Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-21T23:25:59.265Z Has data issue: false hasContentIssue false

Chapter 22 - Vascular Neurosurgery

from Section 2 - Clinical Neurosurgical Diseases

Published online by Cambridge University Press:  04 January 2024

Farhana Akter
Affiliation:
Harvard University, Massachusetts
Nigel Emptage
Affiliation:
University of Oxford
Florian Engert
Affiliation:
Harvard University, Massachusetts
Mitchel S. Berger
Affiliation:
University of California, San Francisco
Get access

Summary

Vascular neurosurgery is a diverse field focused on surgical and interventional treatment of cerebrovascular disease. Given this diverse disease pool vascular neurosurgery spans multiple fields, including neurology, cardiology, intensive care, interventional radiology, and clinical genetics and can affect involve both adult and pediatric patents. Despite extensive basic and translational research into the pathophysiology of cerebrovascular disease very few treatments have been successfully implemented into clinical practice. In this chapter we review the animal models used in the study of the pathophysiology of subarachnoid hemorrhage and its sequelae, such as early brain injury and delayed cerebral ischemia, highlighting the challenges and future direction. Furthermore, we will also discuss the animal models used to elucidate the mechanisms behind aneurysm formation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ACROSS. Epidemiology of aneurysmal subarachnoid hemorrhage in Australia and New Zealand: incidence and case fatality from the Australasian Cooperative Research on Subarachnoid Hemorrhage Study (ACROSS). Stroke 2000;31(8):1843–50. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10926945Google Scholar
Alg, VS, Sofat, R, Houlden, H, Werring, DJ. Genetic risk factors for intracranial aneurysms: a meta-analysis in more than 116,000 individuals. Neurology 2013;80(23):2154. www.ncbi.nlm.nih.gov/pmc/articles/PMC3716358/CrossRefGoogle Scholar
Allcock, JM, Drake, CG. Postoperative angiography in cases of ruptured intracranial aneurysm. J Neurosurg 1963;20:752–9. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14184993Google Scholar
Allen, G, Henderson, L, Chou, S, French, L. Cerebral arterial spasm. 1. In vitro contractile activity of vasoactive agents on canine basilar and middle cerebral arteries. J Neurosurg 1974;40(4):433–41. https://pubmed.ncbi.nlm.nih.gov/4360691/Google Scholar
Al-Tamimi, YZ, Bhargava, D, Feltbower, RG, et al. Lumbar drainage of cerebrospinal fluid after aneurysmal subarachnoid hemorrhage: a prospective, randomized, controlled trial (LUMAS). Stroke 2012;43(3):677–82. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=22282887Google Scholar
Anetsberger, A, Gempt, J, Blobner, M, et al. Impact of goal-directed therapy on delayed ischemia after aneurysmal subarachnoid hemorrhage. Stroke 2020;51(8):2287–96. www.ahajournals.org/doi/10.1161/STROKEAHA.120.029279CrossRefGoogle Scholar
Aoki, T, Kataoka, H, Ishibashi, R, Nozaki, K, Egashira, K, Hashimoto, N. Impact of monocyte chemoattractant protein-1 deficiency on cerebral aneurysm formation. Stroke 2009;40(3):942–51. www.ahajournals.org/doi/10.1161/STROKEAHA.108.532556Google Scholar
Aoki, T, Kataoka, H, Shimamura, M, et al. NF-κB is a key mediator of cerebral aneurysm formation. Circulation 2007;116(24):2830–40. www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.107.728303Google Scholar
Barry, K, Gogjian, M, Stein, B. Small animal model for investigation of subarachnoid hemorrhage and cerebral vasospasm. Stroke 1979;10(5). https://pubmed.ncbi.nlm.nih.gov/505495/Google Scholar
Bederson, J, Germano, I, Guarino, L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke 1995;26(6):1086–91. https://pubmed.ncbi.nlm.nih.gov/7762027/CrossRefGoogle Scholar
Budohoski, KP, Czosnyka, M, Smielewski, P, et al. Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: a prospective observational study. Stroke 2012;43(12):3230–7. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=23150652CrossRefGoogle ScholarPubMed
Cahill, J, Calvert, JW, Zhang, JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2006;26(11):1341–53. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16482081Google Scholar
Cajander, S, Hassler, O. Enzymatic destruction of the elastic lamella at the mouth of cerebral berry aneurysm? Acta Neurol Scand 1976;53(3):171–81. http://doi.wiley.com/10.1111/j.1600-0404.1976.tb04335.xGoogle Scholar
Chalouhi, N, Hoh, B, Hasan, D. Review of cerebral aneurysm formation, growth, and rupture. Stroke 2013;44(12):3613–22. https://pubmed.ncbi.nlm.nih.gov/24130141/Google Scholar
Chen, HI, Stiefel, MF, Oddo, M, et al. Detection of cerebral compromise with multimodality monitoring in patients with subarachnoid hemorrhage. Neurosurgery 2011;69(1):5363; discussion 63. www.ncbi.nlm.nih.gov/pubmed/21796073Google Scholar
Claassen, J, Carhuapoma, JR, Kreiter, KT, Du, EY, Connolly, ES, Mayer, SA. Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke 2002;33(5):1225–32. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11988595Google Scholar
Connolly, ES Jr, Rabinstein, AA, Carhuapoma, JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2012;43(6):1711–37. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=22556195Google Scholar
Conway, L, McDonald, L. Structural changes of the intradural arteries following subarachnoid hemorrhage. J Neurosurg 1972;37(6):715–23. https://pubmed.ncbi.nlm.nih.gov/4654701/Google Scholar
Crompton, M. The pathogenesis of cerebral infarction following the rupture of cerebral berry aneurysms. Brain 1964;87:491510. https://pubmed.ncbi.nlm.nih.gov/14215175/Google Scholar
Delgado-Zygmunt, T, Arbab, M, Shiokawa, Y, Svendgaard, N. A primate model for acute and late cerebral vasospasm: angiographic findings. Acta Neurochir (Wien) 1992;118(3–4):130–6. https://pubmed.ncbi.nlm.nih.gov/1456096/Google Scholar
De Oliveira Manoel, AL, Macdonald, RL. Neuroinflammation as a target for intervention in subarachnoid hemorrhage. Front Neurol 2018;9:292. www.ncbi.nlm.nih.gov/pmc/articles/PMC5941982/Google Scholar
Diringer, MN, Bleck, TP, Hemphill 3rd, JC, et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocrit Care 2011;15(2):211–40. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21773873Google Scholar
Doczi, T, Joo, F, Adam, G, Bozoky, B, Szerdahelyi, P. Blood–brain barrier damage during the acute stage of subarachnoid hemorrhage, as exemplified by a new animal model. Neurosurgery 1986;18(6):733–9. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed%26dopt=Citation%26list_uids=3736802Google Scholar
Dreier, JP, Major, S, Manning, A, et al. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain 2009;132(Pt7):1866–81. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19420089Google Scholar
Echlin, F. Spasm of basilar and vertebral arteries caused by experimental subarachnoid hemorrhage. J Neurosurg 1965;23(1):111. https://pubmed.ncbi.nlm.nih.gov/4953757/Google Scholar
Echlin, F. Experimental vasospasm, acute and chronic, due to blood in the subarachnoid space. J Neurosurg 1971;35(6):646–56. https://pubmed.ncbi.nlm.nih.gov/5000661/Google Scholar
Ecker, A, Riemenschneider, PA. Arteriographic demonstration of spasm of the intracranial arteries, with special reference to saccular arterial aneurysms. J Neurosurg 1951;8(6):660–7. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14889314Google Scholar
Edvinsson, L, Egund, N, Owman, O, Sahlin, C, Svendgaard, N. Reduced noradrenaline uptake and retention in cerebrovascular nerves associated with angiographically visible vasoconstriction following experimental subarachnoid hemorrhage in rabbits. Brain Res Bull 1982;9(1–6):799805. https://pubmed.ncbi.nlm.nih.gov/7172049/Google Scholar
Eldevik, O, Kristiansen, K, Torvik, A. Subarachnoid hemorrhage and cerebrovascular spasm. Morphological study of intracranial arteries based on animal experiments and human autopsies. J Neurosurg 1981;55(6):869–76. https://pubmed.ncbi.nlm.nih.gov/7299462/Google Scholar
Espinosa, F, Weir, B, Overton, T, Castor, W, Grace, M, Boisvert, D. A randomized placebo-controlled double-blind trial of nimodipine after SAH in monkeys. Part 1: Clinical and radiological findings. J Neurosurg 1984;60(6):1167–75. https://pubmed.ncbi.nlm.nih.gov/6726360/Google Scholar
Fassbender, K, Hodapp, B, Rossol, S, et al. Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries. J Neurol Neurosurg Psychiatry 2001;70(4):534–7. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11254783Google Scholar
Findlay, J, Weir, B, Kanamaru, K, Espinosa, F. Arterial wall changes in cerebral vasospasm. Neurosurgery 1989;25(5):736–45. https://pubmed.ncbi.nlm.nih.gov/2586727/Google Scholar
Findlay, JM, Kassell, NF, Weir, BK, et al. A randomized trial of intraoperative, intracisternal tissue plasminogen activator for the prevention of vasospasm. Neurosurgery 1995;37(1):168. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8587685Google Scholar
Frösen, J, Tulamo, R, Heikura, T, et al. Lipid accumulation, lipid oxidation, and low plasma levels of acquired antibodies against oxidized lipids associate with degeneration and rupture of the intracranial aneurysm wall. Acta Neuropathol Commun 2013;1(1):71. https://actaneurocomms.biomedcentral.com/articles/10.1186/2051-5960-1-71Google Scholar
Fukuroda, T, Nishikibe, M, Ohta, Y, et al. Analysis of responses to endothelins in isolated porcine blood vessels by using a novel endothelin antagonist, BQ-153. Life Sci 1992;50(15):PL107–12. https://pubmed.ncbi.nlm.nih.gov/1313516/Google Scholar
Geraghty, JR, Davis, JL, Testai, FD. Neuroinflammation and microvascular dysfunction after experimental subarachnoid hemorrhage: emerging components of early brain injury related to outcome. Neurocrit Care 2019;31(2):373. www.ncbi.nlm.nih.gov/pmc/articles/PMC6759381/CrossRefGoogle ScholarPubMed
Guglielmi, G. History of the genesis of detachable coils. A review. J Neurosurg 2009;111(1):18. https://pubmed.ncbi.nlm.nih.gov/19284239/Google Scholar
Gules, I, Satoh, M, Nanda, A, Zhang, JH. Apoptosis, blood–brain barrier, and subarachnoid hemorrhage. Acta Neurochir Suppl 2003;86:483–7. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14753491Google Scholar
Hanafy, KA, Morgan Stuart, R, Fernandez, L, et al. Cerebral inflammatory response and predictors of admission clinical grade after aneurysmal subarachnoid hemorrhage. J Clin Neurosci 2010;17(1):22–5. www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2830726&tool=pmcentrez&rendertype=abstractGoogle Scholar
Hashimoto, N, Handa, H, Hazama, F. Experimentally induced cerebral aneurysms in rats. Surg Neurol 1978;10(1):38. https://europepmc.org/article/med/684603Google Scholar
Hijdra, A, Van Gijn, J, Stefanko, S, Van Dongen, KJ, Vermeulen, M, Van Crevel, H. Delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: clinicoanatomic correlations. Neurology 1986;36(3):329–33. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3951698CrossRefGoogle ScholarPubMed
Hino, A, Tokuyama, Y, Weir, B, et al. Changes in endothelial nitric oxide synthase mRNA during vasospasm after subarachnoid hemorrhage in monkeys. Neurosurgery 1996;39(3):562–8. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8875487Google Scholar
Hop, JW, Rinkel, GJ, Algra, A, van Gijn, J. Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review. Stroke 1997;28(3):660–4. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9056628Google Scholar
Hop, JW, Rinkel, GJ, Algra, A, van Gijn, J. Initial loss of consciousness and risk of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Stroke 1999;30(11):2268–71. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10548655Google Scholar
Hop, JW, Rinkel, GJ, Algra, A, van Gijn, J. Quality of life in patients and partners after aneurysmal subarachnoid hemorrhage. Stroke 1998;29(4):798804. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9550514Google Scholar
Hossler, FE, Douglas, JE. Vascular corrosion casting: review of advantages and limitations in the application of some simple quantitative methods. Microsc Microanal 2001;7(3):253–64. www.cambridge.org/core/product/identifier/S1431927601010261/type/journal_articleGoogle Scholar
Hughes, J, Schianchi, P. Cerebral artery spasm. A histological study at necropsy of the blood vessels in cases of subarachnoid hemorrhage. J Neurosurg 1978;48(4):515–25. https://pubmed.ncbi.nlm.nih.gov/632876/CrossRefGoogle ScholarPubMed
International Study of Unruptured Intracranial Aneurysms Investigators. Unruptured intracranial aneurysms – risk of rupture and risks of surgical intervention. N Engl J Med 1998;339(24):1725–33. https://pubmed.ncbi.nlm.nih.gov/9867550/Google Scholar
Jaeger, M, Soehle, M, Schuhmann, MU, Winkler, D, Meixensberger, J. Correlation of continuously monitored regional cerebral blood flow and brain tissue oxygen. Acta Neurochir 2005;147(1):51–6; discussion 56. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15565486Google Scholar
Jickling, GC, Sharp, FR. Improving the translation of animal ischemic stroke studies to humans. Metab Brain Dis 2015;30(2):461. www.ncbi.nlm.nih.gov/pmc/articles/PMC4186910/Google Scholar
Johnston, SC, Selvin, S, Gress, DR. The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology 1998;50(5):1413–8. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9595997Google Scholar
Juvela, S. Plasma endothelin concentrations after aneurysmal subarachnoid hemorrhage. J Neurosurg 2000;92(3):390400. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10701524Google Scholar
Kamii, H, Kato, I, Kinouchi, H, et al. Amelioration of vasospasm after subarachnoid hemorrhage in transgenic mice overexpressing CuZn-superoxide dismutase. Stroke 1999;30(4):867–71. https://pubmed.ncbi.nlm.nih.gov/10187893/Google Scholar
Kassell, NF, Torner, JC, Jane, JA, Haley, EC Jr., Adams, HP. The International Cooperative Study on the Timing of Aneurysm Surgery. Part 2: Surgical results. J Neurosurg 1990;73(1):3747. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2191091Google Scholar
Kramer, AH, Fletcher, JJ. Locally-administered intrathecal thrombolytics following aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. Neurocrit Care 2011;14(3):489–99. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20740327Google Scholar
Kuwayama, K, Zervas, N, Belson, R, Shintani, A, Pickren, K. A model for experimental cerebral arterial spasm. Stroke 1972;3(1):4956. https://pubmed.ncbi.nlm.nih.gov/5008305/Google Scholar
Landau, B, Ransohoff, J. Prolonged cerebral vasospasm in experimental subarachnoid hemorrhage. Neurology 1968;18(11):1056–65. https://pubmed.ncbi.nlm.nih.gov/4975163/Google Scholar
Lin, C, Calisaneller, T, Ukita, N, Dumont, A, Kassell, N, Lee, K. A murine model of subarachnoid hemorrhage-induced cerebral vasospasm. J Neurosci Methods 2003;123(1):8997. https://pubmed.ncbi.nlm.nih.gov/12581852/Google Scholar
Linn, FH, Rinkel, GJ, Algra, A, van Gijn, J. Incidence of subarachnoid hemorrhage: role of region, year, and rate of computed tomography: a meta-analysis. Stroke 1996;27(4):625–9. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8614919Google Scholar
Logothetis, J, Karacostas, D, Karoutas, G, Artemis, N, Mansouri, A, Milonas, I. A new model of subarachnoid hemorrhage in experimental animals with the purpose to examine cerebral vasospasm. Exp Neurol 1983;81(2):257–78. https://pubmed.ncbi.nlm.nih.gov/6873215/Google Scholar
Lovelock, CE, Rinkel, GJ, Rothwell, PM. Time trends in outcome of subarachnoid hemorrhage: population-based study and systematic review. Neurology 2010;74(19):1494–501. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20375310CrossRefGoogle ScholarPubMed
Macdonald, RL, Higashida, RT, Keller, E, et al. Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol 2011;10(7):618–25. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21640651Google Scholar
Macdonald, RL, Higashida, RT, Keller, E, et al. Randomized trial of clazosentan in patients with aneurysmal subarachnoid hemorrhage undergoing endovascular coiling. Stroke 2012;43(6):1463–9. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=22403047Google Scholar
Macdonald, RL, Pluta, RM, Zhang, JH. Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pr Neurol 2007;3(5):256–63. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17479073Google Scholar
Macdonald, RL, Weir, BK, Grace, MG, Martin, TP, Doi, M, Cook, DA. Morphometric analysis of monkey cerebral arteries exposed in vivo to whole blood, oxyhemoglobin, methemoglobin, and bilirubin. Blood Vessels 1991a;28(6):498510. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1782405Google ScholarPubMed
Macdonald, RL, Weir, BK, Runzer, TD, et al. Etiology of cerebral vasospasm in primates. J Neurosurg 1991b;75(3):415–24. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1869943Google Scholar
Marbacher, S, Fandino, J, Kitchen, ND. Standard intracranial in vivo animal models of delayed cerebral vasospasm. Br J Neurosurg 2010;24(4):415–34.Google Scholar
Marbacher, S, Grüter, B, Schöpf, S, et al. Systematic review of in vivo animal models of subarachnoid hemorrhage: species, standard parameters, and outcomes. Transl Stroke Res 2019;10(3):250–8.Google Scholar
McGirt, M, Parra, A, Sheng, H, et al. Attenuation of cerebral vasospasm after subarachnoid hemorrhage in mice overexpressing extracellular superoxide dismutase. Stroke 2002;33(9):2317–23. https://pubmed.ncbi.nlm.nih.gov/12215605/Google Scholar
Megyesi, JF, Vollrath, B, Cook, DA, Findlay, JM. In vivo animal models of cerebral vasospasm: a review. Neurosurgery 2000;46(2):448–61. https://academic.oup.com/neurosurgery/article/46/2/448/2931531Google Scholar
Molyneux, A, Kerr, R, Stratton, I, et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet 2002;360(9342):1267–74. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12414200Google Scholar
Morimoto, M, Miyamoto, S, Mizoguchi, A, Kume, N, Kita, T, Hashimoto, N. Mouse model of cerebral aneurysm: experimental induction by renal hypertension and local hemodynamic changes. Stroke 2002;33(7):1911–5. https://pubmed.ncbi.nlm.nih.gov/12105374/Google Scholar
Nornes, H. The role of intracranial pressure in the arrest of hemorrhage in patients with ruptured intracranial aneurysm. J Neurosurg 1973;39(2):226–34. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4719700CrossRefGoogle ScholarPubMed
Nosko, M, Weir, B, Krueger, C, et al. Nimodipine and chronic vasospasm in monkeys: Part 1. Clinical and radiological findings. Neurosurgery 1985;16(2):129–36. https://pubmed.ncbi.nlm.nih.gov/3974822/Google Scholar
Nuki, Y, Tsou, T-L, Kurihara, C, Kanematsu, M, Kanematsu, Y, Hashimoto, T. Elastase-induced intracranial aneurysms in hypertensive mice. Hypertension 2009;54(6):1337–44. www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.109.138297Google Scholar
Ollikainen, E, Tulamo, R, Lehti, S, et al. Smooth muscle cell foam cell formation, apolipoproteins, and ABCA1 in intracranial aneurysms: implications for lipid accumulation as a promoter of aneurysm wall rupture. J Neuropathol Exp Neurol 2016;75(7):689–99. https://academic.oup.com/jnen/article-lookup/doi/10.1093/jnen/nlw041Google Scholar
Parra, A, McGirt, M, Sheng, H, Laskowitz, D, Pearlstein, R, Warner, D. Mouse model of subarachnoid hemorrhage associated cerebral vasospasm: methodological analysis. Neurol Res 2002;24(5):510–6. https://pubmed.ncbi.nlm.nih.gov/12117325/Google Scholar
Pickard, JD, Murray, GD, Illingworth, R, et al. Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. BMJ 1989;298(6674):636–42. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2496789Google Scholar
Pluta, RM, Dejam, A, Grimes, G, Gladwin, MT, Oldfield, EH. Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage. JAMA 2005;293(12):1477–84. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15784871CrossRefGoogle Scholar
Pluta, RM, Hansen-Schwartz, J, Dreier, J, et al. Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res 2009;31(2):151–8. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19298755Google Scholar
Rabinstein, AA. Secondary brain injury after aneurysmal subarachnoid haemorrhage: more than vasospasm. Lancet Neurol 2011;10(7):593–5. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21640652CrossRefGoogle ScholarPubMed
Rabinstein, AA, Friedman, JA, Weigand, SD, et al. Predictors of cerebral infarction in aneurysmal subarachnoid hemorrhage. Stroke 2004;35(8):1862–6. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15218156Google Scholar
Rosengart, AJ, Schultheiss, KE, Tolentino, J, Macdonald, RL. Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage. Stroke 2007;38(8):2315–21. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17569871Google Scholar
Sahlin, C, Brismar, J, Delgado, T, Owman, C, Salford, L, Svendgaard, N. Cerebrovascular and metabolic changes during the delayed vasospasm following experimental subarachnoid hemorrhage in baboons, and treatment with a calcium antagonist. Brain Res 1987;403(2):313–32. https://pubmed.ncbi.nlm.nih.gov/3828823/Google Scholar
Saito, A, Kamii, H, Kato, I, et al. Transgenic CuZn-superoxide dismutase inhibits NO synthase induction in experimental subarachnoid hemorrhage. Stroke 2001;32(7):1652–7. https://pubmed.ncbi.nlm.nih.gov/11441215/Google Scholar
Samuel, N, Radovanovic, I. Genetic basis of intracranial aneurysm formation and rupture: clinical implications in the postgenomic era. Neurosurg Focus 2019;47(1):E10. https://pubmed.ncbi.nlm.nih.gov/31261114/Google Scholar
Schievink, WI. Intracranial aneurysms. N Engl J Med 1997;336(1):2840. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8970938Google Scholar
Schöller, K, Trinkl, A, Klopotowski, M, et al. Characterization of microvascular basal lamina damage and blood–brain barrier dysfunction following subarachnoid hemorrhage in rats. Brain Res 2007;1142:237–46. www.ncbi.nlm.nih.gov/pubmed/17303089Google Scholar
Schubert, GA, Seiz, M, Hegewald, AA, Manville, J, Thome, C. Acute hypoperfusion immediately after subarachnoid hemorrhage: a xenon contrast-enhanced CT study. J Neurotrauma 2009;26(12):2225–31. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19929373Google Scholar
Schwartz, AY, Masago, A, Sehba, FA, Bederson, JB. Experimental models of subarachnoid hemorrhage in the rat: a refinement of the endovascular filament model. J Neurosci Methods 2000;96(2):161–7.Google Scholar
Sehba, FA, Pluta, RM. Aneurysmal subarachnoid hemorrhage models: do they need a fix? Stroke Res Treat 2013;2013:615154. https://doi.org/10.1155/2013/615154Google Scholar
Seifert, V, Loffler, BM, Zimmermann, M, Roux, S, Stolke, D. Endothelin concentrations in patients with aneurysmal subarachnoid hemorrhage. Correlation with cerebral vasospasm, delayed ischemic neurological deficits, and volume of hematoma. J Neurosurg 1995;82(1):5562. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7815135Google Scholar
Simeone, FA, Trepper, PJ, Brown, DJ. Cerebral blood flow evaluation of prolonged experimental vasospasm. J Neurosurg 1972;37(3):302–11. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4627019Google Scholar
Solomon, R, Antunes, J, Chen, R, Bland, L, Chien, S. Decrease in cerebral blood flow in rats after experimental subarachnoid hemorrhage: a new animal model. Stroke 1985;16(1):5864. https://pubmed.ncbi.nlm.nih.gov/3966267/Google Scholar
The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995;333(24):1581–7. https://pubmed.ncbi.nlm.nih.gov/7477192/Google Scholar
Thompson, JW, Elwardany, O, McCarthy, DJ, Shelnberg, DL, Alvarez, CM, Nada, A, Snelling, BM, Chen, SH, Sur, S, Starke, RM. In vIvo cerebral aneurysm models. Neurosurg Focus. 2019; 1; 47(1): E20. doi: 10.3171/2019.4.FOCUS19219.Google Scholar
Toda, N. Mechanisms of contracting action of oxyhemoglobin in isolated monkey and dog cerebral arteries. Am J Physiol 1990;258(1 Pt 2):H5763. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2105667Google Scholar
Toda, N, Shimizu, K, Ohta, T. Mechanism of cerebral arterial contraction induced by blood constituents. J Neurosurg 1980;53(3):312–22. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7420146Google Scholar
Trojanowski, T. Early effects of experimental arterial subarachnoid haemorrhage on the cerebral circulation. Part I: Experimental subarachnoid haemorrhage in cat and its pathophysiological effects. Methods of regional cerebral blood flow measurement and evaluation of microcirulation. Acta Neurochir (Wien) 1984a;72(1–2):7994. https://pubmed.ncbi.nlm.nih.gov/6741649/Google Scholar
Trojanowski, T. Early effects of experimental arterial subarachnoid haemorrhage on the cerebral circulation. Part II: Regional cerebral blood flow and cerebral microcirculation after experimental subarachnoid haemorrhage. Acta Neurochir (Wien) 1984b;72(3–4):241–55. https://pubmed.ncbi.nlm.nih.gov/6475579/Google Scholar
Tsuji, T, Cook, D, Weir, B, Handa, Y. Effect of clot removal on cerebrovascular contraction after subarachnoid hemorrhage in the monkey: pharmacological study. Heart Vessels 1996;11(2):6979. https://pubmed.ncbi.nlm.nih.gov/8836754/Google Scholar
Turowski, B, Hänggi, D, Beck, A, Aurich, V, Steiger, H, Moedder, U. New angiographic measurement tool for analysis of small cerebral vessels: application to a subarachnoid haemorrhage model in the rat. Neuroradiology 2007;49(2):129–37. https://pubmed.ncbi.nlm.nih.gov/17111162/Google Scholar
van Gijn, J, Kerr, RS, Rinkel, GJ. Subarachnoid haemorrhage. Lancet 2007;369(9558):306–18. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17258671Google Scholar
Varsos, V, Liszczak, T, Han, D, et al. Delayed cerebral vasospasm is not reversible by aminophylline, nifedipine, or papaverine in a “two-hemorrhage” canine model. J Neurosurg 1983;58(1):11–7. https://pubmed.ncbi.nlm.nih.gov/6847896/Google Scholar
Vatter, H, Weidauer, S, Konczalla, J, et al. Time course in the development of cerebral vasospasm after experimental subarachnoid hemorrhage: clinical and neuroradiological assessment of the rat double hemorrhage model. Neurosurgery 2006;58(6):1190–7. https://pubmed.ncbi.nlm.nih.gov/16723899/Google Scholar
Vatter, H, Zimmermann, M, Tesanovic, V, Raabe, A, Schilling, L, Seifert, V. Cerebrovascular characterization of clazosentan, the first nonpeptide endothelin receptor antagonist clinically effective for the treatment of cerebral vasospasm. Part I: inhibitory effect on endothelin(A) receptor-mediated contraction. J Neurosurg 2005;102(6):1101–7. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16028770Google Scholar
Veelken, J, Laing, R, Jakubowski, J. The Sheffield model of subarachnoid hemorrhage in rats. Stroke 1995;26(7):1279–83. https://pubmed.ncbi.nlm.nih.gov/7604426/Google Scholar
Vergouwen, MD, Etminan, N, Ilodigwe, D, Macdonald, RL. Lower incidence of cerebral infarction correlates with improved functional outcome after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 2011a;31(7):1545–53. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21505477Google Scholar
Vergouwen, MD, Ilodigwe, D, Macdonald, RL. Cerebral infarction after subarachnoid hemorrhage contributes to poor outcome by vasospasm-dependent and -independent effects. Stroke 2011b;42(4):924–9. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21311062Google Scholar
Verlooy, J, Van Reempts, J, Haseldonckx, M, Borgers, M, Selosse, P. The course of vasospasm following subarachnoid haemorrhage in rats. A vertebrobasilar angiographic study. Acta Neurochir (Wien) 1992;117(1–2):4852. https://pubmed.ncbi.nlm.nih.gov/1514428/Google Scholar
Voldby, B, Enevoldsen, EM. Intracranial pressure changes following aneurysm rupture. Part 1: clinical and angiographic correlations. J Neurosurg 1982;56(2):186–96. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7054427Google Scholar
Weir, B. Unruptured intracranial aneurysms: a review. J Neurosurg 2002;96(1):342. https://pubmed.ncbi.nlm.nih.gov/11794601/Google Scholar
White, R, Hagen, A, Robertson, J. Effect of nonsteroid anti-inflammatory drugs on subarachnoid hemorrhage in dogs. J Neurosurg 1979;51(2):164–71. https://pubmed.ncbi.nlm.nih.gov/582181/Google Scholar
Wiebers, D, Whisnant, J, Huston, J, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 2003;362(9378):103–10. https://pubmed.ncbi.nlm.nih.gov/12867109/Google Scholar
Yatsushige, H, Yamaguchi, M, Zhou, C, Calvert, J, Zhang, J. Role of c-Jun N-terminal kinase in cerebral vasospasm after experimental subarachnoid hemorrhage. Stroke 2005;36(7):1538–43. https://pubmed.ncbi.nlm.nih.gov/15947258/Google Scholar
Yoshimoto, Y, Kim, P, Sasaki, T, Takakura, K. Temporal profile and significance of metabolic failure and trophic changes in the canine cerebral arteries during chronic vasospasm after subarachnoid hemorrhage. J Neurosurg 1993;78(5):807–12. https://pubmed.ncbi.nlm.nih.gov/8468611/Google Scholar
Zhang, X, Fei, Z, Zhang, W, et al. Emergency transsphenoidal surgery for hemorrhagic pituitary adenomas. Surg Oncol 2007;16(2):115–20. www.ncbi.nlm.nih.gov/pubmed/17643985Google Scholar
Zhou, M, Shi, J, Zhu, J, et al. Comparison between one- and two-hemorrhage models of cerebral vasospasm in rabbits.J Neurosci Methods 2007;159(2):318–24. https://pubmed.ncbi.nlm.nih.gov/16942802/Google Scholar
Zivin, J, Fisher, M, DeGirolami, U, Hemenway, C, Stashak, J. Tissue plasminogen activator reduces neurological damage after cerebral embolism. Science 1985;230(4731):1289–92. https://pubmed.ncbi.nlm.nih.gov/3934754/Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×