Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-01T05:08:20.728Z Has data issue: false hasContentIssue false

Chapter 13 - Brain Metastases: Molecules to Medicine

from Section 2 - Clinical Neurosurgical Diseases

Published online by Cambridge University Press:  04 January 2024

Farhana Akter
Affiliation:
Harvard University, Massachusetts
Nigel Emptage
Affiliation:
University of Oxford
Florian Engert
Affiliation:
Harvard University, Massachusetts
Mitchel S. Berger
Affiliation:
University of California, San Francisco
Get access

Summary

Due to improvements in population health, systemic cancer therapies and screening tools, the incidence of brain cancer metastases has continued to rise. The constituent cells possess unique characteristics that allow them to penetrate the blood–brain barrier, colonize the central nervous system, and co-opt their surroundings to thrive while evading surveillance by the immune system. This presents a unique challenge both to the multidisciplinary teams that care for these patients and the investigators striving to leverage these tumors’ distinctive attributes into novel treatments. In this chapter, we outline the pathways and mechanisms underlying the development and survival of brain metastases, and how they inform current and emerging treatment strategies.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achrol, AS, Rennert, RC, Anders, C, et al. Brain metastases. Nat Rev Dis Primer 2019;5:126. https://doi.org/10.1038/s41572-018-0055-y.Google Scholar
Andreou, KE, Soto, MS, Allen, D, et al. Anti-inflammatory microglia/macrophages as a potential therapeutic target in brain metastasis. Front Oncol 2017;7:251. https://doi.org/10.3389/fonc.2017.00251.Google Scholar
Berghoff, AS, Fuchs, E, Ricken, G, et al. Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases. Oncoimmunology 2015;5(1):e1057388. https://doi.org/10.1080/2162402X.2015.1057388.Google Scholar
Berghoff, AS, Rajky, O, Winkler, F, et al. Invasion patterns in brain metastases of solid cancers. Neuro Oncol 2013;15:1664–72. https://doi.org/10.1093/neuonc/not112.Google Scholar
Berghoff, AS, Schur, S, Füreder, LM, et al. Descriptive statistical analysis of a real life cohort of 2419 patients with brain metastases of solid cancers. ESMO Open 2016; 1:e000024. https://doi.org/10.1136/esmoopen-2015-000024.CrossRefGoogle Scholar
Besse, B, Moulec, SL, Mazières, J, et al. Bevacizumab in patients with nonsquamous non–small cell lung cancer and asymptomatic, untreated brain metastases (BRAIN): a nonrandomized, phase II study. Clin Cancer Res 2015;21:1896–903. https://doi.org/10.1158/1078-0432.CCR-14-2082.Google Scholar
Bi, P, Kuang, S. Notch signaling as a novel regulator of metabolism. Trends Endocrinol Metab 2015;26:248–55. https://doi.org/10.1016/j.tem.2015.02.006.Google Scholar
Blazquez, R, Wlochowitz, D, Wolff, A, et al. PI3 K: a master regulator of brain metastasis-promoting macrophages/microglia. Glia 2018;66;2438–55. https://doi.org/10.1002/glia.23485.Google Scholar
Bohn, KA, Adkins, CE, Nounou, MI, Lockman, PR Inhibition of VEGF and angiopoietin-2 to reduce brain metastases of breast cancer burden. Front Pharmacol 2017;8:193. https://doi.org/10.3389/fphar.2017.00193.CrossRefGoogle ScholarPubMed
Bos, PD, Zhang, XH-F, Nadal, C, et al. Genes that mediate breast cancer metastasis to the brain. Nature 2009;459:1005–09. https://doi.org/10.1038/nature08021.Google Scholar
Brastianos, PK, Carter, SL, Santagata, S, et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov 2015;5:1164–77. https://doi.org/10.1158/2159-8290.CD-15-0369.Google Scholar
Bucheit, AD, Chen, G, Siroy, A, et al. Complete loss of PTEN protein expression correlates with shorter time to brain metastasis and survival in stage IIIB/C melanoma patients with BRAFV600 mutations. Clin Cancer Res 2014;20:5527–36. https://doi.org/10.1158/1078-0432.CCR-14-1027.Google Scholar
Cano, A, Pérez-Moreno, MA, Rodrigo, I, et al. The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000;2:7683. https://doi.org/10.1038/35000025.Google Scholar
Chen, J, Lee, H-J, Wu, X, et al. Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain. Cancer Res 2015;75:554–65. https://doi.org/10.1158/0008-5472.CAN-14-2268.Google ScholarPubMed
Chen, L, Douglass, J, Kleinberg, L, et al. Concurrent immune checkpoint inhibitors and stereotactic radiosurgery for brain metastases in non-small cell lung cancer, melanoma, and renal cell carcinoma. Int J Radiat Oncol 2018;100:916–25. https://doi.org/10.1016/j.ijrobp.2017.11.041.Google Scholar
Chen, Q, Boire, A, Jin, X, et al. Carcinoma–astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 2016;533:493–8. https://doi.org/10.1038/nature18268.Google Scholar
Chongsathidkiet, P, Jackson, C, Koyama, S, et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med 2018;24:1459–68. https://doi.org/10.1038/s41591-018-0135-2.Google Scholar
Choy, C, Ansari, KI, Neman, J, et al. Cooperation of neurotrophin receptor TrkB and Her2 in breast cancer cells facilitates brain metastases. Breast Cancer Res 2017;19:51. https://doi.org/10.1186/s13058-017-0844-3.Google Scholar
Chuang, H-N, van Rossum, D, Sieger, D, et al. Carcinoma cells misuse the host tissue damage response to invade the brain. Glia 2013;61:1331–46. https://doi.org/10.1002/glia.22518.CrossRefGoogle ScholarPubMed
Ciminera, AK, Jandial, R, Termini, J. Metabolic advantages and vulnerabilities in brain metastases. Clin Exp Metastasis 2017;34:401–10. https://doi.org/10.1007/s10585-017-9864-8.CrossRefGoogle ScholarPubMed
Curley, CT, Sheybani, ND, Bullock, TN, Price, RJ. Focused ultrasound immunotherapy for central nervous system pathologies: challenges and opportunities. Theranostics 2017;7:3608–23. https://doi.org/10.7150/thno.21225.Google Scholar
Davies, MA, Liu, P, McIntyre, S, et al. Prognostic factors for survival in melanoma patients with brain metastases. Cancer 2011;117:1687–96. https://doi.org/10.1002/cncr.25634.Google Scholar
Di Giacomo, AM, Ascierto, PA, Queirolo, P, et al. Three-year follow-up of advanced melanoma patients who received ipilimumab plus fotemustine in the Italian Network for Tumor Biotherapy (NIBIT)-M1 phase II study. Ann Oncol 2015;26:798803. https://doi.org/10.1093/annonc/mdu577.Google Scholar
Di Giacomo, AM, Valente, M, Cerase, A, et al. Immunotherapy of brain metastases: breaking a “dogma”. J Exp Clin Cancer Res 2019;38:419. https://doi.org/10.1186/s13046-019-1426-2.Google Scholar
Dolgodilina, E, Imobersteg, S, Laczko, E, Welt, T, Verrey, F, Makrides, V. Brain interstitial fluid glutamine homeostasis is controlled by blood–brain barrier SLC7A5/LAT1 amino acid transporter. J Cereb Blood Flow Metab 2016;36:1929–41. https://doi.org/10.1177/0271678X15609331.Google Scholar
Eckert, MA, Lwin, TM, Chang, AT, et al. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell 2011;19:372–86. https://doi.org/10.1016/j.ccr.2011.01.036.Google Scholar
Eichler, AF, Kahle, KT, Wang, DL, et al. EGFR mutation status and survival after diagnosis of brain metastasis in nonsmall cell lung cancer. Neuro Oncol 2010;12:1193–9. https://doi.org/10.1093/neuonc/noq076.Google Scholar
Er, EE, Valiente, M, Ganesh, K, et al. Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat. Cell Biol 2018;20:966–78. https://doi.org/10.1038/s41556-018-0138-8.Google Scholar
Farber, SH, Tsvankin, V, Narloch, JL, et al. Embracing rejection: immunologic trends in brain metastasis. Oncoimmunology 2016;5:e1172153. https://doi.org/10.1080/2162402X.2016.1172153.Google Scholar
Fecci, PE, Champion, CD, Hoj, J, et al. The evolving modern management of brain metastasis. Clin Cancer Res 2019;25:6570–80. https://doi.org/10.1158/1078-0432.CCR-18-1624.Google Scholar
Fong, MY, Zhou, W, Liu, L, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 2015;17:183–94. https://doi.org/10.1038/ncb3094.Google Scholar
Gaudy-Marqueste, C, Dussouil, AS, Carron, R, et al. Survival of melanoma patients treated with targeted therapy and immunotherapy after systematic upfront control of brain metastases by radiosurgery. Eur J Cancer 2017;84:4454. https://doi.org/10.1016/j.ejca.2017.07.017.CrossRefGoogle ScholarPubMed
Goldberg, SB, Gettinger, SN, Mahajan, A, et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol 2016;17:976–83. https://doi.org/10.1016/S1470-2045(16)30053-5.Google Scholar
Gong, X, Hou, Z, Endsley, MP, et al. Interaction of tumor cells and astrocytes promotes breast cancer brain metastases through TGF-β2/ANGPTL4 axes. npj Precis Oncol 2019;3:19. https://doi.org/10.1038/s41698-019-0094-1.Google Scholar
Gregory, PA, Bracken, CP, Smith, E, et al. An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial–mesenchymal transition. Mol Biol Cell 2011;22:1686–98. https://doi.org/10.1091/mbc.e11-02-0103.Google Scholar
Grimaldi, AM, Simeone, E, Giannarelli, D, et al. Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. OncoImmunology 2014;3:e28780. https://doi.org/10.4161/onci.28780.Google Scholar
Hanna, N, Fidler, IJ. Role of natural killer cells in the destruction of circulating tumor emboli. J Natl Cancer Inst 1980;65:801–09. https://doi.org/10.1093/jnci/65.4.801.Google Scholar
Harter, PN, Bernatz, S, Scholz, A, et al. Distribution and prognostic relevance of tumor-infiltrating lymphocytes (TILs) and PD-1/PD-L1 immune checkpoints in human brain metastases. Oncotarget 2015;6:40836–49.Google Scholar
Herwig, N, Belter, B, Pietzsch, J. Extracellular S100A4 affects endothelial cell integrity and stimulates transmigration of A375 melanoma cells. Biochem Biophys Res Commun 2016;477:963–9. https://doi.org/10.1016/j.bbrc.2016.07.009.Google Scholar
Hohensee, I, Lamszus, K, Riethdorf, S, et al. Frequent genetic alterations in EGFR- and HER2-driven pathways in breast cancer brain metastases. Am J Pathol 2013;183:8395. https://doi.org/10.1016/j.ajpath.2013.03.023.CrossRefGoogle ScholarPubMed
Hoj, JP, Mayro, B, Pendergast, AM. A TAZ-AXL-ABL2 feed-forward signaling axis promotes lung adenocarcinoma brain metastasis. Cell Rep 2019;29:3421–34. https://doi.org/10.1016/j.celrep.2019.11.018.Google Scholar
Hong, JJ, Rosenberg, SA, Dudley, ME, et al. Successful treatment of melanoma brain metastases with adoptive cell therapy. Clin Cancer Res 2010;16:4892–8. https://doi.org/10.1158/1078-0432.CCR-10-1507.Google Scholar
Hoshino, A, Costa-Silva, B, Shen, T-L, et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015;527:329–35. https://doi.org/10.1038/nature15756.Google Scholar
Ilhan-Mutlu, A, Osswald, M, Liao, Y, et al. Bevacizumab prevents brain metastases formation in lung adenocarcinoma. Mol Cancer Ther 2016;15:702–10. https://doi.org/10.1158/1535-7163.MCT-15-0582.Google Scholar
Jackson, S, Anders, NM, Mangraviti, A, et al. The effect of regadenoson-induced transient disruption of the blood–brain barrier on temozolomide delivery to normal rat brain. J Neurooncol 2016;126:433–9. https://doi.org/10.1007/s11060-015-1998-4.Google Scholar
Jandial, R, Choy, C, Levy, DM, Chen, MY, Ansari, KI. Astrocyte-induced Reelin expression drives proliferation of Her2+ breast cancer metastases. Clin Exp Metastasis 2017;34:185–96. https://doi.org/10.1007/s10585-017-9839-9.CrossRefGoogle ScholarPubMed
Jolly, MK, Somarelli, JA, Sheth, M, et al. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther 2019;194:161–84. https://doi.org/10.1016/j.pharmthera.2018.09.007.Google Scholar
Jung, YY, Kim, HM, Koo, JS. Expression of lipid metabolism-related proteins in metastatic breast cancer. PLoS One 2015;10:e0137204. https://doi.org/10.1371/journal.pone.0137204.Google Scholar
Kalluri, R, Weinberg, RA. The basics of epithelial–mesenchymal transition. J Clin Invest 2009;119:1420–8. https://doi.org/10.1172/JCI39104.Google Scholar
Kienast, Y, von Baumgarten, L, Fuhrmann, M, et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 2010;16:116–22. https://doi.org/10.1038/nm.2072.Google Scholar
Kim, AH, Tatter, S, Rao, G, et al. Laser ablation of abnormal neurological tissue using robotic neuroblate system (LAANTERN): 12-month outcomes and quality of life after brain tumor ablation. Neurosurgery 2020;87:E338–46. https://doi.org/10.1093/neuros/nyaa071.Google Scholar
Kim, S-J, Kim, J-S, Park, ES, et al. Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. Neoplasia 2011;13:286–98. https://doi.org/10.1593/neo.11112.Google Scholar
Kim, SW, Choi, HJ, Lee, H-J, et al. Role of the endothelin axis in astrocyte- and endothelial cell-mediated chemoprotection of cancer cells. Neuro Oncol 2014;16:1585–98. https://doi.org/10.1093/neuonc/nou128.Google Scholar
Klein, A, Schwartz, H, Sagi-Assif, O, et al. Astrocytes facilitate melanoma brain metastasis via secretion of IL-23. J Pathol 2015;236:116–27. https://doi.org/10.1002/path.4509.Google Scholar
Kudo, Y, Haymaker, C, Zhang, J, et al. Suppressed immune microenvironment and repertoire in brain metastases from patients with resected non-small-cell lung cancer. Ann Oncol 2019;30:1521–30. https://doi.org/10.1093/annonc/mdz207.Google Scholar
Labelle, M, Begum, S, Hynes, RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 2011;20:576–90. https://doi.org/10.1016/j.ccr.2011.09.009.CrossRefGoogle ScholarPubMed
Lambert, AW, Pattabiraman, DR, Weinberg, RA. Emerging biological principles of metastasis. Cell 2017;168:670–91. https://doi.org/10.1016/j.cell.2016.11.037.Google Scholar
Lee, B-C, Lee, T-H, Avraham, S, Avraham, HK. Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res 2004;2:327–38.Google Scholar
Lee, JY, Park, K, Lee, E, et al. Gene expression profiling of breast cancer brain metastasis. Sci Rep 2016;6:28623. https://doi.org/10.1038/srep28623.Google Scholar
Lee, JY, Park, K, Lim, SH, et al. Mutational profiling of brain metastasis from breast cancer: matched pair analysis of targeted sequencing between brain metastasis and primary breast cancer. Oncotarget 2015;6:43731–42. https://doi.org/10.18632/oncotarget.6192Google Scholar
Lee, T-H, Avraham, HK, Jiang, S, Avraham, S. Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem 2003;278:5277–84. https://doi.org/10.1074/jbc.M210063200.Google Scholar
Leong, HS, Robertson, AE, Stoletov, K, et al. Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep 2014;8:1558–70. https://doi.org/10.1016/j.celrep.2014.07.050.Google Scholar
Leuthardt, EC, Duan, C, Kim, MJ, et al. Hyperthermic laser ablation of recurrent glioblastoma leads to temporary disruption of the peritumoral blood brain barrier. PLoS One 2016;11:e0148613. https://doi.org/10.1371/journal.pone.0148613.CrossRefGoogle ScholarPubMed
Li, B, Wang, C, Zhang, Y, et al. Elevated PLGF contributes to small-cell lung cancer brain metastasis. Oncogene 2013;32:2952–62. https://doi.org/10.1038/onc.2012.313.Google Scholar
Li, B, Zhao, W-D, Tan, Z-M, Fang, W-G, Zhu, L, Chen, Y-H. Involvement of Rho/ROCK signalling in small cell lung cancer migration through human brain microvascular endothelial cells. FEBS Lett 2006;580:4252–60. https://doi.org/10.1016/j.febslet.2006.06.056.Google Scholar
Liberti, MV, Locasale, JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 2016;41:211–8. https://doi.org/10.1016/j.tibs.2015.12.001.Google Scholar
Lin, X, Lu, T, Xie, Z, et al. Extracranial abscopal effect induced by combining immunotherapy with brain radiotherapy in a patient with lung adenocarcinoma: a case report and literature review. Thorac Cancer 2019;10:1272–5. https://doi.org/10.1111/1759-7714.13048.Google Scholar
Liu, H, Kato, Y, Erzinger, SA, et al. The role of MMP-1 in breast cancer growth and metastasis to the brain in a xenograft model. BMC Cancer 2012;12:583. https://doi.org/10.1186/1471-2407-12-583.Google Scholar
Liu, H-L, Hua, M-Y, Chen, P-Y, et al. Blood–brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology 2010;255:415–25. https://doi.org/10.1148/radiol.10090699.Google Scholar
Liu, Y, Cao, X. Characteristics and significance of the pre-metastatic niche. Cancer Cell 2016;30:668–81. https://doi.org/10.1016/j.ccell.2016.09.011.Google Scholar
Liu, Y, Kosaka, A, Ikeura, M, et al. Premetastatic soil and prevention of breast cancer brain metastasis. Neuro Oncol 2013;15:891903. https://doi.org/10.1093/neuonc/not031.Google Scholar
Long, GV, Atkinson, V, Lo, S, et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study. Lancet Oncol 2018;19:672–81. https://doi.org/10.1016/S1470-2045(18)30139-6.Google Scholar
Lorger, M, Felding-Habermann, B. Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol 2010;176:2958–71. https://doi.org/10.2353/ajpath.2010.090838.Google Scholar
Lorger, M, Krueger, JS, O’Neal, M, Staflin, K, Felding-Habermann, B. Activation of tumor cell integrin alphavbeta3 controls angiogenesis and metastatic growth in the brain,. PNAS 2009;106:10666–71. https://doi.org/10.1073/pnas.0903035106.Google Scholar
Louveau, A, Plog, BA, Antila, S, Alitalo, K, Nedergaard, M, Kipnis, J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest 2017;127:3210–9. https://doi.org/10.1172/JCI90603.Google Scholar
Lowery, FJ, Yu, D. Brain metastasis: unique challenges and open opportunities. Biochim Biophys Acta 2017;1867:4957. https://doi.org/10.1016/j.bbcan.2016.12.001.Google Scholar
Mani, SA, Guo, W, Liao, M-J, et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 2008;133:704–15. https://doi.org/10.1016/j.cell.2008.03.027.Google Scholar
Margolin, K, Ernstoff, MS, Hamid, O, et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol 2012;13:459–65. https://doi.org/10.1016/S1470-2045(12)70090-6.Google Scholar
Mashimo, T, Pichumani, K, Vemireddy, V, et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 2014;159:1603–14. https://doi.org/10.1016/j.cell.2014.11.025.Google Scholar
McFarland, BC, Benveniste, EN. Reactive astrocytes foster brain metastases via STAT3 signaling. Ann Transl Med 2019;7. https://doi.org/10.21037/atm.2019.04.17.Google Scholar
Menter, DG, Hatfield, JS, Harkins, C, et al. Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenously circulating tumor cells. Clin Exp Metastasis 1987;5:6578. https://doi.org/10.1007/BF00116627.CrossRefGoogle ScholarPubMed
Morad, G, Carman, CV, Hagedorn, EJ, et al. Tumor-derived extracellular vesicles breach the intact blood–brain barrier via transcytosis. ACS Nano 2019;13:13853–65. https://doi.org/10.1021/acsnano.9b04397.Google Scholar
Moravan, MJ, Fecci, PE, Anders, CK, et al. Current multidisciplinary management of brain metastases. Cancer 2020;126:1390–406. https://doi.org/10.1002/cncr.32714.CrossRefGoogle ScholarPubMed
Nakamura, T, Saito, R, Sugiyama, S, Sonoda, Y, Kumabe, T, Tominaga, T. Local convection-enhanced delivery of chemotherapeutic agent transiently opens blood–brain barrier and improves efficacy of systemic chemotherapy in intracranial xenograft tumor model. Cancer Lett 2011;310:7783. https://doi.org/10.1016/j.canlet.2011.06.018.Google Scholar
Nam, D-H, Jeon, H-M, Kim, S, et al. Activation of notch signaling in a xenograft model of brain metastasis. Clin Cancer Res 2008;14:4059–66. https://doi.org/10.1158/1078-0432.CCR-07-4039.Google Scholar
Neman, J, Termini, J, Wilczynski, S, et al. Human breast cancer metastases to the brain display GABAergic properties in the neural niche. PNAS 2014;111:984–9. https://doi.org/10.1073/pnas.1322098111.Google Scholar
Ostrom, QT, Gittleman, H, Truitt, G, Boscia, A, Kruchko, C, Barnholtz-Sloan, JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro-Oncol 2018;20:iv1–iv86. https://doi.org/10.1093/neuonc/noy131.Google Scholar
Palumbo, JS, Talmage, KE, Massari, JV, et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell–mediated elimination of tumor cells. Blood 2005;105:178–85. https://doi.org/10.1182/blood-2004-06-2272.Google Scholar
Pastushenko, I, Brisebarre, A, Sifrim, A, et al. Identification of the tumour transition states occurring during EMT. Nature 2018;556:463–8. https://doi.org/10.1038/s41586-018-0040-3.Google Scholar
Pestalozzi, BC, Zahrieh, D, Price, KN, et al. Identifying breast cancer patients at risk for central nervous system (CNS) metastases in trials of the International Breast Cancer Study Group (IBCSG). Ann Oncol 2006;17:935–44. https://doi.org/10.1093/annonc/mdl064.Google Scholar
Pfannenstiel, LW, McNeilly, C, Xiang, C, et al. Combination PD-1 blockade and irradiation of brain metastasis induces an effective abscopal effect in melanoma. OncoImmunology 2019;8:e1507669. https://doi.org/10.1080/2162402X.2018.1507669.Google Scholar
Priego, N, Zhu, L, Monteiro, C, et al. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat Med 2018;24:1024–35. https://doi.org/10.1038/s41591-018-0044-4.Google ScholarPubMed
Pukrop, T, Dehghani, F, Chuang, H-N, et al. Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way. Glia 2010;58:1477–89. https://doi.org/10.1002/glia.21022.Google Scholar
Qin, D, Ou, G, Mo, H, et al. Improved efficacy of chemotherapy for glioblastoma by radiation-induced opening of blood–brain barrier: clinical results. Int J Radiat Oncol 2001;51:959–62. https://doi.org/10.1016/S0360-3016(01)01735-7.Google Scholar
Qin, Y, Capaldo, C, Gumbiner, BM, Macara, IG. The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J Cell Biol 2005;171:1061–71. https://doi.org/10.1083/jcb.200506094.Google Scholar
Regmi, S, Fu, A, Luo, KQ. High shear stresses under exercise condition destroy circulating tumor cells in a microfluidic system. Sci Rep 2017;7:39975. https://doi.org/10.1038/srep39975.Google Scholar
Rizvi, NA, Mazières, J, Planchard, D, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 2015;16:257–65. https://doi.org/10.1016/S1470-2045(15)70054-9.Google Scholar
Rodrigues, G, Hoshino, A, Kenific, CM, et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat Cell Biol 2019;21:1403–12. https://doi.org/10.1038/s41556-019-0404-4.Google Scholar
Rolland, Y, Demeule, M, Fenart, L, Béliveau, R. Inhibition of melanoma brain metastasis by targeting melanotransferrin at the cell surface. Pigment Cell Melanoma Res 2009;22:8698. https://doi.org/10.1111/j.1755-148X.2008.00525.x.Google Scholar
Salehi, A, Paturu, MR, Patel, B, et al. Therapeutic enhancement of blood–brain and blood–tumor barriers permeability by laser interstitial thermal therapy. Neurooncol Adv 2020;2:vdaa071. https://doi.org/10.1093/noajnl/vdaa071.Google Scholar
Sampson, JH, Gunn, MD, Fecci, PE, Ashley, DM. Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer 2020;20:1225. https://doi.org/10.1038/s41568-019-0224-7.Google Scholar
Sartorius, CA, Hanna, CT, Gril, B, et al. Estrogen promotes the brain metastatic colonization of triple negative breast cancer cells via an astrocyte-mediated paracrine mechanism. Oncogene 2016;35:2881–92. https://doi.org/10.1038/onc.2015.353.Google Scholar
Seike, T, Fujita, K, Yamakawa, Y, et al. Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clin Exp Metastasis 2011;28:1325. https://doi.org/10.1007/s10585-010-9354-8.Google Scholar
Sevenich, L, Bowman, RL, Mason, SD, et al. Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat Cell Biol 2014;16:876–88. https://doi.org/10.1038/ncb3011.Google Scholar
Sharma, M, Balasubramanian, S, Silva, D, Barnett, GH, Mohammadi, AM. Laser interstitial thermal therapy in the management of brain metastasis and radiation necrosis after radiosurgery: an overview. Expert Rev Neurother 2016;16:223–32. https://doi.org/10.1586/14737175.2016.1135736.Google Scholar
Silver, IA, Erecińska, M. Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J Neurosci 1994;14:5068–76. https://doi.org/10.1523/JNEUROSCI.14-08-05068.1994.Google Scholar
Sjøbakk, TE, Johansen, R, Bathen, TF, et al. Metabolic profiling of human brain metastases using in vivo proton MR spectroscopy at 3 T. BMC Cancer 2007;7:141. https://doi.org/10.1186/1471-2407-7-141.Google Scholar
Sjøbakk, TE, Vettukattil, R, Gulati, M, et al. Metabolic profiles of brain metastases. Int J Mol Sci 2013;14:2104–18. https://doi.org/10.3390/ijms14012104.Google Scholar
Soto, MS, Serres, S, Anthony, DC, Sibson, NR. Functional role of endothelial adhesion molecules in the early stages of brain metastasis. Neuro Oncol 2014;16:540–51. https://doi.org/10.1093/neuonc/not222.Google Scholar
Sperringer, JE, Addington, A, Hutson, SM. Branched-chain amino acids and brain metabolism. Neurochem Res 2017;42:1697–709. https://doi.org/10.1007/s11064-017-2261-5.Google Scholar
Tabatabaei, SN, Girouard, H, Carret, A-S, Martel, S. Remote control of the permeability of the blood–brain barrier by magnetic heating of nanoparticles: a proof of concept for brain drug delivery. J Control Release 2015;206:4957. https://doi.org/10.1016/j.jconrel.2015.02.027.Google Scholar
Tawbi, HA, Forsyth, PA, Algazi, A, et al. Combined Nivolumab and Ipilimumab in melanoma metastatic to the brain. N Engl J Med 2018;379:722–30. https://doi.org/10.1056/NEJMoa1805453.Google Scholar
Théry, C, Zitvogel, L, Amigorena, S. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002;2:569–79. https://doi.org/10.1038/nri855.Google Scholar
Tiwary, S, Morales, JE, Kwiatkowski, SC, Lang, FF, Rao, G, McCarty, JH. Metastatic brain tumors disrupt the blood–brain barrier and alter lipid metabolism by inhibiting expression of the endothelial cell fatty acid transporter Mfsd2a. Sci Rep 2018;8:8267. https://doi.org/10.1038/s41598-018-26636-6.Google Scholar
Tominaga, N, Kosaka, N, Ono, M, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood–brain barrier. Nat Commun 2015;6:6716. https://doi.org/10.1038/ncomms7716.Google Scholar
Tyran, M, Carbuccia, N, Garnier, S, et al. A comparison of DNA mutation and copy number profiles of primary breast cancers and paired brain metastases for identifying clinically relevant genetic alterations in brain metastases. Cancers 2019;11:665. https://doi.org/10.3390/cancers11050665.Google Scholar
Valiente, M, Obenauf, AC, Jin, X, et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 2014;156:1002–16. https://doi.org/10.1016/j.cell.2014.01.040.Google Scholar
van Vulpen, M, Kal, HB, Taphoorn, MJB, El Sharouni, SY. Changes in blood–brain barrier permeability induced by radiotherapy: implications for timing of chemotherapy? Oncol Rep 2002;9:683–8. https://doi.org/10.3892/or.9.4.683.Google Scholar
Wagner, S, Czub, S, Greif, M, et al. Microglial/macrophage expression of interleukin 10 in human glioblastomas. Int J Cancer 1999;82:12–6. https://doi.org/10.1002/(sici)1097-0215(19990702)82:1<12::aid-ijc3>3.0.co;2-o.Google Scholar
Wang, H, Ou, Q, Li, D, et al. Genes associated with increased brain metastasis risk in non–small cell lung cancer: comprehensive genomic profiling of 61 resected brain metastases versus primary non–small cell lung cancer (Guangdong Association Study of Thoracic Oncology 1036). Cancer 2019;125:3535–44. https://doi.org/10.1002/cncr.32372.Google Scholar
Warburg, O. The metabolism of carcinoma cells. J Cancer Res 1925;9:148–63. https://doi.org/10.1158/jcr.1925.148.Google Scholar
Wu, YJ, Muldoon, LL, Gahramanov, S, Kraemer, DF, Marshall, DJ, Neuwelt, EA. Targeting αV-integrins decreased metastasis and increased survival in a nude rat breast cancer brain metastasis model. J Neurooncol 2012;110:2736. https://doi.org/10.1007/s11060-012-0942-0.Google Scholar
Xing, F, Kobayashi, A, Okuda, H, et al. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain. EMBO Mol Med 2013;5:384–96. https://doi.org/10.1002/emmm.201201623.Google Scholar
Xing, F, Liu, Y, Sharma, S, et al. Activation of the c-Met pathway mobilizes an inflammatory network in the brain microenvironment to promote brain metastasis of breast cancer. Cancer Res 2016;76:4970–80. https://doi.org/10.1158/0008-5472.CAN-15-3541.Google Scholar
Xing, F, Liu, Y, Wu, S-Y, et al. Loss of XIST in breast cancer activates MSN-c-Met and reprograms microglia via exosomal microRNA to promote brain metastasis. Cancer Res 2018;78:4316–30. https://doi.org/10.1158/0008-5472.CAN-18-1102.Google Scholar
Yang, J, Mani, SA, Donaher, JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004;117:927–39. https://doi.org/10.1016/j.cell.2004.06.006.Google Scholar
Yang, X, Di, J, Zhang, Y, et al. The Rho-kinase inhibitor inhibits proliferation and metastasis of small cell lung cancer. Biomed Pharmacother 2012;66:221–7. https://doi.org/10.1016/j.biopha.2011.11.011.Google Scholar
Yano, S, Shinohara, H, Herbst, RS, et al. Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer Res 2000;60:4959–67.Google Scholar
Yao, H, Price, TT, Cantelli, G, et al. Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature 2018;560:5560. https://doi.org/10.1038/s41586-018-0342-5.Google Scholar
Yu, M, Bardia, A, Wittner, BS, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 2013;339:580–4. https://doi.org/10.1126/science.1228522.Google Scholar
Yuan, H, Gaber, MW, Boyd, K, Wilson, CM, Kiani, MF, Merchant, TE. Effects of fractionated radiation on the brain vasculature in a murine model: blood–brain barrier permeability, astrocyte proliferation, and ultrastructural changes. Int J Radiat Oncol Biol Phys 2006;66:860–6. https://doi.org/10.1016/j.ijrobp.2006.06.043.Google Scholar
Zhang, L, Zhang, S, Yao, J, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 2015;527:100–04. https://doi.org/10.1038/nature15376.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×