10.1080/17470210903204618Google Scholar
Crone, E. A., Donohue, S. E., Honomichl, R., Wendelken, C., & Bunge, S. A. (2006). Brain regions mediating flexible rule use during development. The Journal of Neuroscience, 26, 1123911247. doi: 10.1523/JNEUROSCI.2165-06.2006Google Scholar
Darki, F., & Klingberg, T. (2015). The role of fronto-parietal and fronto-striatal networks in the development of working memory: A longitudinal study. Cerebral Cortex, 25, 15871595. doi: 10.1093/cercor/bht352Google Scholar
Davis, E. P., Bruce, J., Snyder, K., & Nelson, C. A. (2003). The X-trials: Neural correlates of an inhibitory control task in children and adults. Journal of Cognitive Neuroscience, 15, 432443. doi: 10.1162/089892903321593144Google Scholar
Diamond, A. (2006). The early development of executive functions. In Bialystok, E. & Craik, F. I. M. (Eds.), Lifespan cognition: Mechanisms of change (pp. 7095). London: Oxford University Press.CrossRefGoogle Scholar
Durston, S., Davidson, M. C., Tottenham, N., Galvan, A., Spicer, J., Fossella, J. A., & Casey, B. J. (2006). A shift from diffuse to focal cortical activity with development. Developmental Science, 9, 120. doi: 10.1111/j.1467-7687.2005.00454.x/fullGoogle Scholar
Durston, S., Thomas, K. M., Yang, Y., Uluğ, A. M., Zimmerman, R. D., & Casey, B. J. (2002). A neural basis for the development of inhibitory control. Developmental Science, 5, F9F16. doi: 10.1111/1467-7687.00235Google Scholar
Edin, F., Macoveanu, J., Olesen, P., & Tegnér, J. (2007). Stronger synaptic connectivity as a mechanism behind development of working memory-related brain activity during childhood. Journal of Cognitive Neuroscience, 19, 750760. doi: /10.1162/jocn.2007.19.5.750Google Scholar
Espinet, S. D., Anderson, J. E., & Zelazo, P. D. (2012). N2 amplitude as a neural marker of executive function in young children: An ERP study of children who switch versus perseverate on the Dimensional Change Card Sort. Developmental Cognitive Neuroscience, 2, S49S58. doi: 10.1016/j.dcn.2011.12.002Google Scholar
Espinet, S. D., Anderson, J. E., & Zelazo, P. D. (2013). Reflection training improves executive function in preschool-age children: Behavioral and neural effects. Developmental Cognitive Neuroscience, 4, 315. doi: 10.1016/j.dcn.2012.11.009Google Scholar
Ezekiel, F., Bosma, R., & Morton, J. B. (2013). Dimensional Change Card Sort performance associated with age-related differences in functional connectivity of lateral prefrontal cortex. Developmental Cognitive Neuroscience, 5, 4050. doi: 10.1016/j.dcn.2012.12.001Google Scholar
Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: A latent-variable analysis. Journal of Experimental Psychology: General, 133, 101135. doi: 10.1037/0096-3445.133.1.101Google Scholar
Fuhs, M. W., & Day, J. D. (2011). Verbal ability and executive functioning development in preschoolers at head start. Developmental Psychology, 47, 404416. doi: 10.1037/a0021065CrossRefGoogle ScholarPubMed
Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive function in preschoolers: A review using an integrative framework. Psychological Bulletin, 134, 3160. doi.org/10.1037/0033-2909.134.1.31Google Scholar
Hughes, C., Ensor, R., Wilson, A., & Graham, A. (2010). Tracking executive function across the transition to school: A latent variable approach. Developmental Neuropsychology, 35, 2036. doi: 10.1080/87565640903325691Google Scholar
Hwang, K., Velanova, K., & Luna, B. (2010). Strengthening of top-down frontal cognitive control networks underlying the development of inhibitory control: A functional magnetic resonance imaging effective connectivity study. Journal of Neuroscience, 30, 1553515545. doi.org/10.1523/jneurosci.2825-10.2010CrossRefGoogle ScholarPubMed
Johnson, M. H. (2000). Functional brain development in infants: Elements of an interactive specialization framework. Child Development, 71, 7581. doi: 10.1111/1467-8624.00120Google Scholar
Johnson, M. H. (2011). Interactive specialization: a domain-general framework for human functional brain development? Developmental Cognitive Neuroscience, 1, 721. doi: 10.1016/j.dcn.2010.07.003Google Scholar
Johnstone, S. J., Barry, R. J., & Clarke, A. R. (2007). Behavioural and ERP indices of response inhibition during a Stop-signal task in children with two subtypes of Attention-Deficit Hyperactivity Disorder. International Journal of Psychophysiology, 66, 3747. doi: 10.1016/j.ijpsycho.2007.05.011Google Scholar
Jonkman, L. M. (2006). The development of preparation, conflict monitoring and inhibition from early childhood to young adulthood: a Go/NoGo ERP study. Brain Research, 1097, 181193. doi: 10.1016/j.brainres.2006.04.064Google Scholar
Jonkman, L. M., Sniedt, F. L. F., & Kemner, C. (2007). Source localization of the Nogo-N2: A developmental study. Clinical Neurophysiology, 118, 10691077. doi: 10.1016/j.clinph.2007.01.017CrossRefGoogle ScholarPubMed
Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. Journal of Cognitive Neuroscience, 14, 110. doi: 10.1162/089892902317205276Google Scholar
Kraybill, J. H. (2014). A latent factor analysis of preschool executive functions: investigations of antecedents and outcomes (unpublished doctoral dissertation). Virginia Tech, Virgina.Google Scholar
Kwon, H., Reiss, A. L., & Menon, V. (2002). Neural basis of protracted developmental changes in visuo-spatial working memory. Proceedings of the National Academy of Sciences, 99, 1333613341. doi: 10.1073/pnas.162486399Google Scholar
Lamm, C., Zelazo, P. D., & Lewis, M. D. (2006). Neural correlates of cognitive control in childhood and adolescence: Disentangling the contributions of age and executive function. Neuropsychologia, 44, 21392148. doi: 10.1016/j.neuropsychologia.2005.10.013Google Scholar
Lee, K., Bull, R., & Ho, R. M. H. (2013). Developmental changes in executive functioning. Child Development, 84, 19331953. doi: 10.1111/cdev.12096CrossRefGoogle ScholarPubMed
Lehto, J. E., Juujärvi, P., & Kooistra, L. (2003). Dimensions of executive functioning: Evidence from children. British Journal of Developmental Psychology, 21, 5980. doi: 10.1348/026151003321164627Google Scholar
Lo, Y. H., Liang, W. K., Lee, H. W., Wang, C. H., Tzeng, O. J., Hung, D. L., … & Juan, C. H. (2013). The neural development of response inhibition in 5-and 6-year-old preschoolers: an ERP and EEG study. Developmental Neuropsychology, 38, 301316. doi: 10.1080/87565641.2013.801980Google Scholar
Luna, B., & Sweeney, J. A. (2004). The emergence of collaborative brain function: fMRI studies of the development of response inhibition. Annals of the New York Academy of Sciences, 1021, 296309. doi: 10.1196/annals.1308.035Google Scholar
Luna, B., Thulborn, K. R., Munoz, D. P., Merriam, E. P., Garver, K. E., Minshew, N. J., … & Sweeney, J. A. (2001). Maturation of widely distributed brain function subserves cognitive development. NeuroImage, 13, 786793. doi: 10.1006/nimg.2000.0743Google Scholar
McAuley, T., & White, D. A. (2011). A latent variables examination of processing speed, response inhibition, and working memory during typical development. Journal of Experimental Child Psychology, 108, 453468. doi: 10.1016/j.jecp.2010.08.009Google Scholar
Mehnert, J., Akhrif, A., Telkemeyer, S., Rossi, S., Schmitz, C. H., Steinbrink, J., … & Neufang, S. (2013). Developmental changes in brain activation and functional connectivity during response inhibition in the early childhood brain. Brain and Development, 35, 894904. doi: 10.1016/j.braindev.2012.11.006CrossRefGoogle ScholarPubMed
Miller, M. R., Giesbrecht, G. F., Müller, U., McInerney, R. J., & Kerns, K. A. (2012). A latent variable approach to determining the structure of executive function in preschool children. Journal of Cognition and Development, 13, 395423. doi: 10.1080/15248372.2011.585478Google Scholar
Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21, 814. doi: 10.1177/0963721411429458Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49100. doi: 10.1006/cogp.1999.0734Google Scholar
Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., … & Sears, M. R. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences, 108, 26932698.CrossRefGoogle ScholarPubMed
Moriguchi, Y., & Hiraki, K. (2009). Neural origin of cognitive shifting in young children. Proceedings of the National Academy of Sciences, 106, 60176021. doi: 10.1073/pnas.0809747106CrossRefGoogle ScholarPubMed
Moriguchi, Y., & Hiraki, K. (2011). Longitudinal development of prefrontal function during early childhood. Developmental Cognitive Neuroscience, 1, 153162. doi: 10.1016/j.dcn.2010.12.004Google Scholar
Morton, J. B., Bosma, R., & Ansari, D. (2009). Age-related changes in brain activation associated with dimensional shifts of attention: An fMRI study. NeuroImage, 46, 249256. doi: 10.1016/j.neuroimage.2009.01.037Google Scholar
Nagy, Z., Westerberg, H., & Klingberg, T. (2004). Maturation of white matter is associated with the development of cognitive functions during childhood. Journal of Cognitive Neuroscience, 16, 12271233. doi: 10.1162/0898929041920441Google Scholar
Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12, 241268. doi: 10.3758/s13415-011-0083-5Google Scholar
O’Hare, E. D., Lu, L. H., Houston, S. M., Bookheimer, S. Y., & Sowell, E. R. (2008). Neurodevelopmental changes in verbal working memory load-dependency: An fMRI investigation. NeuroImage, 42, 16781685. doi: 10.1016/j.neuroimage.2008.05.057Google Scholar
Olesen, P. J., Macoveanu, J., Tegnér, J., & Klingberg, T. (2007). Brain activity related to working memory and distraction in children and adults. Cerebral Cortex, 17, 10471054. doi: 10.1093/cercor/bhl014Google Scholar
Olesen, P. J., Nagy, Z., Westerberg, H., & Klingberg, T. (2003). Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network. Cognitive Brain Research, 18, 4857. doi: 10.1016/j.cogbrainres.2003.09.003Google Scholar
Østby, Y., Tamnes, C. K., Fjell, A. M., & Walhovd, K. B. (2011). Morphometry and connectivity of the fronto-parietal verbal working memory network in development. Neuropsychologia, 49, 38543862. doi: 10.1016/j.neuropsychologia.2011.10.001Google Scholar
Rose, S. A., Feldman, J. F., & Jankowski, J. J. (2011). Modeling a cascade of effects: the role of speed and executive functioning in preterm/full-term differences in academic achievement. Developmental Science, 14, 11611175. doi: 10.1111/j.1467-7687.2011.01068.xGoogle Scholar
Rubia, K., Smith, A. B., Taylor, E., & Brammer, M. (2007). Linear age-correlated functional development of right inferior fronto-striato-cerebellar networks during response inhibition and anterior cingulate during error-related processes. Human Brain Mapping, 28, 11631177. doi: 10.1002/hbm.20347Google Scholar
Rubia, K., Smith, A. B., Woolley, J., Nosarti, C., Heyman, I., Taylor, E., & Brammer, M. (2006). Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control. Human Brain Mapping, 27, 973993. doi: 10.1002/hbm.20237Google Scholar
Scherf, K. S., Sweeney, J. A., & Luna, B. (2006). Brain basis of developmental change in visuospatial working memory. Journal of Cognitive Neuroscience, 18, 10451058. doi: 10.1162/jocn.2006.18.7.1045Google Scholar
Sheridan, M., Kharitonova, M., Martin, R. E., Chatterjee, A., & Gabrieli, J. D. E. (2014). Neural substrates of the development of cognitive control in children ages 5–10 years. Journal of Cognitive Neuroscience, 26(8), 1840–1850. doi: 10.1162/jocn_a_00597Google Scholar
Shing, Y. L., Lindenberger, U., Diamond, A., Li, S.-C., & Davidson, M. C. (2010). Memory maintenance and inhibitory control differentiate from early childhood to adolescence. Developmental Neuropsychology, 35, 679697. doi: 10.1080/87565641.2010.508546Google Scholar
Stuss, D. T., & Alexander, M. (2000). Executive functions and the frontal lobes: A conceptual view. Psychological Research, 63, 289298. doi: 10.1007/s004269900007Google Scholar
Tamm, L., Menon, V., & Reiss, A. L. (2002). Maturation of brain function associated with response inhibition. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 12311238. doi: 10.1097/00004583-200210000-00013Google Scholar
Usai, M. C., Viterbori, P., & Traverso, L. (2014). Latent structure of executive function in five-and six-year-old children: a longitudinal study. European Journal of Developmental Psychology, 11, 447463. doi: 10.1080/17405629.2013.840578Google Scholar
Van der Sluis, S., de Jong, P. F., & van der Leij, A. (2007). Executive functioning in children, and its relations with reasoning, reading, and arithmetic. Intelligence, 35, 427449. doi: 10.1016/j.intell.2006.09.001CrossRefGoogle Scholar
Van der Ven, S. H. G., Kroesbergen, E. H., Boom, J., & Leseman, P. P. M. (2011). The development of executive functions and early mathematics: A dynamic relationship. British Journal of Educational Psychology, 82, 100119. doi: 10.1111/j.2044-8279.2011.02035.xGoogle Scholar
Velanova, K., Wheeler, M. E., & Luna, B. (2009). The maturation of task set-related activation supports late developmental improvements in inhibitory control. Journal of Neuroscience, 29, 1255812567. doi: 10.1523/JNEUROSCI.1579-09.2009Google Scholar
Vestergaard, M., Madsen, K. S., Baaré, W. F., Skimminge, A., Ejersbo, L. R., Ramsøy, T. Z., … & Jernigan, T. L. (2011). White matter microstructure in superior longitudinal fasciculus associated with spatial working memory performance in children. Journal of Cognitive Neuroscience, 23, 21352146. doi: 10.1162/jocn.2010.21592CrossRefGoogle ScholarPubMed
Waxer, M., & Morton, J. B. (2011). Multiple processes underlying dimensional change card sort performance: A developmental electrophysiological investigation. Journal of Cognitive Neuroscience, 23, 32673279. doi: 10.1162/jocn_a_00038Google Scholar
Wendelken, C., Munakata, Y., Baym, C., Souza, M., & Bunge, S. A. (2012). Flexible rule use: Common neural substrates in children and adults. Developmental Cognitive Neuroscience, 2, 329339. doi: 10.1016/j.dcn.2012.02.001Google Scholar
Wiebe, S. A., Espy, K. A., & Charak, D. (2008). Using confirmatory factor analysis to understand executive control in preschool children: I. Latent structure. Developmental Psychology, 44, 575587. doi: 10.1037/0012-1649.44.2.575Google Scholar
Wiebe, S. A., Sheffield, T., Nelson, J. M., Clark, C. A. C., Chevalier, N., & Espy, K. A. (2011). The structure of executive function in 3-year-olds. Journal of Experimental Child Psychology, 108, 436452. doi: 10.1016/j.jecp.2010.08.008Google Scholar
Willoughby, M. T., Blair, C. B., Wirth, R. J., Greenberg, M., & Family Life Project Investigators. (2010). The measurement of executive function at age 3 years: Psychometric properties and criterion validity of a new battery of tasks. Psychological Assessment, 22, 306317. doi: 10.1037/a0018708Google Scholar
Willoughby, M. T., Wirth, R. J., Blair, C. B., & Family Life Project Investigators. (2012). Executive function in early childhood: Longitudinal measurement invariance and developmental change. Psychological Assessment, 24, 418431. doi: 10.1037/a0025779Google Scholar
Wu, K. K., Chan, S. K., Leung, P. W. L., Liu, W.-S., Leung, F. L. T., & Ng, R. (2011). Components and developmental differences of executive functioning for school-aged children. Developmental Neuropsychology, 36, 319337. doi: 10.1080/87565641.2010.549979Google Scholar
Zelazo, P. D., (2006). The Dimensional Change Card Sort (DCCS): A method of assessing executive function in children. Nature Protocols, 1, 297301. doi: 10.1038/nprot.2006.46Google Scholar
Zelazo, P. D., Carlson, S. M., & Kesek, A. (2008). The development of executive function in childhood. In Nelson, C. A. & Luciana, M. (Eds.), Handbook of Developmental Cognitive Neuroscience (2nd edn). (pp. 553574). Cambridge, MA: MIT Press.Google Scholar
Zuk, J., Benjamin, C., Kenyon, A., & Gaab, N. (2014). Behavioral and neural correlates of executive functioning in musicians and non-musicians. PLoS ONE, 9, e9986814. doi: 10.1371/journal.pone.0099868Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×