Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-01T17:47:44.485Z Has data issue: false hasContentIssue false

Section 2 - Clinical Neurosurgical Diseases

Published online by Cambridge University Press:  04 January 2024

Farhana Akter
Affiliation:
Harvard University, Massachusetts
Nigel Emptage
Affiliation:
University of Oxford
Florian Engert
Affiliation:
Harvard University, Massachusetts
Mitchel S. Berger
Affiliation:
University of California, San Francisco
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Alcantara Llaguno, S, Chen, J, Kwon, C-H, et al. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 2009;15(1):4556. https://doi.org/10.1016/j.ccr.2008.12.006.Google Scholar
Arita, H, Narita, Y, Fukushima, S, et al. Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss. Acta Neuropathol 2013;126(2):267–76. https://doi.org/10.1007/s00401-013-1141-6.CrossRefGoogle ScholarPubMed
Bao, S, Wu, Q, McLendon, RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006;444(7120):756–60. https://doi.org/10.1038/nature05236.CrossRefGoogle ScholarPubMed
Baron, JA, Gridley, G, Weiderpass, E, Nyrén, O, Linet, M. Venous thromboembolism and cancer. Lancet 1998;351(9109):1077–80. https://doi.org/10.1016/S0140-6736(97)10018-6.CrossRefGoogle ScholarPubMed
Cairncross, G, Wang, M, Shaw, E, et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 2013;31(3):337–43. https://doi.org/10.1200/JCO.2012.43.2674.CrossRefGoogle ScholarPubMed
Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008;455(7216):1061–8. https://doi.org/10.1038/nature07385.Google Scholar
Capper, D, Jones, DTW, Sill, M, et al. DNA methylation-based classification of central nervous system tumors. Nature 2018;555(7697):469–74. https://doi.org/10.1038/nature26000.CrossRefGoogle Scholar
Ceccarelli, M, Barthel, FP, Malta, TM, et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 2016;164(3):550–63. https://doi.org/10.1016/j.cell.2015.12.028.CrossRefGoogle ScholarPubMed
Chen, H, Judkins, J, Thomas, C, et al. Mutant IDH1 and seizures in patients with glioma. Neurology 2017;88(19):1805–13. https://doi.org/10.1212/WNL.0000000000003911.CrossRefGoogle ScholarPubMed
Dang, L, White, DW, Gross, S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009;462(7274):739–44. https://doi.org/10.1038/nature08617.Google Scholar
Dong, X, Noorbakhsh, A, Hirshman, BR, et al. Survival trends of grade I, II, and III astrocytoma patients and associated clinical practice patterns between 1999 and 2010: a SEER-based analysis. Neurooncol Pract 2016;3(1):2938. https://doi.org/10.1093/nop/npv016.Google Scholar
Fecci, PE, Sampson, JH. The current state of immunotherapy for gliomas: an eye toward the future. J Neurosurg 2019;131(3):657–66. https://doi.org/10.3171/2019.5.JNS181762.Google Scholar
Figueroa, ME, Abdel-Wahab, O, Lu, C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010;18(6):553–67. https://doi.org/10.1016/j.ccr.2010.11.015.CrossRefGoogle Scholar
Flavahan, WA, Drier, Y, Liau, BB, et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 2016;529(7584):110–4. https://doi.org/10.1038/nature16490.CrossRefGoogle ScholarPubMed
Fontebasso, AM, Liu, X-Y, Sturm, D, Jabado, N. Chromatin remodeling defects in pediatric and young adult glioblastoma: a tale of a variant histone 3 tail. Brain Pathol 2013;23(2):210–6. https://doi.org/10.1111/bpa.12023.Google Scholar
Galli, R, Binda, E, Orfanelli, U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004;64(19):7011–21. https://doi.org/10.1158/0008-5472.CAN-04-1364.Google Scholar
Gatta, G, Botta, L, Rossi, S, et al. Childhood cancer survival in Europe 1999–2007: results of EUROCARE-5 – a population-based study. Lancet Oncol 2014;15(1):3547. https://doi.org/10.1016/S1470-2045(13)70548-5.Google Scholar
Gorovets, D, Kannan, K, Shen, R, et al. IDH mutation and neuroglial developmental features define clinically distinct subclasses of lower grade diffuse astrocytic glioma. Clin Cancer Res 2012;18(9):2490–501. https://doi.org/10.1158/1078-0432.CCR-11-2977.Google Scholar
Grabowski, MM, Sankey, EW, Ryan, KJ, et al. Immune suppression in gliomas. J Neurooncol 2021;151(1):312. https://doi.org/10.1007/s11060-020-03483-y.CrossRefGoogle ScholarPubMed
Gusyatiner, O, Hegi, ME. Glioma epigenetics: from subclassification to novel treatment options. Semin Cancer Biol 2018;51:50–8. https://doi.org/10.1016/j.semcancer.2017.11.010.Google Scholar
Heaphy, CM, de Wilde, RF, Jiao, Y, et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science 2011;333(6041):425. https://doi.org/10.1126/science.1207313.Google Scholar
Hegi, ME, Diserens, A-C, Gorlia, T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352(10):9971003. https://doi.org/10.1056/NEJMoa043331.Google Scholar
Horsted, F, West, J, Grainge, MJ. Risk of venous thromboembolism in patients with cancer: a systematic review and meta-analysis. PLoS Med 2012;9(7):e1001275. https://doi.org/10.1371/journal.pmed.1001275.CrossRefGoogle Scholar
Jones, DTW, Hutter, B, Jäger, N, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 2013;45(8):927–32. https://doi.org/10.1038/ng.2682.CrossRefGoogle ScholarPubMed
Jones, DTW, Kocialkowski, S, Liu, L, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 2008;68(21):8673–7. https://doi.org/10.1158/0008-5472.CAN-08-2097.Google Scholar
Kreth, S, Thon, N, Kreth, FW. Epigenetics in human gliomas. Cancer Lett 2014;342(2):185–92. https://doi.org/10.1016/j.canlet.2012.04.008.CrossRefGoogle ScholarPubMed
Kroonen, J, Nassen, J, Boulanger, Y-G, et al. Human glioblastoma-initiating cells invade specifically the subventricular zones and olfactory bulbs of mice after striatal injection. Int J Cancer 2011;129(3):574–85. https://doi.org/10.1002/ijc.25709.Google Scholar
Lee, JH, Lee, JE, Kahng, JY, et al. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature 2018;560(7717):243–7. https://doi.org/10.1038/s41586-018-0389-3.Google Scholar
Liu, G, Yuan, X, Zeng, Z, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 2006;5:67. https://doi.org/10.1186/1476-4598-5-67.Google Scholar
Liubinas, SV, D’Abaco, GM, Moffat, BM, et al. IDH1 mutation is associated with seizures and protoplasmic subtype in patients with low-grade gliomas. Epilepsia 2014;55(9):1438–43. https://doi.org/10.1111/epi.12662.Google Scholar
Louis, DN, Perry, A, Reifenberger, G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016;131(6):803–20. https://doi.org/10.1007/s00401-016-1545-1.Google Scholar
Mandoj, C, Tomao, L, Conti, L. Coagulation in brain tumors: biological basis and clinical implications. Front Neurol 2019;10:181. https://doi.org/10.3389/fneur.2019.00181.CrossRefGoogle ScholarPubMed
Matarredona, ER, Pastor, AM. Neural stem cells of the subventricular zone as the origin of human glioblastoma stem cells. Therapeutic implications. Front Oncol 2019;9:779. https://doi.org/10.3389/fonc.2019.00779.Google Scholar
Nadi, M, Rutka, J. Molecular markers and pathways in brain tumorigenesis. In Bernstein, M, Berger, MS (Eds.), Neuro-Oncology: The Essentials, 3rd ed. Thieme Verlag, 2015, pp. 3546.Google Scholar
Ohgaki, H, Kleihues, P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 2005;64(6):479–89. https://doi.org/10.1093/jnen/64.6.479.Google Scholar
Olson, JD, Riedel, E, DeAngelis, LM. Long-term outcome of low-grade oligodendroglioma and mixed glioma. Neurology 2000;54(7):1442–8. https://doi.org/10.1212/wnl.54.7.1442.Google Scholar
Ostrom, QT, Gittleman, H, Liao, P, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 2014;16(Suppl 4):iv163. https://doi.org/10.1093/neuonc/nou223.CrossRefGoogle ScholarPubMed
Pallud, J, Capelle, L, Huberfeld, G. Tumoral epileptogenicity: how does it happen? Epilepsia 2013;54(Suppl 9):30–4. https://doi.org/10.1111/epi.12440.Google Scholar
Papadopoulos, MC, Saadoun, S, Binder, DK, Manley, GT, Krishna, S, Verkman, AS. Molecular mechanisms of brain tumor edema. Neuroscience 2004;129(4):1011–20. https://doi.org/10.1016/j.neuroscience.2004.05.044.Google Scholar
Parker, M, Mohankumar, KM, Punchihewa, C, et al. C11orf95–RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature 2014;506(7489):451–5. https://doi.org/10.1038/nature13109.CrossRefGoogle ScholarPubMed
Peng, Z, Liu, C, Wu, M. New insights into long noncoding RNAs and their roles in glioma. Mol Cancer 2018;17(1):61. https://doi.org/10.1186/s12943-018-0812-2.CrossRefGoogle ScholarPubMed
Portela, A, Esteller, M. Epigenetic modifications and human disease. Nat Biotechnol 2010;28(10):1057–68. https://doi.org/10.1038/nbt.1685.CrossRefGoogle ScholarPubMed
Reifenberger, G, Louis, DN. Oligodendroglioma: toward molecular definitions in diagnostic neuro-oncology. J Neuropathol Exp Neurol 2003;62(2):111–26. https://doi.org/10.1093/jnen/62.2.111.Google Scholar
Reifenberger, J, Ring, GU, Gies, U, et al. Analysis of p53 mutation and epidermal growth factor receptor amplification in recurrent gliomas with malignant progression. J Neuropathol Exp Neurol 1996;55(7):822–31. https://doi.org/10.1097/00005072-199607000-00007.CrossRefGoogle ScholarPubMed
Reuss, DE, Mamatjan, Y, Schrimpf, D, et al. IDH mutant diffuse and anaplastic astrocytomas have similar age at presentation and little difference in survival: a grading problem for WHO. Acta Neuropathol 2015;129(6):867–73. https://doi.org/10.1007/s00401-015-1438-8.Google Scholar
Ropper, AH, Samuels, MA, Klein, JP, Prasad, S. Intracranial neoplasms and paraneoplastic disorders. In: Adams and Victor’s Principles of Neurology, 11th ed. McGraw-Hill Education, 2019.Google Scholar
Samudra, N, Zacharias, T, Plitt, A, Lega, B, Pan, E. Seizures in glioma patients: an overview of incidence, etiology, and therapies. J Neurol Sci 2019;404:80–5. https://doi.org/10.1016/j.jns.2019.07.026.CrossRefGoogle ScholarPubMed
Sanai, N, Tramontin, AD, Quiñones-Hinojosa, A, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 2004;427(6976):740–4. https://doi.org/10.1038/nature02301.Google Scholar
Sanson, M, Marie, Y, Paris, S, et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 2009;27(25):4150–4. https://doi.org/10.1200/JCO.2009.21.9832.CrossRefGoogle ScholarPubMed
Schwartzentruber, J, Korshunov, A, Liu, X-Y, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012;482(7384):226–31. https://doi.org/10.1038/nature10833.Google Scholar
Shay, JW, Bacchetti, S. A survey of telomerase activity in human cancer. Eur J Cancer 1997;33(5):787–91. https://doi.org/10.1016/S0959-8049(97)00062-2.Google Scholar
Shi, J, Dong, B, Cao, J, et al. Long non-coding RNA in glioma: signaling pathways. Oncotarget 2017;8(16):27582–92. https://doi.org/10.18632/oncotarget.15175.Google Scholar
Singh, SK, Hawkins, C, Clarke, ID, et al. Identification of human brain tumor initiating cells. Nature 2004;432(7015):396401. https://doi.org/10.1038/nature03128.Google Scholar
Stephens, PJ, Greenman, CD, Fu, B, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011;144(1):2740. https://doi.org/10.1016/j.cell.2010.11.055.Google Scholar
Stummer, W. Mechanisms of tumor-related brain edema. Neurosurg Focus 2007;22(5):E8. https://doi.org/10.3171/foc.2007.22.5.9.Google Scholar
Sullivan, JP, Nahed, BV, Madden, MW, et al. Brain tumor cells in circulation are enriched for mesenchymal gene expression. Cancer Discov 2014;4(11):1299–309. https://doi.org/10.1158/2159-8290.CD-14-0471.CrossRefGoogle ScholarPubMed
Takano, T, Lin, JH, Arcuino, G, Gao, Q, Yang, J, Nedergaard, M. Glutamate release promotes growth of malignant gliomas. Nat Med 2001;7(9):1010–5. https://doi.org/10.1038/nm0901-1010.CrossRefGoogle ScholarPubMed
Turcan, S, Rohle, D, Goenka, A, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 2012;483(7390):479–83. https://doi.org/10.1038/nature10866.Google Scholar
Verhaak, RGW, Hoadley, KA, Purdom, E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010;17(1):98110. https://doi.org/10.1016/j.ccr.2009.12.020.Google Scholar
Walker, A, West, J, Card, T, Crooks, C, Grainge, M. Rate of venous thromboembolism by cancer type compared to the general population using multiple linked databases. Thrombosis Res 2012;129:S155–6.Google Scholar
Watanabe, K, Sato, K, Biernat, W, et al. Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. Clin Cancer Res 1997;3(4):523–30.Google ScholarPubMed
Wikstrand, CJ, Reist, CJ, Archer, GE, Zalutsky, MR, Bigner, DD. The class III variant of the epidermal growth factor receptor (EGFRvIII): characterization and utilization as an immunotherapeutic target. J Neurovirol 1998;4(2):148–58. https://doi.org/10.3109/13550289809114515.Google Scholar
Wu, G, Broniscer, A, McEachron, TA, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 2012;44(3):251–3. https://doi.org/10.1038/ng.1102.Google Scholar
Yan, H, Parsons, DW, Jin, G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009;360(8):765–73. https://doi.org/10.1056/NEJMoa0808710.Google Scholar
Zhang, J, Wu, G, Miller, CP, et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 2013;45(6):602–12. https://doi.org/10.1038/ng.2611.Google Scholar

References

Achrol, AS, Rennert, RC, Anders, C, et al. Brain metastases. Nat Rev Dis Primer 2019;5:126. https://doi.org/10.1038/s41572-018-0055-y.Google Scholar
Andreou, KE, Soto, MS, Allen, D, et al. Anti-inflammatory microglia/macrophages as a potential therapeutic target in brain metastasis. Front Oncol 2017;7:251. https://doi.org/10.3389/fonc.2017.00251.CrossRefGoogle ScholarPubMed
Berghoff, AS, Fuchs, E, Ricken, G, et al. Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases. Oncoimmunology 2015;5(1):e1057388. https://doi.org/10.1080/2162402X.2015.1057388.Google Scholar
Berghoff, AS, Rajky, O, Winkler, F, et al. Invasion patterns in brain metastases of solid cancers. Neuro Oncol 2013;15:1664–72. https://doi.org/10.1093/neuonc/not112.Google Scholar
Berghoff, AS, Schur, S, Füreder, LM, et al. Descriptive statistical analysis of a real life cohort of 2419 patients with brain metastases of solid cancers. ESMO Open 2016; 1:e000024. https://doi.org/10.1136/esmoopen-2015-000024.Google Scholar
Besse, B, Moulec, SL, Mazières, J, et al. Bevacizumab in patients with nonsquamous non–small cell lung cancer and asymptomatic, untreated brain metastases (BRAIN): a nonrandomized, phase II study. Clin Cancer Res 2015;21:1896–903. https://doi.org/10.1158/1078-0432.CCR-14-2082.Google Scholar
Bi, P, Kuang, S. Notch signaling as a novel regulator of metabolism. Trends Endocrinol Metab 2015;26:248–55. https://doi.org/10.1016/j.tem.2015.02.006.Google Scholar
Blazquez, R, Wlochowitz, D, Wolff, A, et al. PI3 K: a master regulator of brain metastasis-promoting macrophages/microglia. Glia 2018;66;2438–55. https://doi.org/10.1002/glia.23485.CrossRefGoogle Scholar
Bohn, KA, Adkins, CE, Nounou, MI, Lockman, PR Inhibition of VEGF and angiopoietin-2 to reduce brain metastases of breast cancer burden. Front Pharmacol 2017;8:193. https://doi.org/10.3389/fphar.2017.00193.CrossRefGoogle ScholarPubMed
Bos, PD, Zhang, XH-F, Nadal, C, et al. Genes that mediate breast cancer metastasis to the brain. Nature 2009;459:1005–09. https://doi.org/10.1038/nature08021.Google Scholar
Brastianos, PK, Carter, SL, Santagata, S, et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov 2015;5:1164–77. https://doi.org/10.1158/2159-8290.CD-15-0369.CrossRefGoogle ScholarPubMed
Bucheit, AD, Chen, G, Siroy, A, et al. Complete loss of PTEN protein expression correlates with shorter time to brain metastasis and survival in stage IIIB/C melanoma patients with BRAFV600 mutations. Clin Cancer Res 2014;20:5527–36. https://doi.org/10.1158/1078-0432.CCR-14-1027.Google Scholar
Cano, A, Pérez-Moreno, MA, Rodrigo, I, et al. The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000;2:7683. https://doi.org/10.1038/35000025.Google Scholar
Chen, J, Lee, H-J, Wu, X, et al. Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain. Cancer Res 2015;75:554–65. https://doi.org/10.1158/0008-5472.CAN-14-2268.Google Scholar
Chen, L, Douglass, J, Kleinberg, L, et al. Concurrent immune checkpoint inhibitors and stereotactic radiosurgery for brain metastases in non-small cell lung cancer, melanoma, and renal cell carcinoma. Int J Radiat Oncol 2018;100:916–25. https://doi.org/10.1016/j.ijrobp.2017.11.041.Google Scholar
Chen, Q, Boire, A, Jin, X, et al. Carcinoma–astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 2016;533:493–8. https://doi.org/10.1038/nature18268.Google Scholar
Chongsathidkiet, P, Jackson, C, Koyama, S, et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med 2018;24:1459–68. https://doi.org/10.1038/s41591-018-0135-2.Google Scholar
Choy, C, Ansari, KI, Neman, J, et al. Cooperation of neurotrophin receptor TrkB and Her2 in breast cancer cells facilitates brain metastases. Breast Cancer Res 2017;19:51. https://doi.org/10.1186/s13058-017-0844-3.Google Scholar
Chuang, H-N, van Rossum, D, Sieger, D, et al. Carcinoma cells misuse the host tissue damage response to invade the brain. Glia 2013;61:1331–46. https://doi.org/10.1002/glia.22518.Google Scholar
Ciminera, AK, Jandial, R, Termini, J. Metabolic advantages and vulnerabilities in brain metastases. Clin Exp Metastasis 2017;34:401–10. https://doi.org/10.1007/s10585-017-9864-8.Google Scholar
Curley, CT, Sheybani, ND, Bullock, TN, Price, RJ. Focused ultrasound immunotherapy for central nervous system pathologies: challenges and opportunities. Theranostics 2017;7:3608–23. https://doi.org/10.7150/thno.21225.Google Scholar
Davies, MA, Liu, P, McIntyre, S, et al. Prognostic factors for survival in melanoma patients with brain metastases. Cancer 2011;117:1687–96. https://doi.org/10.1002/cncr.25634.Google Scholar
Di Giacomo, AM, Ascierto, PA, Queirolo, P, et al. Three-year follow-up of advanced melanoma patients who received ipilimumab plus fotemustine in the Italian Network for Tumor Biotherapy (NIBIT)-M1 phase II study. Ann Oncol 2015;26:798803. https://doi.org/10.1093/annonc/mdu577.Google Scholar
Di Giacomo, AM, Valente, M, Cerase, A, et al. Immunotherapy of brain metastases: breaking a “dogma”. J Exp Clin Cancer Res 2019;38:419. https://doi.org/10.1186/s13046-019-1426-2.Google Scholar
Dolgodilina, E, Imobersteg, S, Laczko, E, Welt, T, Verrey, F, Makrides, V. Brain interstitial fluid glutamine homeostasis is controlled by blood–brain barrier SLC7A5/LAT1 amino acid transporter. J Cereb Blood Flow Metab 2016;36:1929–41. https://doi.org/10.1177/0271678X15609331.Google Scholar
Eckert, MA, Lwin, TM, Chang, AT, et al. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell 2011;19:372–86. https://doi.org/10.1016/j.ccr.2011.01.036.Google Scholar
Eichler, AF, Kahle, KT, Wang, DL, et al. EGFR mutation status and survival after diagnosis of brain metastasis in nonsmall cell lung cancer. Neuro Oncol 2010;12:1193–9. https://doi.org/10.1093/neuonc/noq076.Google Scholar
Er, EE, Valiente, M, Ganesh, K, et al. Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat. Cell Biol 2018;20:966–78. https://doi.org/10.1038/s41556-018-0138-8.Google Scholar
Farber, SH, Tsvankin, V, Narloch, JL, et al. Embracing rejection: immunologic trends in brain metastasis. Oncoimmunology 2016;5:e1172153. https://doi.org/10.1080/2162402X.2016.1172153.Google Scholar
Fecci, PE, Champion, CD, Hoj, J, et al. The evolving modern management of brain metastasis. Clin Cancer Res 2019;25:6570–80. https://doi.org/10.1158/1078-0432.CCR-18-1624.Google Scholar
Fong, MY, Zhou, W, Liu, L, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 2015;17:183–94. https://doi.org/10.1038/ncb3094.Google Scholar
Gaudy-Marqueste, C, Dussouil, AS, Carron, R, et al. Survival of melanoma patients treated with targeted therapy and immunotherapy after systematic upfront control of brain metastases by radiosurgery. Eur J Cancer 2017;84:4454. https://doi.org/10.1016/j.ejca.2017.07.017.Google Scholar
Goldberg, SB, Gettinger, SN, Mahajan, A, et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol 2016;17:976–83. https://doi.org/10.1016/S1470-2045(16)30053-5.Google Scholar
Gong, X, Hou, Z, Endsley, MP, et al. Interaction of tumor cells and astrocytes promotes breast cancer brain metastases through TGF-β2/ANGPTL4 axes. npj Precis Oncol 2019;3:19. https://doi.org/10.1038/s41698-019-0094-1.Google Scholar
Gregory, PA, Bracken, CP, Smith, E, et al. An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial–mesenchymal transition. Mol Biol Cell 2011;22:1686–98. https://doi.org/10.1091/mbc.e11-02-0103.Google Scholar
Grimaldi, AM, Simeone, E, Giannarelli, D, et al. Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. OncoImmunology 2014;3:e28780. https://doi.org/10.4161/onci.28780.Google Scholar
Hanna, N, Fidler, IJ. Role of natural killer cells in the destruction of circulating tumor emboli. J Natl Cancer Inst 1980;65:801–09. https://doi.org/10.1093/jnci/65.4.801.Google Scholar
Harter, PN, Bernatz, S, Scholz, A, et al. Distribution and prognostic relevance of tumor-infiltrating lymphocytes (TILs) and PD-1/PD-L1 immune checkpoints in human brain metastases. Oncotarget 2015;6:40836–49.CrossRefGoogle ScholarPubMed
Herwig, N, Belter, B, Pietzsch, J. Extracellular S100A4 affects endothelial cell integrity and stimulates transmigration of A375 melanoma cells. Biochem Biophys Res Commun 2016;477:963–9. https://doi.org/10.1016/j.bbrc.2016.07.009.Google Scholar
Hohensee, I, Lamszus, K, Riethdorf, S, et al. Frequent genetic alterations in EGFR- and HER2-driven pathways in breast cancer brain metastases. Am J Pathol 2013;183:8395. https://doi.org/10.1016/j.ajpath.2013.03.023.CrossRefGoogle ScholarPubMed
Hoj, JP, Mayro, B, Pendergast, AM. A TAZ-AXL-ABL2 feed-forward signaling axis promotes lung adenocarcinoma brain metastasis. Cell Rep 2019;29:3421–34. https://doi.org/10.1016/j.celrep.2019.11.018.CrossRefGoogle ScholarPubMed
Hong, JJ, Rosenberg, SA, Dudley, ME, et al. Successful treatment of melanoma brain metastases with adoptive cell therapy. Clin Cancer Res 2010;16:4892–8. https://doi.org/10.1158/1078-0432.CCR-10-1507.Google Scholar
Hoshino, A, Costa-Silva, B, Shen, T-L, et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015;527:329–35. https://doi.org/10.1038/nature15756.Google Scholar
Ilhan-Mutlu, A, Osswald, M, Liao, Y, et al. Bevacizumab prevents brain metastases formation in lung adenocarcinoma. Mol Cancer Ther 2016;15:702–10. https://doi.org/10.1158/1535-7163.MCT-15-0582.Google Scholar
Jackson, S, Anders, NM, Mangraviti, A, et al. The effect of regadenoson-induced transient disruption of the blood–brain barrier on temozolomide delivery to normal rat brain. J Neurooncol 2016;126:433–9. https://doi.org/10.1007/s11060-015-1998-4.Google Scholar
Jandial, R, Choy, C, Levy, DM, Chen, MY, Ansari, KI. Astrocyte-induced Reelin expression drives proliferation of Her2+ breast cancer metastases. Clin Exp Metastasis 2017;34:185–96. https://doi.org/10.1007/s10585-017-9839-9.Google Scholar
Jolly, MK, Somarelli, JA, Sheth, M, et al. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther 2019;194:161–84. https://doi.org/10.1016/j.pharmthera.2018.09.007.Google Scholar
Jung, YY, Kim, HM, Koo, JS. Expression of lipid metabolism-related proteins in metastatic breast cancer. PLoS One 2015;10:e0137204. https://doi.org/10.1371/journal.pone.0137204.Google Scholar
Kalluri, R, Weinberg, RA. The basics of epithelial–mesenchymal transition. J Clin Invest 2009;119:1420–8. https://doi.org/10.1172/JCI39104.Google Scholar
Kienast, Y, von Baumgarten, L, Fuhrmann, M, et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 2010;16:116–22. https://doi.org/10.1038/nm.2072.Google Scholar
Kim, AH, Tatter, S, Rao, G, et al. Laser ablation of abnormal neurological tissue using robotic neuroblate system (LAANTERN): 12-month outcomes and quality of life after brain tumor ablation. Neurosurgery 2020;87:E338–46. https://doi.org/10.1093/neuros/nyaa071.Google Scholar
Kim, S-J, Kim, J-S, Park, ES, et al. Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. Neoplasia 2011;13:286–98. https://doi.org/10.1593/neo.11112.Google Scholar
Kim, SW, Choi, HJ, Lee, H-J, et al. Role of the endothelin axis in astrocyte- and endothelial cell-mediated chemoprotection of cancer cells. Neuro Oncol 2014;16:1585–98. https://doi.org/10.1093/neuonc/nou128.Google Scholar
Klein, A, Schwartz, H, Sagi-Assif, O, et al. Astrocytes facilitate melanoma brain metastasis via secretion of IL-23. J Pathol 2015;236:116–27. https://doi.org/10.1002/path.4509.Google Scholar
Kudo, Y, Haymaker, C, Zhang, J, et al. Suppressed immune microenvironment and repertoire in brain metastases from patients with resected non-small-cell lung cancer. Ann Oncol 2019;30:1521–30. https://doi.org/10.1093/annonc/mdz207.Google Scholar
Labelle, M, Begum, S, Hynes, RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 2011;20:576–90. https://doi.org/10.1016/j.ccr.2011.09.009.Google Scholar
Lambert, AW, Pattabiraman, DR, Weinberg, RA. Emerging biological principles of metastasis. Cell 2017;168:670–91. https://doi.org/10.1016/j.cell.2016.11.037.Google Scholar
Lee, B-C, Lee, T-H, Avraham, S, Avraham, HK. Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res 2004;2:327–38.Google Scholar
Lee, JY, Park, K, Lee, E, et al. Gene expression profiling of breast cancer brain metastasis. Sci Rep 2016;6:28623. https://doi.org/10.1038/srep28623.Google Scholar
Lee, JY, Park, K, Lim, SH, et al. Mutational profiling of brain metastasis from breast cancer: matched pair analysis of targeted sequencing between brain metastasis and primary breast cancer. Oncotarget 2015;6:43731–42. https://doi.org/10.18632/oncotarget.6192Google Scholar
Lee, T-H, Avraham, HK, Jiang, S, Avraham, S. Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem 2003;278:5277–84. https://doi.org/10.1074/jbc.M210063200.Google Scholar
Leong, HS, Robertson, AE, Stoletov, K, et al. Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep 2014;8:1558–70. https://doi.org/10.1016/j.celrep.2014.07.050.Google Scholar
Leuthardt, EC, Duan, C, Kim, MJ, et al. Hyperthermic laser ablation of recurrent glioblastoma leads to temporary disruption of the peritumoral blood brain barrier. PLoS One 2016;11:e0148613. https://doi.org/10.1371/journal.pone.0148613.Google Scholar
Li, B, Wang, C, Zhang, Y, et al. Elevated PLGF contributes to small-cell lung cancer brain metastasis. Oncogene 2013;32:2952–62. https://doi.org/10.1038/onc.2012.313.Google Scholar
Li, B, Zhao, W-D, Tan, Z-M, Fang, W-G, Zhu, L, Chen, Y-H. Involvement of Rho/ROCK signalling in small cell lung cancer migration through human brain microvascular endothelial cells. FEBS Lett 2006;580:4252–60. https://doi.org/10.1016/j.febslet.2006.06.056.Google Scholar
Liberti, MV, Locasale, JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 2016;41:211–8. https://doi.org/10.1016/j.tibs.2015.12.001.Google Scholar
Lin, X, Lu, T, Xie, Z, et al. Extracranial abscopal effect induced by combining immunotherapy with brain radiotherapy in a patient with lung adenocarcinoma: a case report and literature review. Thorac Cancer 2019;10:1272–5. https://doi.org/10.1111/1759-7714.13048.Google Scholar
Liu, H, Kato, Y, Erzinger, SA, et al. The role of MMP-1 in breast cancer growth and metastasis to the brain in a xenograft model. BMC Cancer 2012;12:583. https://doi.org/10.1186/1471-2407-12-583.Google Scholar
Liu, H-L, Hua, M-Y, Chen, P-Y, et al. Blood–brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology 2010;255:415–25. https://doi.org/10.1148/radiol.10090699.Google Scholar
Liu, Y, Cao, X. Characteristics and significance of the pre-metastatic niche. Cancer Cell 2016;30:668–81. https://doi.org/10.1016/j.ccell.2016.09.011.Google Scholar
Liu, Y, Kosaka, A, Ikeura, M, et al. Premetastatic soil and prevention of breast cancer brain metastasis. Neuro Oncol 2013;15:891903. https://doi.org/10.1093/neuonc/not031.Google Scholar
Long, GV, Atkinson, V, Lo, S, et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study. Lancet Oncol 2018;19:672–81. https://doi.org/10.1016/S1470-2045(18)30139-6.Google Scholar
Lorger, M, Felding-Habermann, B. Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol 2010;176:2958–71. https://doi.org/10.2353/ajpath.2010.090838.Google Scholar
Lorger, M, Krueger, JS, O’Neal, M, Staflin, K, Felding-Habermann, B. Activation of tumor cell integrin alphavbeta3 controls angiogenesis and metastatic growth in the brain,. PNAS 2009;106:10666–71. https://doi.org/10.1073/pnas.0903035106.Google Scholar
Louveau, A, Plog, BA, Antila, S, Alitalo, K, Nedergaard, M, Kipnis, J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest 2017;127:3210–9. https://doi.org/10.1172/JCI90603.Google Scholar
Lowery, FJ, Yu, D. Brain metastasis: unique challenges and open opportunities. Biochim Biophys Acta 2017;1867:4957. https://doi.org/10.1016/j.bbcan.2016.12.001.Google Scholar
Mani, SA, Guo, W, Liao, M-J, et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 2008;133:704–15. https://doi.org/10.1016/j.cell.2008.03.027.Google Scholar
Margolin, K, Ernstoff, MS, Hamid, O, et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol 2012;13:459–65. https://doi.org/10.1016/S1470-2045(12)70090-6.Google Scholar
Mashimo, T, Pichumani, K, Vemireddy, V, et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 2014;159:1603–14. https://doi.org/10.1016/j.cell.2014.11.025.Google Scholar
McFarland, BC, Benveniste, EN. Reactive astrocytes foster brain metastases via STAT3 signaling. Ann Transl Med 2019;7. https://doi.org/10.21037/atm.2019.04.17.Google Scholar
Menter, DG, Hatfield, JS, Harkins, C, et al. Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenously circulating tumor cells. Clin Exp Metastasis 1987;5:6578. https://doi.org/10.1007/BF00116627.Google Scholar
Morad, G, Carman, CV, Hagedorn, EJ, et al. Tumor-derived extracellular vesicles breach the intact blood–brain barrier via transcytosis. ACS Nano 2019;13:13853–65. https://doi.org/10.1021/acsnano.9b04397.Google Scholar
Moravan, MJ, Fecci, PE, Anders, CK, et al. Current multidisciplinary management of brain metastases. Cancer 2020;126:1390–406. https://doi.org/10.1002/cncr.32714.Google Scholar
Nakamura, T, Saito, R, Sugiyama, S, Sonoda, Y, Kumabe, T, Tominaga, T. Local convection-enhanced delivery of chemotherapeutic agent transiently opens blood–brain barrier and improves efficacy of systemic chemotherapy in intracranial xenograft tumor model. Cancer Lett 2011;310:7783. https://doi.org/10.1016/j.canlet.2011.06.018.Google Scholar
Nam, D-H, Jeon, H-M, Kim, S, et al. Activation of notch signaling in a xenograft model of brain metastasis. Clin Cancer Res 2008;14:4059–66. https://doi.org/10.1158/1078-0432.CCR-07-4039.Google Scholar
Neman, J, Termini, J, Wilczynski, S, et al. Human breast cancer metastases to the brain display GABAergic properties in the neural niche. PNAS 2014;111:984–9. https://doi.org/10.1073/pnas.1322098111.Google Scholar
Ostrom, QT, Gittleman, H, Truitt, G, Boscia, A, Kruchko, C, Barnholtz-Sloan, JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro-Oncol 2018;20:iv1–iv86. https://doi.org/10.1093/neuonc/noy131.Google Scholar
Palumbo, JS, Talmage, KE, Massari, JV, et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell–mediated elimination of tumor cells. Blood 2005;105:178–85. https://doi.org/10.1182/blood-2004-06-2272.Google Scholar
Pastushenko, I, Brisebarre, A, Sifrim, A, et al. Identification of the tumour transition states occurring during EMT. Nature 2018;556:463–8. https://doi.org/10.1038/s41586-018-0040-3.Google Scholar
Pestalozzi, BC, Zahrieh, D, Price, KN, et al. Identifying breast cancer patients at risk for central nervous system (CNS) metastases in trials of the International Breast Cancer Study Group (IBCSG). Ann Oncol 2006;17:935–44. https://doi.org/10.1093/annonc/mdl064.Google Scholar
Pfannenstiel, LW, McNeilly, C, Xiang, C, et al. Combination PD-1 blockade and irradiation of brain metastasis induces an effective abscopal effect in melanoma. OncoImmunology 2019;8:e1507669. https://doi.org/10.1080/2162402X.2018.1507669.Google Scholar
Priego, N, Zhu, L, Monteiro, C, et al. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat Med 2018;24:1024–35. https://doi.org/10.1038/s41591-018-0044-4.Google Scholar
Pukrop, T, Dehghani, F, Chuang, H-N, et al. Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way. Glia 2010;58:1477–89. https://doi.org/10.1002/glia.21022.Google Scholar
Qin, D, Ou, G, Mo, H, et al. Improved efficacy of chemotherapy for glioblastoma by radiation-induced opening of blood–brain barrier: clinical results. Int J Radiat Oncol 2001;51:959–62. https://doi.org/10.1016/S0360-3016(01)01735-7.Google Scholar
Qin, Y, Capaldo, C, Gumbiner, BM, Macara, IG. The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J Cell Biol 2005;171:1061–71. https://doi.org/10.1083/jcb.200506094.Google Scholar
Regmi, S, Fu, A, Luo, KQ. High shear stresses under exercise condition destroy circulating tumor cells in a microfluidic system. Sci Rep 2017;7:39975. https://doi.org/10.1038/srep39975.Google Scholar
Rizvi, NA, Mazières, J, Planchard, D, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 2015;16:257–65. https://doi.org/10.1016/S1470-2045(15)70054-9.Google Scholar
Rodrigues, G, Hoshino, A, Kenific, CM, et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat Cell Biol 2019;21:1403–12. https://doi.org/10.1038/s41556-019-0404-4.Google Scholar
Rolland, Y, Demeule, M, Fenart, L, Béliveau, R. Inhibition of melanoma brain metastasis by targeting melanotransferrin at the cell surface. Pigment Cell Melanoma Res 2009;22:8698. https://doi.org/10.1111/j.1755-148X.2008.00525.x.Google Scholar
Salehi, A, Paturu, MR, Patel, B, et al. Therapeutic enhancement of blood–brain and blood–tumor barriers permeability by laser interstitial thermal therapy. Neurooncol Adv 2020;2:vdaa071. https://doi.org/10.1093/noajnl/vdaa071.Google Scholar
Sampson, JH, Gunn, MD, Fecci, PE, Ashley, DM. Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer 2020;20:1225. https://doi.org/10.1038/s41568-019-0224-7.Google Scholar
Sartorius, CA, Hanna, CT, Gril, B, et al. Estrogen promotes the brain metastatic colonization of triple negative breast cancer cells via an astrocyte-mediated paracrine mechanism. Oncogene 2016;35:2881–92. https://doi.org/10.1038/onc.2015.353.Google Scholar
Seike, T, Fujita, K, Yamakawa, Y, et al. Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clin Exp Metastasis 2011;28:1325. https://doi.org/10.1007/s10585-010-9354-8.Google Scholar
Sevenich, L, Bowman, RL, Mason, SD, et al. Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat Cell Biol 2014;16:876–88. https://doi.org/10.1038/ncb3011.Google Scholar
Sharma, M, Balasubramanian, S, Silva, D, Barnett, GH, Mohammadi, AM. Laser interstitial thermal therapy in the management of brain metastasis and radiation necrosis after radiosurgery: an overview. Expert Rev Neurother 2016;16:223–32. https://doi.org/10.1586/14737175.2016.1135736.Google Scholar
Silver, IA, Erecińska, M. Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J Neurosci 1994;14:5068–76. https://doi.org/10.1523/JNEUROSCI.14-08-05068.1994.Google Scholar
Sjøbakk, TE, Johansen, R, Bathen, TF, et al. Metabolic profiling of human brain metastases using in vivo proton MR spectroscopy at 3 T. BMC Cancer 2007;7:141. https://doi.org/10.1186/1471-2407-7-141.Google Scholar
Sjøbakk, TE, Vettukattil, R, Gulati, M, et al. Metabolic profiles of brain metastases. Int J Mol Sci 2013;14:2104–18. https://doi.org/10.3390/ijms14012104.Google Scholar
Soto, MS, Serres, S, Anthony, DC, Sibson, NR. Functional role of endothelial adhesion molecules in the early stages of brain metastasis. Neuro Oncol 2014;16:540–51. https://doi.org/10.1093/neuonc/not222.Google Scholar
Sperringer, JE, Addington, A, Hutson, SM. Branched-chain amino acids and brain metabolism. Neurochem Res 2017;42:1697–709. https://doi.org/10.1007/s11064-017-2261-5.Google Scholar
Tabatabaei, SN, Girouard, H, Carret, A-S, Martel, S. Remote control of the permeability of the blood–brain barrier by magnetic heating of nanoparticles: a proof of concept for brain drug delivery. J Control Release 2015;206:4957. https://doi.org/10.1016/j.jconrel.2015.02.027.Google Scholar
Tawbi, HA, Forsyth, PA, Algazi, A, et al. Combined Nivolumab and Ipilimumab in melanoma metastatic to the brain. N Engl J Med 2018;379:722–30. https://doi.org/10.1056/NEJMoa1805453.Google Scholar
Théry, C, Zitvogel, L, Amigorena, S. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002;2:569–79. https://doi.org/10.1038/nri855.Google Scholar
Tiwary, S, Morales, JE, Kwiatkowski, SC, Lang, FF, Rao, G, McCarty, JH. Metastatic brain tumors disrupt the blood–brain barrier and alter lipid metabolism by inhibiting expression of the endothelial cell fatty acid transporter Mfsd2a. Sci Rep 2018;8:8267. https://doi.org/10.1038/s41598-018-26636-6.Google Scholar
Tominaga, N, Kosaka, N, Ono, M, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood–brain barrier. Nat Commun 2015;6:6716. https://doi.org/10.1038/ncomms7716.Google Scholar
Tyran, M, Carbuccia, N, Garnier, S, et al. A comparison of DNA mutation and copy number profiles of primary breast cancers and paired brain metastases for identifying clinically relevant genetic alterations in brain metastases. Cancers 2019;11:665. https://doi.org/10.3390/cancers11050665.Google Scholar
Valiente, M, Obenauf, AC, Jin, X, et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 2014;156:1002–16. https://doi.org/10.1016/j.cell.2014.01.040.Google Scholar
van Vulpen, M, Kal, HB, Taphoorn, MJB, El Sharouni, SY. Changes in blood–brain barrier permeability induced by radiotherapy: implications for timing of chemotherapy? Oncol Rep 2002;9:683–8. https://doi.org/10.3892/or.9.4.683.Google Scholar
Wagner, S, Czub, S, Greif, M, et al. Microglial/macrophage expression of interleukin 10 in human glioblastomas. Int J Cancer 1999;82:12–6. https://doi.org/10.1002/(sici)1097-0215(19990702)82:1<12::aid-ijc3>3.0.co;2-o.Google Scholar
Wang, H, Ou, Q, Li, D, et al. Genes associated with increased brain metastasis risk in non–small cell lung cancer: comprehensive genomic profiling of 61 resected brain metastases versus primary non–small cell lung cancer (Guangdong Association Study of Thoracic Oncology 1036). Cancer 2019;125:3535–44. https://doi.org/10.1002/cncr.32372.Google Scholar
Warburg, O. The metabolism of carcinoma cells. J Cancer Res 1925;9:148–63. https://doi.org/10.1158/jcr.1925.148.Google Scholar
Wu, YJ, Muldoon, LL, Gahramanov, S, Kraemer, DF, Marshall, DJ, Neuwelt, EA. Targeting αV-integrins decreased metastasis and increased survival in a nude rat breast cancer brain metastasis model. J Neurooncol 2012;110:2736. https://doi.org/10.1007/s11060-012-0942-0.Google Scholar
Xing, F, Kobayashi, A, Okuda, H, et al. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain. EMBO Mol Med 2013;5:384–96. https://doi.org/10.1002/emmm.201201623.Google Scholar
Xing, F, Liu, Y, Sharma, S, et al. Activation of the c-Met pathway mobilizes an inflammatory network in the brain microenvironment to promote brain metastasis of breast cancer. Cancer Res 2016;76:4970–80. https://doi.org/10.1158/0008-5472.CAN-15-3541.Google Scholar
Xing, F, Liu, Y, Wu, S-Y, et al. Loss of XIST in breast cancer activates MSN-c-Met and reprograms microglia via exosomal microRNA to promote brain metastasis. Cancer Res 2018;78:4316–30. https://doi.org/10.1158/0008-5472.CAN-18-1102.Google Scholar
Yang, J, Mani, SA, Donaher, JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004;117:927–39. https://doi.org/10.1016/j.cell.2004.06.006.Google Scholar
Yang, X, Di, J, Zhang, Y, et al. The Rho-kinase inhibitor inhibits proliferation and metastasis of small cell lung cancer. Biomed Pharmacother 2012;66:221–7. https://doi.org/10.1016/j.biopha.2011.11.011.Google Scholar
Yano, S, Shinohara, H, Herbst, RS, et al. Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer Res 2000;60:4959–67.Google Scholar
Yao, H, Price, TT, Cantelli, G, et al. Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature 2018;560:5560. https://doi.org/10.1038/s41586-018-0342-5.Google Scholar
Yu, M, Bardia, A, Wittner, BS, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 2013;339:580–4. https://doi.org/10.1126/science.1228522.Google Scholar
Yuan, H, Gaber, MW, Boyd, K, Wilson, CM, Kiani, MF, Merchant, TE. Effects of fractionated radiation on the brain vasculature in a murine model: blood–brain barrier permeability, astrocyte proliferation, and ultrastructural changes. Int J Radiat Oncol Biol Phys 2006;66:860–6. https://doi.org/10.1016/j.ijrobp.2006.06.043.Google Scholar
Zhang, L, Zhang, S, Yao, J, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 2015;527:100–04. https://doi.org/10.1038/nature15376.Google Scholar

References

Abbud, RA, Takumi, I, Barker, EM, et al. Early multipotential pituitary focal hyperplasia in the alpha-subunit of glycoprotein hormone-driven pituitary tumor-transforming gene transgenic mice. Mol Endocrinol 2005;19(5):1383–91. https://doi.org/10.1210/me.2004-0403.CrossRefGoogle ScholarPubMed
Abedalthagafi, M, Bi, WL, Aizer, AA, et al. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro Oncol 2016;18(5):649–55. https://doi.org/10.1093/neuonc/nov316.Google Scholar
An, J, Pei, X, Zang, Z, et al., Metformin inhibits proliferation and growth hormone secretion of GH3 pituitary adenoma cells. Oncotarget 2017:8(23):37538–49. https://doi.org/10.18632/oncotarget.16556.Google Scholar
Apps, JR, Martinez-Barbera, JP. Genetically engineered mouse models of craniopharyngioma: an opportunity for therapy development and understanding of tumor biology. Brain Pathol. 2017 May;27(3):364–369. doi: 10.1111/bpa.12501.Google Scholar
Asa, SL, Kovacs, K, Stefaneanu, L, et al., Pituitary adenomas in mice transgenic for growth hormone-releasing hormone. Endocrinology 1992;131(5):2083–9. https://doi.org/10.1210/endo.131.5.1425411.Google Scholar
Aziz-Bose, R, Monje, M. Diffuse intrinsic pontine glioma: molecular landscape and emerging therapeutic targets. Curr Opin Oncol 2019;31(6):522–30. https://doi.org/10.1097/CCO.0000000000000577.Google Scholar
Bai, F, Chan, HL, Smith, MD, Kiyokawa, H, Pei, X-H. p19Ink4d is a tumor suppressor and controls pituitary anterior lobe cell proliferation. Mol Cell Biol 2014;34(12):2121–34. https://doi.org/10.1128/MCB.01363-13.Google Scholar
Bentley, L, Esapa, CT, Nesbit, MA, et al. An N-ethyl-N-nitrosourea induced corticotropin-releasing hormone promoter mutation provides a mouse model for endogenous glucocorticoid excess. Endocrinology 2014;155(3):908–22. https://doi.org/0.1210/en.2013-1247.Google Scholar
Bertolino, P, Tong, W-M, Herrera, PL, et al. Pancreatic beta-cell-specific ablation of the multiple endocrine neoplasia type 1 (MEN1) gene causes full penetrance of insulinoma development in mice. Cancer Res 2003;63(16):4836–41.Google Scholar
Bi, WL, Abedalthagafi, M, Horowitz, P, et al. Genomic landscape of intracranial meningiomas. J Neurosurg 2016a;125(3):525–35. https://doi.org/10.3171/2015.6.JNS15591.Google Scholar
Bi, WL, Mei, Y, Agarwalla, PK, Beroukhim, R, Dunn, IF. Genomic and epigenomic landscape in meningioma. Neurosurg Clinics 2016b;27(2):167–79. https://doi.org/10.1016/j.nec.2015.11.009.Google Scholar
Biondi, CA, Gartside, MG, Waring, P, et al. Conditional inactivation of the MEN1 gene leads to pancreatic and pituitary tumorigenesis but does not affect normal development of these tissues. Mol Cell Biol 2004;24(8):3125–31. https://doi.org/10.1128/MCB.24.8.3125-3131.2004.Google Scholar
Booth, A, Trudeau, T, Gomez, C, Lucia, MS, Gutierrez-Hartmann, A. Persistent ERK/MAPK activation promotes lactotrope differentiation and diminishes tumorigenic phenotype. Mol Endocrinol 2014;28(12):19992011. https://doi.ord/10.1210/me.2014-1168.Google Scholar
Cai, DX, Banerjee, R, Scheithauer, BW, Lohse, CM, Kleinschmidt-Demasters, BK, Perry, A. Chromosome 1p and 14q FISH analysis in clinicopathologic subsets of meningioma: diagnostic and prognostic implications. J Neuropathol Exp Neurol 2001;60(6):628–36. https://doi.org/10.1093/jnen/60.6.628.Google Scholar
Chang, LS, Welling, DB. Molecular biology of vestibular schwannomas. Methods Mol Biol 2009;493:163–77. https://doi.org/10.1007/978-1-59745-523-7_10.Google Scholar
Cheng, SQ, Fan, H-Y, Xu, X, et al, Over-expression of LRIG1 suppresses biological function of pituitary adenoma via attenuation of PI3K/AKT and Ras/Raf/ERK pathways in vivo and in vitro. J Huazhong Univ Sci Technolog Med Sci 2016;36(4):558–63. https://doi.org/10.1007/s11596-016-1625-4.Google Scholar
Chesnokova, V, Kovacs, K, Castro, A-V, Zonis, S, Melmed, S. Pituitary hypoplasia in Pttg–/– mice is protective for Rb+/– pituitary tumorigenesis. Mol Endocrinol 2005;19(9):2371–9. https://doi.org/10.1210/me.2005-0137.Google Scholar
Choudhury, A, Raleigh, DR. Preclinical models of meningioma: cell culture and animal systems. Handb Clin Neurol 2020;169:131–6. https://doi.org/10.1016/B978-0-12-804280-9.00008-1.Google Scholar
Chukwueke, UN, Wen, PY. Medical management of meningiomas. In MW, McDermott (Ed.), Handbook of Clinical Neurology. Elsevier, 2020: pp. 291302.Google Scholar
Chung PED, Gendoo DMA, Ghanbari-Azarnier, R, Liu, JC, Jiang, Z, Tsui J, Wang DY, Xiao X, Li B, Dubuc A, Shih D, Remke M, Ho B, Garzia L, Ben-David Y, Kang SG, Croul S, Haibe-Kains B, Huang A, Taylor MD, Zacksenhaus E. Modeling germline mutations in pineoblastoma uncovers lysosome disruption-based therapy. Nat Commun. 2020 Apr 14;11(1):1825. doi: 10.1038/s41467-020-15585-2.Google Scholar
Chunharojrith, P, Nakayama, Y, Jiang, X, et al., Tumor suppression by MEG3 lncRNA in a human pituitary tumor derived cell line. Mol Cell Endocrinol 2015;416:2735. https://doi.org/10.1016/j.mce.2015.08.018.Google Scholar
Clark, VE, Erson-Omay, EZ, Serin, A, et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 2013;339(6123):1077–80. https://doi.org/10.1126/science.1233009.Google Scholar
Crabtree, JS, Scacheri, PC, Ward, JM, et al. Of mice and MEN1: insulinomas in a conditional mouse knockout. Mol Cell Biol 2003;23(17):6075–85. https://doi.org/10.1128/MCB.23.17.6075-6085.2003.Google Scholar
de Vries, M, van der Mey, AG, Hogendoorn, PC. Tumor biology of vestibular Schwannoma: a review of experimental data on the determinants of tumor genesis and growth characteristics. Otol Neurotol 2015;36(7):1128–36. https://doi.org/10.1097/MAO.0000000000000788.Google Scholar
Donangelo, I, Gutman, S, Horvath, E, et al. Pituitary tumor transforming gene overexpression facilitates pituitary tumor development. Endocrinology 2006;147(10):4781–91. https://doi.org/10.1210/en.2006-0544.Google Scholar
Ezzat, S, Zheng, L, Winer, D, Asa, SL. Targeting N-cadherin through fibroblast growth factor receptor-4: distinct pathogenetic and therapeutic implications. Mol Endocrinol 2006;20(11):2965–75. https://doi.org/10.1210/me.2006-0223.Google Scholar
Fangusaro, J. Pediatric high grade glioma: a review and update on tumor clinical characteristics and biology. Front Oncol 2012;2:105. https://doi.org/10.3389/fonc.2012.00105.Google Scholar
Favero, G, Bonomini, F, Rezzani, R. Pineal gland tumors: a review. Cancers (Basel) 2021;13(7):1547. https://doi.org/10.3390/cancers13071547.Google Scholar
Fedele, M, Battista, S, Kenyon, L, et al. Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene 2002;21(20):3190–8. https://doi.org/10.1038/sj.onc.1205428.Google Scholar
Fedele, M, Pentimalli, F, Baldassarre, G, et al. Transgenic mice overexpressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas. Oncogene 2005;24(21):3427–35. https://doi.org/10.1038/sj.onc.1208501.Google Scholar
Fedele, M, Visone, R, De Martino, I, et al. HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell 2006;9(6):459–71. https://doi.org/10.1016/j.ccr.2006.04.024Google Scholar
Franklin, DS, Godfrey, VL, Lee, H, et al. CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 1998;12(18):2899–911. https://doi.org/10.1101/gad.12.18.2899.Google Scholar
Fuertes, M, Sapochnik, M, Tedesco, L, et al. Protein stabilization by RSUME accounts for PTTG pituitary tumor abundance and oncogenicity. Endocr Relat Cancer 2018;25(6):665–76. https://doi.org/10.1530/ERC-18-0028.Google Scholar
Gahete, MD, Jiménez-Vacas, JM, Alors-Pérez, E, et al. Mouse models in endocrine tumors. J Endocrinol 2019;240(3):R7393. https://doi.org/10.1530/JOE-18-0571CrossRefGoogle Scholar
Greene, HSN, Arnold, H. The homologous and heterologous transplantation of brain and brain tumors. J Neurosurg 1945;2(4):315–31. https://doi.org/10.3171/jns.1945.2.4.0315.Google Scholar
Guidi, CJ, Mudhasani, R, Hoover, K, et al. Functional interaction of the retinoblastoma and Ini1/Snf5 tumor suppressors in cell growth and pituitary tumorigenesis. Cancer Res 2006;66(16):8076–82. https://doi.org/10.1158/0008-5472.CAN-06-1451.Google Scholar
Harvey, M, Vogel, H, Lee, EY, Bradley, A, Donehower, LA. Mice deficient in both p53 and Rb develop tumors primarily of endocrine origin. Cancer Res 1995;55(5):1146–51.Google Scholar
Helseth, A, Siegel, GP, Haug, E, Bautch, VL. Transgenic mice that develop pituitary tumors. A model for Cushing’s disease. Am J Pathol 1992;140(5):1071–80.Google Scholar
Hemmer, S, Sippl, C, Sahm, F, Oertel, J, Urbschat, S, Ketter, R. The loss of 1p as a reliable marker of progression in a child with aggressive meningioma: a 16-year follow-up case report. Ped Neurosurg 2020;55(6):418–25. https://doi.org/10.1159/000512001.Google Scholar
Hirato, J, Nakazato, Y. Pathology of pineal region tumors. J Neurooncol 2001;54(3):239–49. https://doi.org/10.1023/a:1012721723387.Google Scholar
Jacks, T, Fazeli, A, Schmitt, EM, Bronson, RT, Goodell, MA, Weinberg, RA. Effects of an Rb mutation in the mouse. Nature 1992:359(6393):295300. https://doi.org/10.1038/359295a0.Google Scholar
Jalali, S, Monsalves, E, Tateno, T, Zadeh, G. Role of mTOR inhibitors in growth hormone-producing pituitary adenomas harboring different FGFR4 genotypes. Endocrinology 2016;157(9):3577–87. https://doi.org/10.1210/en.2016-1028.Google Scholar
James, MF, Han, S, Polizzano, C, et al. NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol Cell Biol 2009;29(15):4250–61. https://doi.org/10.1128/MCB.01581-08.Google Scholar
Johung, TB, Monje, M. Diffuse intrinsic pontine glioma: new pathophysiological insights and emerging therapeutic targets. Curr Neuropharmacol 2017;15(1):8897. https://doi.org/10.2174/1570159x14666160509123229.Google Scholar
Kalamarides, M, Niwa-Kawakita, M, Leblois, H, et al. Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev 2002;16(9):1060–5. https://doi.org/10.1101/gad.226302.Google Scholar
Kiyokawa, H, Kineman, RD, Manova-Todorova, KO, et al., Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 1996;85(5):721–32. https://doi.org/10.1016/s0092-8674(00)81238-6.Google Scholar
Kumar, TR, Graham, KE, Asa, SL, Low, MJ. Simian virus 40 T antigen-induced gonadotroph adenomas: a model of human null cell adenomas. Endocrinology 1998:139(7):3342–51. https://doi.org/10.1210/endo.139.7.6100.Google Scholar
Lee, Y, Liu, J, Patel, S, et al. Genomic landscape of meningiomas. Brain Pathol 2010;20(4):751–62. https://doi.org/10.1111/j.1750-3639.2009.00356.x.Google Scholar
Li, R, Zhang, Z, Wang, J, et al. Triptolide suppresses growth and hormone secretion in murine pituitary corticotroph tumor cells via NF-kappaB signaling pathway. Biomed Pharmacother 2017;95:771–9. https://doi.org/10.1016/j.biopha.2017.08.127.Google Scholar
Lin, SJ, Wu, ZR, Cao, L, et al. Pituitary tumor suppression by combination of cabergoline and chloroquine. J Clin Endocrinol Metab 2017;102(10):3692–703. https://doi.org/10.1210/jc.2017-00627.Google Scholar
Lloyd, RV, Ruebel, KH, Zhang, S, Jin, L. Pituitary hyperplasia in glycoprotein hormone alpha subunit-, p18(INK4C)-, and p27(kip-1)-null mice: analysis of proteins influencing p27(kip-1) ubiquitin degradation. Am J Pathol 2002;160(3): 1171–9. https://doi.org/10.1016/S0002-9440(10)64936-X.Google Scholar
Loffler, KA, Biondi, CA, Gartside, MG, et al. Lack of augmentation of tumor spectrum or severity in dual heterozygous Men1 and Rb1 knockout mice. Oncogene 2007;26(27):4009–17. https://doi.org/10.1038/sj.onc.1210163.Google Scholar
Louis, DN, Perry, A, Wesseling, P, et al. The 2021 WHO Classi cation of Tumors of the Central Nervous System: a summary. Neuro-Oncology. 2021;23(8):1231–1251. https://doi.org/10.1093/neuonc/noab106.Google Scholar
Low, MJ, Liu, B, Hammer, GD, Rubinstein, M, Allen, RG. Post-translational processing of proopiomelanocortin (POMC) in mouse pituitary melanotroph tumors induced by a POMC-simian virus 40 large T antigen transgene. J Biol Chem 1993;268(33):24967–75.Google Scholar
Lu, J, Chatain, GP, Bugarini, A, et al. Histone deacetylase inhibitor SAHA is a promising treatment of cushing disease. J Clin Endocrinol Metab 2017;102(8):2825–35. 10.1210/jc.2017-00464.Google Scholar
Mannelli, M, Cantini, G, Poli, G, et al. Role of the PPAR-γ system in normal and tumoral pituitary corticotropic cells and adrenal cells. Neuroendocrinology 2010;92(Suppl 1):23–7. https://doi.org/10.1159/000314312.Google Scholar
Manoranjan, B, Mahendram, S, Almenawer, SA, et al. The identification of human pituitary adenoma-initiating cells. Acta Neuropathol Commun 2016;4(1):125. https://doi.org/10.1186/s40478-016-0394-4.Google Scholar
McClatchey, AI, Saotome, I, Mercer, K, et al. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev 1998;12(8):1121–33. https://doi.org/10.1101/gad.12.8.1121.Google Scholar
McCutcheon, IE, Friend, KE, Gerdes, TM, Zhang, BM, Wildrick, DM, Fuller, GN. Intracranial injection of human meningioma cells in athymic mice: an orthotopic model for meningioma growth. J Neurosurg 2000;92(2):306–14. https://doi.org/10.3171/jns.2000.92.2.0306.Google Scholar
McSheehy, PM, Troy, H, Kelland, LR, Judson, IR, Leach, MO, Griffiths, JR. Increased tumour extracellular pH induced by Bafilomycin A1 inhibits tumour growth and mitosis in vivo and alters 5-fluorouracil pharmacokinetics. Eur J Cancer 2003;39(4):532–40. 10.1016/s0959-8049(02)00671-8.Google Scholar
Millard, NE, De Braganca, KC. Medulloblastoma. J Child Neurol 2016;31(12):1341–53. https://doi.org/10.1177/0883073815600866. Erratum in J Child Neurol, 2016.Google Scholar
Morrison, JP, Satoh, H, Foley, J, et al. N-ethyl-N-nitrosourea (ENU)-induced meningiomatosis and meningioma in p16(INK4a)/p19(ARF) tumor suppressor gene-deficient mice. Toxicol Pathol 2007;35(6):780–7. https://doi.org/10.1080/01926230701584130.Google Scholar
Müller, HL. Craniopharyngioma. Endocr Rev 2014;35(3):513–43. https://doi.org/10.1210/er.2013-1115.Google Scholar
Müller, HL, Merchant, TE, Warmuth-Metz, M, Martinez-Barbera, JP, Puget, S. Craniopharyngioma. Nat Rev Dis Primers 2019;5(1):75. https://doi.org/10.1038/s41572-019-0125-9.Google Scholar
Nakayama, K, Ishida, N, Shirane, M, et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 1996;85(5):707–20. https://doi.org/10.1016/s0092-8674(00)81237-4.Google Scholar
Ning, S, Knox, SJ, Harsh, GR, Culler, MD, Katznelson, L. Lanreotide promotes apoptosis and is not radioprotective in GH3 cells. Endocr Relat Cancer 2009;16(3):1045–55. https://doi.org/10.1677/ERC-09-0003.Google Scholar
Northcott, PA, Robinson, GW, Kratz, CP, et al. Medulloblastoma. Nat Rev Dis Primers 2019;5(1):11. https://doi.org/10.1038/s41572-019-0063-6.Google Scholar
Ostrom, QT, Patil, N, Cioffi, G, Waite, K, Kruchko, C, Barnholtz-Sloan, JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro-Oncology 2020;22(Suppl_1):iv196. https://doi.org/10.1093/neuonc/noaa200.Google Scholar
Pei, L, Melmed, S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol 1997;11(4):433–41. https://doi.org/10.1210/mend.11.4.9911.Google Scholar
Petrilli, AM, Fernández-Valle, C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene 2016;35(5):537–48. https://doi.org/10.1038/onc.2015.125.Google Scholar
Peyre, M, Salaud, C, Clermont-Taranchon, E, et al. PDGF activation in PGDS-positive arachnoid cells induces meningioma formation in mice promoting tumor progression in combination with Nf2 and Cdkn2ab loss. Oncotarget 2015;6(32):32713–22. https://doi.org/10.18632/oncotarget.5296.Google Scholar
Plant-Fox, AS, O’Halloran, K, Goldman, S. Pediatric brain tumors: the era of molecular diagnostics, targeted and immune-based therapeutics, and a focus on long term neurologic sequelae. Curr Probl Cancer 2021;45(4):100777. https://doi.org/10.1016/j.currproblcancer.2021.100777.Google Scholar
Raitila, A, Lehtonen, HJ, Arola, J, et al. Mice with inactivation of aryl hydrocarbon receptor-interacting protein (Aip) display complete penetrance of pituitary adenomas with aberrant ARNT expression. Am J Pathol 2010;177(4):1969–76. https://doi.org/10.2353/ajpath.2010.100138.Google Scholar
Rath, P, Miller, DC, Litofsky, NS, et al. Isolation and characterization of a population of stem-like progenitor cells from an atypical meningioma. Exp Mol Pathol 2011;90(2):179–88. https://doi.org/10.1016/j.yexmp.2010.12.003.Google Scholar
Reni, M, Gatta, G, Mazza, E, Vecht, C. Ependymoma. Crit Rev Oncol Hematol 2007;63(1):81–9. https://doi.org/10.1016/j.critrevonc.2007.03.004.Google Scholar
Reuss, DE, Piro, RM, Jones, DTW, et al. Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations. Acta Neuropathol 2013;125(3):351–8. https://doi.org/10.1007/s00401-013-1093-x.Google Scholar
Roche, C, Rasolonjanahary, R, Thirion, S, et al. Inactivation of transcription factor pit-1 to target tumoral somatolactotroph cells. Hum Gene Ther 2012;23(1):104–14. https://doi.org/10.1089/hum.2011.105.Google Scholar
Roussel-Gervais, A, Bilodeau, S, Vallette, S, et al. Cooperation between cyclin E and p27(Kip1) in pituitary tumorigenesis. Mol Endocrinol 2010;24(9):1835–45. https://doi.org/10.1210/me.2010-0091.Google Scholar
Russell, WL, Kelly, EM, Hunsicker, PR, Bangham, JW, Maddux, SC, Phipps, EL. Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. PNAS 1979;76(11):5818–9. https://doi.org/10.1073/pnas.76.11.5818.Google Scholar
Sáez, C, Japón, MA, Ramos-Morales, F, et al. hpttg is over-expressed in pituitary adenomas and other primary epithelial neoplasias. Oncogene 1999;18(39):5473–6. https://doi.org/10.1038/sj.onc.1202914.Google Scholar
Seizinger, BR, de la Monte, S, Atkins, L, Gusella, JF, Martuza, RL. Molecular genetic approach to human meningioma: loss of genes on chromosome 22. PNAS 1987;84(15):5419–23. https://doi.org/10.1073/pnas.84.15.5419.Google Scholar
Shapiro, IM, Kolev, VN, Vidal, CM, et al. Merlin deficiency predicts FAK inhibitor sensitivity: a synthetic lethal relationship. Sci Transl Med 2014;6(237):237ra68–237ra68. https://doi.org/10.1126/scitranslmed.3008639.Google Scholar
Sotillo, R, Renner, O, Dubus, P, et al., Cooperation between Cdk4 and p27kip1 in tumor development: a preclinical model to evaluate cell cycle inhibitors with therapeutic activity. Cancer Res, 2005. 65(9): p. 3846-52. https://doi.org/10.1158/0008-5472.CAN-04-4195.Google Scholar
Stefaneanu, L, Rindi, G, Horvath, E, Murphy, D, Polak, JM, Kovacs, K. Morphology of adenohypophysial tumors in mice transgenic for vasopressin-SV40 hybrid oncogene. Endocrinology 1992;130(4):1789–95. https://doi.org/10.1210/endo.130.4.1312426.Google Scholar
Stenzel-Poore, MP, Cameron, VA, Vaughan, J, Sawchenko, PE, Vale, W. Development of Cushing’s syndrome in corticotropin-releasing factor transgenic mice. Endocrinology 1992;130(6):3378–86. https://doi.org/10.1210/endo.130.6.1597149.Google Scholar
Suppiah, S, Nassiri, F, Bi, WL, et al. Molecular and translational advances in meningiomas. Neuro Oncol 2019;21(Suppl_1):i417. https://doi.org/10.1093/neuonc/noy178.Google Scholar
Thomas, C, Soschinski, P, Zwaig, M, et al. The genetic landscape of choroid plexus tumors in children and adults. Neuro Oncol 2021;23(4):650–60. 10.1093/neuonc/noaa267.Google Scholar
Torp SH, Solheim O, Skjulsvik AJ. The WHO 2021 Classification of Central Nervous System tumours: a practical update on what neurosurgeons need to know-a minireview. Acta Neurochir (Wien). 2022 Sep;164(9):2453–2464. doi: 10.1007/s00701-022-05301-y.Google Scholar
Tsai, KY, MacPherson, D, Rubinson, DA, et al., ARF mutation accelerates pituitary tumor development in Rb+/– mice. PNAS 2002;99(26):16865–70. https://doi.org/10.1073/pnas.262499599.Google Scholar
Vierimaa, O, Georgitsi, M, Lehtonen, R, et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 2006;312(5777):1228–30. https://doi.org/10.1126/science.1126100.Google Scholar
Vlotides, G, Eigler, T, Melmed, S. Pituitary tumor-transforming gene: physiology and implications for tumorigenesis. Endocr Rev 2007;28(2):165–86. https://doi.org/Google Scholar
Vooijs, M, van der Valk, M, te Riele, H, Berns, A. Flp-mediated tissue-specific inactivation of the retinoblastoma tumor suppressor gene in the mouse. Oncogene 1998;17(1):112. https://doi.org/10.1038/sj.onc.1202169.Google Scholar
Wang, D, Wong, H-K, Feng, Y-B, Zhang, Z-J. Liquiritigenin exhibits antitumour action in pituitary adenoma cells via Ras/ERKs and ROS-dependent mitochondrial signalling pathways. J Pharm Pharmacol 2014;66(3):408–17. https://doi.org/10.1111/jphp.12170.Google Scholar
Wolff, JE, Sajedi, M, Brant, R, Coppes, MJ, Egeler, RM. Choroid plexus tumours. Br J Cancer 2002;87(10):1086–91. https://doi.org/10.1038/sj.bjc.6600609.Google Scholar
Wu, J, Armstrong, TS, Gilbert, MR. Biology and management of ependymomas. Neuro Oncol 2016;18(7):902–13. https://doi.org/10.1093/neuonc/now016.Google Scholar
Yin, Z, Williams-Simons, L, Parlow, AF, Asa, S, Kirschner, LS. Pituitary-specific knockout of the Carney complex gene Prkar1a leads to pituitary tumorigenesis. Mol Endocrinol 2008;22(2):380–7. https://doi.org/10.1210/me.2006-0428.Google Scholar
Youngblood, MW, Duran, D, Montejo, JD, et al. Correlations between genomic subgroup and clinical features in a cohort of more than 3000 meningiomas. J Neurosurg 2019;133(5):1345–54. https://doi.org/10.3171/2019.8.JNS191266.Google Scholar
Zang, KD, Singer, H. Chromosomal constitution of meningiomas. Nature 1967;216(5110):84–5. https://doi.org/10.1038/216084a0.Google Scholar
Zhang, H, Qi, L, Du, Y, et al. Patient-derived orthotopic xenograft (PDOX) mouse models of primary and recurrent meningioma. Cancers (Basel) 2020;12(6):E1478. https://doi.org/10.3390/cancers12061478.Google Scholar
Zhao, Y, Xiao, Z, Chen, W, Yang, J, Li, T, Fan, B. Disulfiram sensitizes pituitary adenoma cells to temozolomide by regulating O6-methylguanine-DNA methyltransferase expression. Mol Med Rep 2015;12(2):2313–22. https://doi.org/10.3892/mmr.2015.3664.Google Scholar
Zhen, W, Qiu, D, Zhiyong, C, et al. MicroRNA-524-5p functions as a tumor suppressor in a human pituitary tumor-derived cell line. Horm Metab Res 2017;49(7):550–7. https://doi.org/10.1055/s-0043-106437.Google Scholar
Zindy, F, Nilsson, LM, Nguyen, L, et al. Hemangiosarcomas, medulloblastomas, and other tumors in Ink4c/p53-null mice. Cancer Res 2003;63(17):5420–7.Google Scholar

References

Abode-Iyamah, K, Kim, SB, Grosland, N, et al. Spinal motion and intradiscal pressure measurements before and after lumbar spine instrumentation with titanium or PEEK rods. J Clin Neurosci 2014;21:651–5. https://doi.org/10.1016/j.jocn.2013.08.010.Google Scholar
Bell, GH, Dunbar, O, Beck, JS, Gibb, A. Variations in strength of vertebrae with age and their relation to osteoporosis. Calcif Tissue Res 1967;1(1):7586. https://doi.org/10.1007/BF02008077.Google Scholar
Brown, T, Hansen, RJ, Yorra, AJ Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral discs; a preliminary report. J Bone Joint Surg Am 1957;39-A(5):1135–64.Google Scholar
Denis, F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 1983;8:817–31. https://doi.org/10.1097/00007632-198311000-00003.Google Scholar
Gregersen, GG, Lucas, DB. An in vivo study of the axial rotation of the human thoracolumbar spine. J Bone Joint Surg Am 1967;49:247–62.Google Scholar
Hirsch, C. The reaction of intervertebral discs to compression forces. J Bone Joint Surg Am 1955;37-A:1188–96.Google Scholar
Lysell, E. Motion in the cervical spine. An experimental study on autopsy specimens. Acta Orthop Scand Suppl 1969;123:1+. https://doi.org/10.3109/ort.1969.40.suppl-123.01.Google Scholar
Markolf, KL. Deformation of the thoracolumbar intervertebral joints in response to external loads: a biomechanical study using autopsy material. J Bone Joint Surg Am 1972;54:511–33.Google Scholar
Markolf, KL, Morris, JM. The structural components of the intervertebral disc. A study of their contributions to the ability of the disc to withstand compressive forces. J Bone Joint Surg Am 1974;56:675–87.Google Scholar
Miele, VJ, Panjabi, MM, Benzel, EC. Anatomy and biomechanics of the spinal column and cord. Handb Clin Neurol 2012;109:3143. https://doi.org/10.1016/B978-0-444-52137-8.00002-4.Google Scholar
Nachemson, A. The load on lumbar disks in different positions of the body. Clin Orthop 1966;45:107–22.Google Scholar
Nachemson, A, Morris, JM. In vivo measurements of intradiscal pressure. Discometry, a method for the determination of pressure in the lower lumbar discs. J Bone Joint Surg Am 1964;46:1077–92.Google Scholar
Noyes, FR, DeLucas, JL, Torvik, PJ. Biomechanics of anterior cruciate ligament failure: an analysis of strain-rate sensitivity and mechanisms of failure in primates. J Bone Joint Surg Am 1974a;56:236–53.Google Scholar
Noyes, FR, Torvik, PJ, Hyde, WB, DeLucas, JL. Biomechanics of ligament failure. II. An analysis of immobilization, exercise, and reconditioning effects in primates. J Bone Joint Surg Am 1974b;56:1406–18.Google Scholar
Panjabi, MM. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord 1992;5:390–6; discussion 397. https://doi.org/10.1097/00002517-199212000-00002.Google Scholar
Panjabi, MM, Oxland, TR, Kifune, M, Arand, M, Wen, L, Chen, A. Validity of the three-column theory of thoracolumbar fractures. A biomechanic investigation. Spine 1995;20:1122–7. https://doi.org/10.1097/00007632-199505150-00003.Google Scholar
Tkaczuk, H. Tensile properties of human lumbar longitudinal ligaments. Acta Orthop Scand Suppl 1968;115:1+. https://doi.org/10.3109/ort.1968.39.suppl-115.01.Google Scholar
Virgin, WJ. Experimental investigations into the physical properties of the intervertebral disc. J Bone Joint Surg Br 1951;33-B:607–11. https://doi.org/10.1302/0301-620X.33B4.607.Google Scholar
Weaver, JK, Chalmers, J. Cancellous bone: its strength and changes with aging and an evaluation of some methods for measuring its mineral content. J Bone Joint Surg Am 1966;48(2):289–98.Google Scholar
White, AA, Johnson, RM, Panjabi, MM, Southwick, WO. Biomechanical analysis of clinical stability in the cervical spine. Clin Orthop 1975;109:8596. https://doi.org/10.1097/00003086-197506000-00011.Google Scholar
White, AA, Panjabi, MM. The basic kinematics of the human spine. A review of past and current knowledge. Spine 1978;3:1220. https://doi.org/10.1097/00007632-197803000-00003.Google Scholar

References

Adams, MM, Hicks, AL. Spasticity after spinal cord injury. Spinal Cord 2005;43(10):577–86. https://doi.org/10.1038/sj.sc.3101757.Google Scholar
Baron, EM, Young, WF. Cervical spondylotic myelopathy: a brief review of its pathophysiology, clinical course, and diagnosis. Neurosurgery 2007;60(1_Suppl.):3542. https://doi.org/10.1227/01.NEU.0000215383.64386.82.Google Scholar
Brain, R, Knight, GC, Bull, JWD. Discussion on rupture of the intervertebral disc in the cervical region. J R Soc Med 1948;41(8):509–16.Google Scholar
Breig, A, Turnbull, I, Hassler, O. Effects of mechanical stresses on the spinal cord in cervical spondylosis. A study on fresh cadaver material. J Neurosurg 1966;25(1):4556. https://doi.org/10.3171/jns.1966.25.1.0045.Google Scholar
Carette, S, Fehlings, MG. Cervical radiculopathy. N Engl J Med 2005;353(4):392–9. www.nejm.org/doi/abs/10.1056/NEJMcp043887Google Scholar
Chao, EYS. Biomechanics of the human gait. In Frontiers in Biomechanics. Springer, 1986: 225–44. https://doi.org/10.1007/978-1-4612-4866-8_17Google Scholar
Chen, I-H, Vasavada, A, Panjabi, MM. Kinematics of the cervical spine canal. J Spinal Disord 1994;7(2):93101. http://journals.lww.com/00002517-199407020-00001Google Scholar
Choi, BW, Song, KJ, Chang, H. Ossification of the posterior longitudinal ligament: a review of literature. Asian Spine J 2011;5(4):267–76. https://doi.org/10.4184/asj.2011.5.4.267.Google Scholar
Clarke, E, Robinson, PK. Cervical myelopathy: a complication of cervical spondylosis. Brain 1956;79(3):483510. https://doi.org/10.1093/brain/79.3.483.Google Scholar
Crandall, PH, Batzdorf, U. Cervical spondylotic myelopathy. J Neurosurg 1966;25(1):5766. https://doi.org/10.3171/jns.1966.25.1.0057.Google Scholar
Dietz, V. Proprioception and locomotor disorders. Nat Rev Neurosci 2002;3(10):781–90. https://doi.org/10.1038/nrn939.Google Scholar
Dietz, V. Spinal cord pattern generators for locomotion. Clin Neurophysiol 2003;114(8):1379–89. https://doi.org/10.1016/s1388-2457(03)00120-2.Google Scholar
Ellingson, BM, Salamon, N, Woodworth, DC, Yokota, H, Holly, LT. Reproducibility, temporal stability, and functional correlation of diffusion MR measurements within the spinal cord in patients with asymptomatic cervical stenosis or cervical myelopathy. J Neurosurg Spine 2018;28(5):472–80. https://doi.org/10.3171/2017.7.SPINE176.Google Scholar
Ellingson, BM, Woodworth, DC, Leu, K, Salamon, N, Holly, LT. Spinal cord perfusion MR imaging implicates both ischemia and hypoxia in the pathogenesis of cervical spondylosis. World Neurosurg 2019;128:e773–81. https://doi.org/10.1016/j.wneu.2019.04.253Google Scholar
Fehlings, MG, Skaf, G. A review of the pathophysiology of cervical spondylotic myelopathy with insights for potential novel mechanisms drawn from traumatic spinal cord injury. Spine (Phila Pa 1976) 1998;23(24):2730–7. https://doi.org/10.1097/00007632-199812150-00012.Google Scholar
Gooding, MR, Wilson, CB, Hoff, JT. Experimental cervical myelopathy. Effects of ischemia and compression of the canine cervical spinal cord. J Neurosurg 2009;43(1):917. https://doi.org/10.3171/jns.1975.43.1.0009.Google Scholar
Hayashi, H, Okada, K, Hamada, M, Tada, K, Ueno, R. Etiologic factors of myelopathy. A radiographic evaluation of the aging changes in the cervical spine. Clin Orthop Relat Res 1987;214:200–09. www.ncbi.nlm.nih.gov/pubmed/3791744Google Scholar
Henneman, E, Olson, CB. Relations between structure and function in the design of skeletal muscles. J Neurophysiol 1965;28:581–98. https://doi.org/10.1152/jn.1965.28.3.581.Google Scholar
Holly, LT, Dong, Y, Albistegui-Dubois, R, Marehbian, J, Dobkin, B. Cortical reorganization in patients with cervical spondylotic myelopathy. J Neurosurg Spine 2007;6(6):544–51. https://thejns.org/view/journals/j-neurosurg-spine/6/6/article-p544.xmlGoogle Scholar
Holly, LT, Ellingson, BM, Salamon, N. Metabolic imaging using proton magnetic spectroscopy as a predictor of outcome after surgery for cervical spondylotic myelopathy. Clin Spine Surg 2017;30(5):E615–9. https://doi.org/10.1097/BSD.0000000000000248.Google Scholar
Holly, LT, Freitas, B, McArthur, D, Salamon, N. Proton magnetic resonance spectroscopy to evaluate spinal cord axonal injury in cervical spondylotic myelopathy. J Neurosurg Spine 2009;10:194200. https://doi.org/10.3171/2008.12.SPINE08367.Google Scholar
Kandel, E, Schwartz, J, Jessell, TM. Principles of Neural Science. 4th ed. New York: McGraw-Hill; 2000.Google Scholar
Karadimas, S, Gialeli, C, Klironomos, G, et al. The role of oligodendrocytes in the molecular pathobiology and potential molecular treatment of cervical spondylotic myelopathy. Curr Med Chem 2010;17(11):1048–58. https://doi.org/10.2174/092986710790820598.Google Scholar
Karadimas, SK, Gatzounis, G, Fehlings, MG. Pathobiology of cervical spondylotic myelopathy. Eur Spine J 2015;24(2):132–8. https://doi.org/10.1007/s00586-014-3264-4.Google Scholar
Karadimas, SK, Moon, ES, Yu, WR, et al. A novel experimental model of cervical spondylotic myelopathy (CSM) to facilitate translational research. Neurobiol Dis 2013;54:4358. http://dx.doi.org/10.1016/j.nbd.2013.02.013Google Scholar
Lemon, R. Cortical control of the primate hand. Exp Physiol 1993;78(3):263–263. https://doi.org/10.1113/expphysiol.1993.sp003686.Google Scholar
Little, JW, Ditunno, JF, Stiens, SA, Harris, RM. Incomplete spinal cord injury: neuronal mechanisms of motor recovery and hyperreflexia. Arch Phys Med Rehabil 1999;80(5):587–99. https://doi.org/10.1016/s0003-9993(99)90204-6.Google Scholar
Madhav, MS, Cowan, NJ. The synergy between neuroscience and control theory: the nervous system as inspiration for hard control challenges. Annu Rev Control Robot Auton Syst 2020;3(1):243–67. https://doi.org/10.1146/annurev-control-060117-104856.Google Scholar
Mair, WGP, Druckman, R. The pathology of spinal cord lesions and their relation to the clinical features. Brain 1953;76(1):7091. https://doi.org/10.1093/brain/76.1.70.Google Scholar
Martin, J. Neuroanatomy (Text and Atlas). 3rd ed. McGraw-Hill Medical; 2003.Google Scholar
McCormack, BM, Weinstein, PR. Cervical spondylosis – an update. West J Med 1996;165(1–2):4351.Google Scholar
Mendell, LM. The size principle: a rule describing the recruitment of motoneurons. J Neurophysiol 2005;93(6):3024–6. https://doi.org/10.1152/classicessays.00025.2005.Google Scholar
Mihara, H, Ohnari, K, Hachiya, M, Kondo, S, Yamada, K. Cervical myelopathy caused by C3–C4 spondylosis in elderly patients: a radiographic analysis of pathogenesis. Spine (Phila Pa 1976) 2000;25(7):796800. https://doi.org/10.1097/00007632-200004010-00006.Google Scholar
Moore, AP, Blumhardt, LD. A prospective survey of the causes of non-traumatic spastic paraparesis and tetraparesis in 585 patients. Spinal Cord 1997;35(6):361–7. https://doi.org/10.1038/sj.sc.3100422.Google Scholar
Muthukumar, N. Ossification of the ligamentum flavum as a result of fluorosis causing myelopathy: report of two cases. Neurosurgery 2005;56(3):E622. https://doi.org/10.1227/01.NEU.0000154062.14313.6D.Google Scholar
Nurick, S. The pathogenesis of the spinal cord disorder associated with cervical spondylosis. Brain 1972;95(1):87100. https://doi.org/10.1093/brain/95.1.87.Google Scholar
Ogino, H, Tada, K, Okada, K, et al. Canal diameter, anteroposterior compression ratio, and spondylotic myelopathy of the cervical spine. Spine (Phila Pa 1976) 1983;8(1):115. https://doi.org/10.1097/00007632-198301000-00001.Google Scholar
Park, E, Velumian, AA, Fehlings, MG. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma 2004;21(6):754–74. https://doi.org/10.1089/0897715041269641.Google Scholar
Rao, R. Neck pain, cervical radiculopathy, and cervical myelopathy. J Bone Jt Surg Am 2002;84(10):1872–81. https://doi.org/10.2106/00004623-200210000-00021.Google Scholar
Salamon, N, Ellingson, BM, Nagarajan, R, Gebara, N, Thomas, A, Holly, LT. Proton magnetic resonance spectroscopy of human cervical spondylosis at 3T. Spinal Cord 2013;51(7):558–63. https://doi.org/10.1038/sc.2013.31.Google Scholar
Santillan, A, Nacarino, V, Greenberg, E, Riina, HA, Gobin, YP, Patsalides, A. Vascular anatomy of the spinal cord. J Neurointerv Surg 2012;4(1):6774.Google Scholar
Sherrington, CS. The Integrative Action of the Nervous System. Yale University Press, 1906.Google Scholar
Sherrington, CS. Flexion–reflex of the limb, crossed extension–reflex, and reflex stepping and standing. J Physiol 1910;40(1–2):28121. https://doi.org/10.1113/jphysiol.1910.sp001362.Google Scholar
Shi, R, Pryor, JD. Pathological changes of isolated spinal cord axons in response to mechanical stretch. Neuroscience 2002;110(4):765–77. https://doi.org/10.1016/s0306-4522(01)00596-6.Google Scholar
Stookey, B. Compression of the spinal cord due to ventral extradural cervical chondromas: diagnosis and surgical treatment. Arch Neurol Psychiatry 1928;20(2):275–91. https://doi.org/10.1001/archneurpsyc.1928.02210140043003.Google Scholar
Stys, PK. Anoxic and ischemic injury of myelinated axons in CNS white matter: from mechanistic concepts to therapeutics. J Cereb Blood Flow Metab 1998;18(1):225. https://doi.org/10.1097/00004647-199801000-00002.Google Scholar
Taylor, AR. Mechanism and treatment of spinal-cord disorders associated with cervical spondylosis. Lancet 1953;261(6763):717–20. https://linkinghub.elsevier.com/retrieve/pii/S0140673653918479Google Scholar
Whelan, PJ. Control of locomotion in the decerebrate cat. Prog Neurobiol 1996;49(5):481515. https://doi.org/10.1016/0301-0082(96)00028-7.Google Scholar
Woodworth, DC, Holly, LT, Mayer, EA, Salamon, N, Ellingson, BM. Alterations in cortical thickness and subcortical volume are associated with neurological symptoms and neck pain in patients with cervical spondylosis. Clin Neurosurg 2019;84(3):588–97. https://doi.org/10.1093/neuros/nyy066.Google Scholar
Zaaimi, B, Edgley, SA, Soteropoulos, DS, Baker, SN. Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain 2012;135(7):2277–89. https://doi.org/10.1093/brain/aws115.Google Scholar

References

Beadon, K, Johnston, JD, Siggers, K, et al. A repeatable ex vivo model of spondylolysis and spondylolisthesis. Spine 2008;33:2387–93. https://doi.org/10.1097/BRS.0b013e318184e775.Google Scholar
Crawford, NR, Cagli, S, Sonntag, VK, Dickman, CA. Biomechanics of grade I degenerative lumbar spondylolisthesis. Part 1: in vitro model. J Neurosurg 2001;94:4550. https://doi.org/10.3171/spi.2001.94.1.0045.Google Scholar
Cunningham, B, Mueller, K, Hawken, J. Biomechanical considerations and mechanisms of injury in spondylolisthesis. Semin Spine Surg 2020;32:100803.Google Scholar
Cunningham, J, Robertson, P. Long-term outcomes following lumbar spine fusion for adult isthmic spondylolisthesis: a comparison of PLIF versus PLF. Spine J 2011;11:S135. https://doi.org/10.1016/j.spinee.2011.08.327.Google Scholar
Denis, F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 1983;8:817–31. https://doi.org/10.1097/00007632-198311000-00003.Google Scholar
Försth, P, Ólafsson, G, Carlsson, T, et al. A randomized, controlled trial of fusion surgery for lumbar spinal stenosis. N Engl J Med 2016;374(15):1413–23. https://doi.org/10.1056/NEJMoa1513721.Google Scholar
Ghogawala, Z, Dziura, J, Butler, WE, et al. Laminectomy plus fusion versus laminectomy alone for lumbar spondylolisthesis. N Engl J Med 2016;374(15):1424–34. https://doi.org/10.1056/NEJMoa1508788.Google Scholar
Hammerberg, KW. New concepts on the pathogenesis and classification of spondylolisthesis. Spine 2005;30:S411. https://doi.org/10.1097/01.brs.0000155576.62159.1c.Google Scholar
Herbiniaux, G. Traite sur Divers Accouchements Laborieux, et sur les Polypes de la Matrice. JL DeBoubers, 1782.Google Scholar
Kajiura, K, Katoh, S, Sairyo, K, Ikata, T, Goel, VK, Murakami, RI. Slippage mechanism of pediatric spondylolysis: biomechanical study using immature calf spines. Spine 2001;26:2208–13. https://doi.org/10.1097/00007632-200110150-00010.Google Scholar
Kim, JS, Kim, DH, Lee, SH. Comparison between instrumented Mini-TLIF and instrumented circumferential fusion in adult low-grade lytic spondylolisthesis: can mini-TLIF with PPF replace circumferential fusion? J Korean Neurosurg Soc 2009;45(2):7480. https://doi.org/10.3340/jkns.2009.45.2.74.Google Scholar
Kim, JS, Lee, KY, Lee, SH, Lee, HY. Which lumbar interbody fusion technique is better in terms of level for the treatment of unstable isthmic spondylolisthesis? J Neurosurg Spine 2010;12(2):171–7. https://doi.org/10.3171/2009.9.SPINE09272.Google Scholar
Konz, RJ, Goel, VK, Grobler, LJ, et al. The pathomechanism of spondylolytic spondylolisthesis in immature primate lumbar spines in vitro and finite element assessments. Spine 2001;26: E3849. https://doi.org/10.1097/00007632-200102150-00003.Google Scholar
Lian, XF, Hou, TS, Xu, JG, et al. Single segment of posterior lumbar interbody fusion for adult isthmic spondylolisthesis: reduction or fusion in situ. Eur Spine J 2014;23(1):172–9. https://doi.org/10.1007/s00586-013-2858-6.Google Scholar
Liang, HF, Liu, SH, Chen, ZX, Fei, QM. Decompression plus fusion versus decompression alone for degenerative lumbar spondylolisthesis: a systematic review and meta-analysis. Eur Spine J 2017;26(12):3084–95. https://doi.org/10.1007/s00586-017-5200-x.Google Scholar
Matz, PG, Meagher, RJ, Lamer, T, et al. Guideline summary review: an evidence-based clinical guideline for the diagnosis and treatment of degenerative lumbar spondylolisthesis. Spine J 2016;16:439–48. https://doi.org/10.1016/j.spinee.2015.11.055.Google Scholar
Melnyk, AD, Kingwell, SP, Zhu, Q, et al. An in vitro model of degenerative lumbar spondylolisthesis. Spine 2013;38:E870E877. https://doi.org/10.1097/BRS.0b013e3182945897.Google Scholar
Newman, PH, Stone, KH. The etiology of spondylolisthesis with a special investigation. J Bone Joint Surg 1963;45:3959. https://doi.org/10.1302/0301-620X.45B1.39.Google Scholar
Noorian, S, Sorensen, K, Cho, W. A systematic review of clinical outcomes in surgical treatment of adult isthmic spondylolisthesis. Spine J 2018;18(8):1441–54. https://doi.org/10.1016/j.spinee.2018.04.022.Google Scholar
Österman, K, Österman, H. Experimental lumbar spondylolisthesis in growing rabbits. Clin Orthop Relat Res 1996;332:274–80.Google Scholar
Patwardhan, A, Ghanayem, A, Simonds, J, et al. An experimental model of adult-onset slip progression in isthmic spondylolistesis. Stud Health Technol Inform 2002;91:322–4.Google Scholar
Sairyo, K, Goel, VK, Grobler, LJ, et al. The pathomechanism of isthmic lumbar spondylolisthesis. A biomechanical study in immature calf spines. Spine 1998;23:1442–6. https://doi.org/10.1097/00007632-199807010-00002.Google Scholar
Sakamaki, T, Sairyo, K, Katoh, S, et al. The pathogenesis of slippage and deformity in the pediatric lumbar spine: a radiographic and histologic study using a new rat in vivo model. Spine 2003;28:645–51. https://doi.org/10.1097/01.BRS.0000051915.35828.17.Google Scholar
Suzuki, K, Mochida, J, Chiba, M, Kikugawa, H. Posterior stabilization of degenerative lumbar spondylolisthesis with a Leeds–Keio artificial ligament. A biomechanical analysis in a porcine vertebral model. Spine 1999;24:2631. https://doi.org/10.1097/00007632-199901010-00007.Google Scholar
Weinstein, JN, Tosteson, TD, Lurie, JD, et al. Surgical vs nonoperative treatment for lumbar disk herniation: the Spine Patient Outcomes Research Trial (SPORT): a randomized trial. JAMA 2006;296:2441–50. https://doi.org/ 10.1001/jama.296.20.2451.Google Scholar
Wiltse, LL, Winter, RB. Terminology and measurement of spondylolisthesis. J Bone Joint Surg Am 1983;65:768–72.Google Scholar
Yang, EZ, Xu, JG, Liu, XK, et al. An RCT study comparing the clinical and radiological outcomes with the use of PLIF or TLIF after instrumented reduction in adult isthmic spondylolisthesis. Eur Spine J 2016;25(5):1587–94. https://doi.org/10.1007/s00586-015-4341-z.Google Scholar
Yong-Hing, K, Kirkaldy-Willis, WH. The pathophysiology of degenerative disease of the lumbar spine. Orthop Clin North Am 1983;14:491504.Google Scholar

References

Arai, I, Mao, GP, Otani, K, Konno, S, Kikuchi, S, Olmarker, K. Indomethacin blocks the nucleus pulposus-induced effects on nerve root function. An experimental study in dogs with assessment of nerve conduction and blood flow following experimental disc herniation. Eur Spine J 2004;13(8):691–4. https://doi.org/10.1007/s005860100268.Google Scholar
Arvidson, B. Distribution of intravenously injected protein tracers in peripheral ganglia of adult mice. Exp Neurol 1979;63(2):388410. https://doi.org/10.1016/0014-4886(79)90134-1.Google Scholar
Bobechko, WP, Hirsch, C. Auto-immune response to nucleus pulposus in the rabbit. J Bone Joint Surg Br 1965;47:574–80.Google Scholar
Brinjikji, W, Luetmer, PH, Comstock, B, et al. Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. Am J Neuroradiol 2015;36(4):811–6. https://doi.org/10.3174/ajnr.A4173.Google Scholar
Brisby, H, Balague, F, Schafer, D, et al. Glycosphingolipid antibodies in serum in patients with sciatica. Spine 2002;27(4):380–6. https://doi.org/10.1097/00007632-200202150-00011.Google Scholar
Byröd, G, Otani, K, Brisby, H, Rydevik, B, Olmarker, K. Methylprednisolone reduces the early vascular permeability increase in spinal nerve roots induced by epidural nucleus pulposus application. J Orthop Res 2000;18(6):983–7. https://doi.org/10.1002/jor.1100180619.Google Scholar
Chen, C, Cavanaugh, JM, Ozaktay, AC, Kallakuri, S, King, AI. Effects of phospholipase A2 on lumbar nerve root structure and function. Spine 1997;22(10):1057–64. https://doi.org/10.1097/00007632-199705150-00002.Google Scholar
Chen, CC, Akopian, AN, Sivilotti, L, Colquhoun, D, Burnstock, G, Wood, JN. A P2X purinoceptor expressed by a subset of sensory neurons. Nature 1995;377(6548):428–31. https://doi.org/10.1038/377428a0.Google Scholar
Cornefjord, M, Olmarker, K, Otani, K, Rydevik, B. Nucleus pulposus-induced nerve root injury: effects of diclofenac and ketoprofen. Eur Spine J 2002;11(1):5761. https://doi.org/10.1007/s005860100299.Google Scholar
Cornefjord, M, Sato, K, Olmarker, K, Rydevik, B, Nordborg, C. A model for chronic nerve root compression studies. Presentation of a porcine model for controlled, slow-onset compression with analyses of anatomic aspects, compression onset rate, and morphologic and neurophysiologic effects. Spine 1997;22(9):946–57. https://doi.org/10.1097/00007632-199705010-00003.Google Scholar
Coull, JA, Beggs, S, Boudreau, D, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005;438(7070):1017–21. https://doi.org/10.1038/nature04223.Google Scholar
Cuéllar, JM, Borges, PM, Cuéllar, VG, Yoo, A, Scuderi, GJ, Yeomans, DC. Cytokine expression in the epidural space: a model of noncompressive disc herniation-induced inflammation. Spine 2013;38(1):1723. https://doi.org/10.1097/BRS.0b013e3182604baa.Google Scholar
Driscoll, T, Jacklyn, G, Orchard, J, et al. The global burden of occupationally related low back pain: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis 2014;73(6):975–81. https://doi.org/10.1136/annrheumdis-2013-204631.Google Scholar
Fanous, AA, Tumialán, LM, Wang, MY. Kambin’s triangle: definition and new classification schema. J Neurosurg Spine [published online ahead of print Nov 29, 2019]. https://doi.org/10.3171/2019.8.SPINE181475.Google Scholar
Foerster, O. The dermatomes in man. Brain 1933;56:139.Google Scholar
Fukuoka, T, Kondo, E, Dai, Y, Hashimoto, N, Noguchi, K. Brain-derived neurotrophic factor increases in the uninjured dorsal root ganglion neurons in selective spinal nerve ligation model. J Neurosci 2001;21(13):4891–900. https://doi.org/10.1523/JNEUROSCI.21-13-04891.Google Scholar
Gelfan, S, Tarlov, IM. Physiology of spinal cord, nerve root and peripheral nerve compression. Am J Physiol 1956;185:217–29. https://doi.org/10.1152/ajplegacy.1956.185.1.217.Google Scholar
Haro, H, Crawford, HC, Fingleton, B, et al. Matrix metalloproteinase-3-dependent generation of a macrophage chemoattractant in a model of herniated disc resorption. J Clin Invest 2000;105(2):133–41. https://doi.org/10.1172/JCI7090.Google Scholar
Harrington, JF, Messier, AA, Bereiter, D, Barnes, B, Epstein, MH. Herniated lumbar disc material as a source of free glutamate available to affect pain signals through the dorsal root ganglion. Spine 2000;25(8):929–36. https://doi.org/10.1097/00007632-200004150-00006.Google Scholar
Harrison, C, Epton, S, Bojanic, S, Green, AL, Fitzgerald, JJ. The efficacy and safety of dorsal root ganglion stimulation as a treatment for neuropathic pain: a literature review. Neuromodulation 2018;21(3):225–33. https://doi.org/10.1111/ner.12685.Google Scholar
Hashizume, H, Deleo, JA, Colburn, RW, Weinstein, JN. Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine 2000;25(10):1206–17. https://doi.org/10.1097/00007632-200005150-00003.Google Scholar
Hou, SX, Tang, JG, Chen, HS, Chen, J. Chronic inflammation and compression of the dorsal root contribute to sciatica induced by the intervertebral disc herniation in rats. Pain 2003;105(1–2):255–64. https://doi.org/10.1016/s0304-3959(03)00222-7.Google Scholar
Howe, JF, Loeser, JD, Calvin, WH. Mechanosensitivity of dorsal root ganglia and chronically injured axons: a physiological basis for the radicular pain of nerve root compression. Pain 1977;3(1):2541. https://doi.org/ 10.1016/0304-3959(77)90033-1.Google Scholar
Hu, SJ, Xing, JL. An experimental model for chronic compression of dorsal root ganglion produced by intervertebral foramen stenosis in the rat. Pain 1998;77(1):1523. https://doi.org/10.1016/S0304-3959(98)00067-0.Google Scholar
International Association for the Study of Pain (IASP). Pain terminology. www.iasp-pain.org/Education/Content.aspx?ItemNumber=1698#Centralsensitization.Google Scholar
Jancalek, R, Dubovy, P. An experimental animal model of spinal root compression syndrome: an analysis of morphological changes of myelinated axons during compression radiculopathy and after decompression. Exp Brain Res 2007;179(1):111–9. https://doi.org/10.1007/s00221-006-0771-5.Google Scholar
Jin, X, Gereau, RW. Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha. J Neurosci 2006;26(1):246–55. https://doi.org/10.1523/JNEUROSCI.3858-05.2006.Google Scholar
Kang, JD, Georgescu, HI, McIntyre-Larkin, L, Stefanovic-Racic, M, Donaldson, WF, Evans, CH. Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine 1996;21(3):271–7. https://doi.org/10.1097/00007632-199602010-00003.Google Scholar
Kang, JD, Georgescu, HI, McIntyre-Larkin, L, Stefanovic-Racic, M, Evans, CH. Herniated cervical intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine 1995;20(22):2373–8. https://doi.org/10.1097/00007632-199511001-00001.Google Scholar
Kawakami, M, Hashizume, H, Nishi, H, Matsumoto, T, Tamaki, T, Kuribayashi, K. Comparison of neuropathic pain induced by the application of normal and mechanically compressed nucleus pulposus to lumbar nerve roots in the rat. J Orthop Res 2003;21(3):535–9. https://doi.org/10.1016/S0736-0266(02)00192-4.Google Scholar
Kawakami, M, Matsumoto, T, Hashizume, H, Kuribayashi, K, Tamaki, T. Epidural injection of cyclooxygenase-2 inhibitor attenuates pain-related behavior following application of nucleus pulposus to the nerve root in the rat. J Orthop Res 2002;20(2):376–81. https://doi.org/10.1016/S0736-0266(01)00114-0.Google Scholar
Kayama, S, Konno, S, Olmarker, K, Yabuki, S, Kikuchi, S. Incision of the anulus fibrosus induces nerve root morphologic, vascular, and functional changes. An experimental study. Spine 1996;21(22):2539–43. https://doi.org/10.1097/00007632-199611150-00002.Google Scholar
Kayama, S, Olmarker, K, Larsson, K, Sjögren-jansson, E, Lindahl, A, Rydevik, B. Cultured, autologous nucleus pulposus cells induce functional changes in spinal nerve roots. Spine 1998;23(20):2155–8. https://doi.org/10.1097/00007632-199810150-00002.Google Scholar
Keegan, JJ, Garrett, FD. The segmental distribution of the cutaneous nerves in the limbs of man. Anat Rec 1948;102(4):409–37. https://doi.org/10.1002/ar.1091020403.Google Scholar
Kobayashi, S, Shizu, N, Suzuki, Y, Asai, T, Yoshizawa, H. Changes in nerve root motion and intraradicular blood flow during an intraoperative straight-leg-raising test. Spine 2003;28(13):1427–34. https://doi.org/10.1097/01.BRS.0000067087.94398.35Google Scholar
Kobayashi, S, Takeno, K, Yayama, T, et al. Pathomechanisms of sciatica in lumbar disc herniation: effect of periradicular adhesive tissue on electrophysiological values by an intraoperative straight leg raising test. Spine 2010;35(22):2004–14. https://doi.org/10.1097/BRS.0b013e3181d4164d.Google Scholar
Komori, H, Okawa, A, Haro, H, Muneta, T, Yamamoto, H, Shinomiya, K. Contrast-enhanced magnetic resonance imaging in conservative management of lumbar disc herniation. Spine 1998;23(1):6773. https://doi.org/10.1097/00007632-199801010-00015.Google Scholar
Komori, H, Shinomiya, K, Nakai, O, Yamaura, I, Takeda, S, Furuya, K. The natural history of herniated nucleus pulposus with radiculopathy. Spine 1996;21(2):225–9. https://doi.org/10.1097/00007632-199601150-00013.Google Scholar
Krames, ES. The role of the dorsal root ganglion in the development of neuropathic pain. Pain Med 2014;15(10):1669–85. https://doi.org/10.1111/pme.12413.Google Scholar
Kuslich, SD, Ulstrom, CL, Michael, CJ. The tissue origin of low back pain and sciatica: a report of pain response to tissue stimulation during operations on the lumbar spine using local anesthesia. Orthop Clin North Am 1991;22(2):181–7.Google Scholar
Latremoliere, A, Woolf, CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 2009;10(9):895926. https://doi.org/10.1016/j.jpain.2009.06.012.Google Scholar
Lee, HM, Weinstein, JN, Meller, ST, Hayashi, N, Spratt, KF, Gebhart, GF. The role of steroids and their effects on phospholipase A2. An animal model of radiculopathy. Spine 1998;23(11):1191–6. https://doi.org/10.1097/00007632-199806010-00001.Google Scholar
Lejeune, JP, Hladky, JP, Cotten, A, Vinchon, M, Christiaens, JL. Foraminal lumbar disc herniation. Experience with 83 patients.Spine 1994;19(17):1905–08. https://doi.org/10.1097/00007632-199409000-00007.Google Scholar
Lindahl, O, Rexed, B. Histologic changes in spinal nerve roots of operated cases of sciatica. Acta Orthop Scand 1951;20(3):215–25. https://doi.orgGoogle Scholar
Mahn, F, Hüllemann, P, Gockel, U, et al. Sensory symptom profiles and co-morbidities in painful radiculopathy. PLoS One 2011;6(5):e18018. https://doi.org/10.1371/journal.pone.0018018.Google Scholar
Marshall, LL, Trethewie, ER. Chemical irritation of nerve-root in disc prolapse. Lancet 1973;2(7824):320. https://doi.org/10.1016/s0140-6736(73)90818-0.Google Scholar
Marshall, LL, Trethewie, ER, Curtain, CC. Chemical radiculitis. A clinical, physiological and immunological study. Clin Orthop Relat Res 1977;129:61–7.Google Scholar
McAnany, SJ, Rhee, JM, Baird, EO, et al. Observed patterns of cervical radiculopathy: how often do they differ from a standard, “Netter diagram” distribution? Spine J 2019;19(7):1137–42. https://doi.org/10.1016/j.spinee.2018.08.002Google Scholar
Mixter, WJ, Barr, JS. Rupture of the intervertebral disc with involvement of the spinal canal. N Engl J Med 1934;211:210–4. https://doi.org/10.1056/NEJM193408022110506.Google Scholar
Mulleman, D, Mammou, S, Griffoul, I, Watier, H, Goupille, P. Pathophysiology of disk-related sciatica. I – Evidence supporting a chemical component. Joint Bone Spine 2006;73(2):151–8. https://doi.org/10.1016/j.jbspin.2005.03.003.Google Scholar
Naito, M, Owen, JH, Bridwell, KH, Oakley, DM. Blood flow direction in the lumbar nerve root. Spine 1990;15(9):966–8. https://doi.org/10.1097/00007632-199009000-00023.Google Scholar
Nygaard, OP, Mellgren, SI, Osterud, B. The inflammatory properties of contained and noncontained lumbar disc herniation. Spine 1997;22(21):2484–8. https://doi.org/10.1097/00007632-199711010-00004.Google Scholar
Obata, K, Tsujino, H, Yamanaka, H, et al. Expression of neurotrophic factors in the dorsal root ganglion in a rat model of lumbar disc herniation. Pain 2002;99(1–2):121–32. https://doi.org/10.1016/s0304-3959(02)00068-4.Google Scholar
Ohtori, S, Miyagi, M, Eguchi, Y, et al. Epidural administration of spinal nerves with the tumor necrosis factor-alpha inhibitor, etanercept, compared with dexamethasone for treatment of sciatica in patients with lumbar spinal stenosis: a prospective randomized study. Spine 2012;37(6):439–44. https://doi.org/10.1097/BRS.0b013e318238af83.Google Scholar
Ohtori, S, Suzuki, M, Koshi, T, et al. Proinflammatory cytokines in the cerebrospinal fluid of patients with lumbar radiculopathy. Eur Spine J 2011;20(6):942–6. https://doi.org/10.1007/s00586-010-1595-3.Google Scholar
Olmarker, K. Spinal nerve root compression. Nutrition and function of the porcine cauda equina compressed in vivo. Acta Orthop Scand Suppl 1991;242:127.Google Scholar
Olmarker, K, Brisby, H, Yabuki, S, Nordborg, C, Rydevik, B. The effects of normal, frozen, and hyaluronidase-digested nucleus pulposus on nerve root structure and function. Spine. 1997;22(5):471–5. https://doi.org/10.1097/00007632-199703010-00001.Google Scholar
Olmarker, K, Byröd, G, Cornefjord, M, Nordborg, C, Rydevik, B. Effects of methylprednisolone on nucleus pulposus-induced nerve root injury. Spine 1994;19(16):1803–8. https://doi.org/10.1097/00007632-199408150-00003.Google Scholar
Olmarker, K, Holm, S, Rydevik, B. Importance of compression onset rate for the degree of impairment of impulse propagation in experimental compression injury of the porcine cauda equina. Spine 1990a;15(5):416–9. https://doi.org/10.1097/00007632-199005000-00013.Google Scholar
Olmarker, K, Larsson, K. Tumor necrosis factor alpha and nucleus-pulposus-induced nerve root injury. Spine 1998;23(23):2538–44. https://doi.org/10.1097/00007632-199812010-00008.Google Scholar
Olmarker, K, Rydevik, B, Hansson, T, Holm, S. Compression-induced changes of the nutritional supply to the porcine cauda equina. J Spinal Disord 1990b;3(1):25–9.Google Scholar
Olmarker, K, Rydevik, B, Holm, S. Edema formation in spinal nerve roots induced by experimental, graded compression. An experimental study on the pig cauda equina with special reference to differences in effects between rapid and slow onset of compression. Spine 1989a;14(6):569–73.Google Scholar
Olmarker, K, Rydevik, B, Holm, S, Bagge, U. Effects of experimental graded compression on blood flow in spinal nerve roots. A vital microscopic study on the porcine cauda equina. J Orthop Res 1989b;7(6):817–23. https://doi.org/10.1002/jor.1100070607.Google Scholar
Olmarker, K, Rydevik, B, Nordborg, C. Autologous nucleus pulposus induces neurophysiologic and histologic changes in porcine cauda equina nerve roots. Spine 1993;18(11):1425–32.Google Scholar
Olmarker, K, Størkson, R, Berge, OG. Pathogenesis of sciatic pain: a study of spontaneous behavior in rats exposed to experimental disc herniation. Spine 2002;27(12):1312–7. https://doi.org/10.1097/00007632-200206150-00013.Google Scholar
Onda, A, Murata, Y, Rydevik, B, Larsson, K, Kikuchi, S, Olmarker, K. Nerve growth factor content in dorsal root ganglion as related to changes in pain behavior in a rat model of experimental lumbar disc herniation. Spine 2005;30(2):188–93. https://doi.org/10.1097/01.brs.0000150830.12518.26.Google Scholar
Osgood, DP, Kenney, EV, Harrington, WF, Harrington, JF. Excrescence of neurotransmitter glutamate from disc material has nociceptive qualities: evidence from a rat model. Spine J 2010;10(11):9991006. https://doi.org/10.1016/j.spinee.2010.07.390.Google Scholar
Peng, B, Wu, W, Li, Z, Guo, J, Wang, X. Chemical radiculitis. Pain 2007;127(1–2):11–6. https://doi.org/10.1016/j.pain.2006.06.034.Google Scholar
Ramer, MS, Kawaja, MD, Henderson, JT, Roder, JC, Bisby, MA. Glial overexpression of NGF enhances neuropathic pain and adrenergic sprouting into DRG following chronic sciatic constriction in mice. Neurosci Lett 1998;251(1):53–6. https://doi.org/10.1016/s0304-3940(98)00493-5.Google Scholar
Rose, MA, Kam, PC. Gabapentin: pharmacology and its use in pain management. Anaesthesia 2002;57(5):451–62. https://doi.org/10.1046/j.0003-2409.2001.02399.x.Google Scholar
Rydevik, B, Brown, MD, Lundborg, G. Pathoanatomy and pathophysiology of nerve root compression. Spine 1984;9(1):715. https://doi.org/10.1097/00007632-198401000-00004.Google Scholar
Saal, JS, Franson, RC, Dobrow, R, Saal, JA, White, AH, Goldthwaite, N. High levels of inflammatory phospholipase A2 activity in lumbar disc herniations. Spine 1990;15(7):674–8. https://doi.org/10.1097/00007632-199007000-00011.Google Scholar
Sato, KT, Satoh, K, Sekiguchi, M, et al. Local application of nucleus pulposus induces expression of P2X3 in rat dorsal root ganglion cells. Fukushima J Med Sci 2012;58(1):1721. https://doi.org/10.5387/fms.58.17.Google Scholar
Sawin, PD, Traynelis, VC, Rich, G, et al. Chymopapain-induced reduction of proinflammatory phospholipase A2 activity and amelioration of neuropathic behavioral changes in an in vivo model of acute sciatica. J Neurosurg 1997;86(6):9981006. https://doi.org/10.3171/jns.1997.86.6.0998.Google Scholar
Scholz, J, Finnerup, NB, Attal, N, et al. The IASP classification of chronic pain for ICD-11: chronic neuropathic pain. Pain 2019;160(1):5359. https://doi.org/10.1097/j.pain.0000000000001365.Google Scholar
Scuderi, GJ, Brusovanik, GV, Brusovamik v, G, et al. Cytokine assay of the epidural space lavage in patients with lumbar intervertebral disk herniation and radiculopathy. J Spinal Disord Tech 2006;19(4):266–9. https://doi.org/10.1097/01.bsd.0000204501.22343.99.Google Scholar
Semmes, RE, Murphey, MF. The syndrome of unilateral rupture of the sixth cervical intervertebral disk with compression of the seventh cervical nerve root: a report of four cases with symptoms simulating coronary disease. JAMA 1943;121:1209–14. https://doi.org/10.1001/jama.1943.02840150023006.Google Scholar
Shubayev, VI, Myers, RR. Anterograde TNF alpha transport from rat dorsal root ganglion to spinal cord and injured sciatic nerve. Neurosci Lett 2002;320(1–2):99101. https://doi.org/10.1016/s0304-3940(02)00010-1.Google Scholar
Smith, SA, Massie, JB, Chesnut, R, Garfin, SR. Straight leg raising. Anatomical effects on the spinal nerve root without and with fusion. Spine 1993;18(8):992–9.Google Scholar
Smyth, MJ, Wright, V. Sciatica and the intervertebral disc; an experimental study. J Bone Joint Surg Am 1958;40-A(6):1401–18.Google Scholar
Stafford, MA, Peng, P, Hill, DA. Sciatica: a review of history, epidemiology, pathogenesis, and the role of epidural steroid injection in management. Br J Anaesth 2007;99(4):461–73. https://doi.org/10.1093/bja/aem238.Google Scholar
Takahashi, H, Suguro, T, Okazima, Y, Motegi, M, Okada, Y, Kakiuchi, T. Inflammatory cytokines in the herniated disc of the lumbar spine. Spine 1996;21(2):218–24. https://doi.org/10.1097/00007632-199601150-00011.Google Scholar
Takahashi, K, Shima, I, Porter, RW. Nerve root pressure in lumbar disc herniation. Spine 1999;24(19):2003–06. https://doi.org/10.1097/00007632-199910010-00007.Google Scholar
Takahashi, N, Yabuki, S, Aoki, Y, Kikuchi, S. Pathomechanisms of nerve root injury caused by disc herniation: an experimental study of mechanical compression and chemical irritation. Spine 2003;28(5):435–41. https://doi.org/10.1097/01.BRS.0000048645.33118.02.Google Scholar
Takenaka, S, Aono, H. Prediction of postoperative clinical recovery of drop foot attributable to lumbar degenerative diseases, via a Bayesian network. Clin Orthop Relat Res 2017;475(3):872–80. https://doi.org/10.1007/s11999-016-5180.Google Scholar
Tanaka, Y, Kokubun, S, Sato, T, Ozawa, H. Cervical roots as origin of pain in the neck or scapular regions. Spine 2006;31(17):E568–73. https://doi.org/10.1097/01.brs.0000229261.02816.48.Google Scholar
Tinazzi, M, Fiaschi, A, Rosso, T, Faccioli, F, Grosslercher, J, Aglioti, SM. Neuroplastic changes related to pain occur at multiple levels of the human somatosensory system: a somatosensory-evoked potentials study in patients with cervical radicular pain. J Neurosci 2000;20(24):9277–83. https://doi.org/10.1523/JNEUROSCI.20-24-09277.2000.Google Scholar
Tumialán, LM, Madhavan, K, Godzik, J, Wang, MY. The history of and controversy over Kambin’s triangle: a historical analysis of the lumbar transforaminal corridor for endoscopic and surgical approaches. World Neurosurg 2019;123:402–08. https://doi.org/10.1016/j.wneu.2018.10.221.Google Scholar
Van Zundert, J, Patijn, J, Kessels, A, Lamé, I, Van Suijlekom, H, Van Kleef, M. Pulsed radiofrequency adjacent to the cervical dorsal root ganglion in chronic cervical radicular pain: a double blind sham controlled randomized clinical trial. Pain 2007;127(1–2):173–82. https://doi.org/10.1016/j.pain.2006.09.002.Google Scholar
Wadhwani, S, Loughenbury, P, Soames, R. The anterior dural (Hofmann) ligaments. Spine 2004;29(6):623–7. https://doi.org/10.1097/01.brs.0000115129.59484.24.Google Scholar
Wall, PD, Devor, M. Sensory afferent impulses originate from dorsal root ganglia as well as from the periphery in normal and nerve injured rats. Pain 1983;17(4):321–39. https://doi.org/10.1016/0304-3959(83)90164-1.Google Scholar
Wang, MY, Levi, AD. Ganglionectomy of C-2 for the treatment of medically refractory occipital neuralgia. Neurosurg Focus 2002;12(1):E14. https://doi.org/10.3171/foc.2002.12.1.15.Google Scholar
Weinstein, JN, Tosteson, TD, Lurie, JD, et al. Surgical vs nonoperative treatment for lumbar disk herniation: the Spine Patient Outcomes Research Trial (SPORT): a randomized trial. JAMA 2006;296(20):2441–50. https://doi.org/10.1001/jama.296.20.2441.Google Scholar
Winkelstein, BA, Rutkowski, MD, Weinstein, JN, Deleo, JA. Quantification of neural tissue injury in a rat radiculopathy model: comparison of local deformation, behavioral outcomes, and spinal cytokine mRNA for two surgeons. J Neurosci Methds 2001;111(1):4957. https://doi.org/10.1016/s0165-0270(01)00445-9.Google Scholar
Winkelstein, BA, Weinstein, JN, Deleo, JA. The role of mechanical deformation in lumbar radiculopathy: an in vivo model. Spine 2002;27(1):2733. https://doi.org/10.1097/00007632-200201010-00009.Google Scholar
Woolf, CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain 2011;152(3 Suppl):S215. https://doi.org/10.1016/j.pain.2010.09.030.Google Scholar
Yeung, AT, Tsou, PM. Posterolateral endoscopic excision for lumbar disc herniation: Surgical technique, outcome, and complications in 307 consecutive cases. Spine 2002;27(7):722–31. https://doi.org/10.1097/00007632-200204010-00009.Google Scholar

References

Asthagiri, AR, Parry, DM, Butman, JA, et al. Neurofibromatosis type 2. Lancet 2009;373(9679):1974–86. https://doi.org/10.1016/S0140-6736(09)60259-2.Google Scholar
Barton, VN, Donson, AM, Kleinschmidt-DeMasters, BK, Birks, DK, Handler, MH, Foreman, NK. Unique molecular characteristics of pediatric myxopapillary ependymoma. Brain Pathol 2010;20(3):560–70. https://doi.org/10.1111/j.1750-3639.2009.00333.xGoogle Scholar
Bettegowda, C, Agrawal, N, Jiao, Y, et al. Exomic sequencing of four rare central nervous system tumor types. Oncotarget 2013;4(4):572–83. https://doi.org/10.18632/oncotarget.964.Google Scholar
Biswas, A, Puri, T, Goyal, S, et al. Spinal intradural primary germ cell tumour–review of literature and case report. Acta Neurochir (Wien) 2009;151(3):277–84. https://doi.org/10.1007/s00701-009-0200-1.Google Scholar
Bompas, E, Le Cesne, A, Tresch-Bruneel, E, et al. Sorafenib in patients with locally advanced and metastatic chordomas: a phase II trial of the French Sarcoma Group (GSF/GETO). Ann Oncol 2015;26(10):2168–173. https://doi.org/10.1093/annonc/mdv300.Google Scholar
Bourgeois, JM, Knezevich, SR, Mathers, JA, Sorensen, PH. Molecular detection of the ETV6–NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle cell tumors. Am J Surg Pathol 2000;24(7):937–46. https://doi.org/10.1097/00000478-200007000-00005.Google Scholar
Brat, DJ, Giannini, C, Scheithauer, BW, Burger, PC. Primary melanocytic neoplasms of the central nervous systems. Am J Surg Pathol 1999;23(7):745–54. https://doi.org/10.1097/00000478-199907000-00001.Google Scholar
Buerki, RA, Horbinski, CM, Kruser, T, Horowitz, PM, James, CD, Lukas, RV. An overview of meningiomas. Future Oncol 2018;14(21):2161–77. https://doi.org/10.2217/fon-2018-0006.Google Scholar
Chamberlain, MC, Tredway, TL. Adult primary intradural spinal cord tumors: a review. Curr Neurol Neurosci Rep 2011;11(3):320–8. https://doi.org/10.1007/s11910-011-0190-2.Google Scholar
DeClerck, YA. Interactions between tumour cells and stromal cells and proteolytic modification of the extracellular matrix by metalloproteinases in cancer. Eur J Cancer 2000;36(10):1258–68. https://doi.org/10.1007/s11910-011-0190-2.Google Scholar
Desai, SS, Jambhekar, NA. Pathology of Ewing’s sarcoma/PNET: current opinion and emerging concepts. Indian J Orthop 2010;44(4):363–8. https://doi.org/10.4103/0019-5413.69304.Google Scholar
DeWitt, JC, Mock, A, Louis, DN. The 2016 WHO classification of central nervous system tumors: what neurologists need to know. Curr Opin Neurol 2017;30(6):643–9. https://doi.org/10.1097/WCO.0000000000000490.Google Scholar
Eeles, RA, O’Brien, P, Horwich, A, Brada, M. Non-Hodgkin’s lymphoma presenting with extradural spinal cord compression: functional outcome and survival. Br J Cancer 1991;63(1):126–9. https://doi.org/10.1038/bjc.1991.25.Google Scholar
Farrokh, D, Fransen, P, Faverly, D. MR findings of a primary intramedullary malignant melanoma: case report and literature review. Am J Neuroradiol 2001;22(10):1864–6.Google Scholar
Foda, AAM, Alam, MS, Ikram, N, Rafi, S, Elnaghi, K. Spinal versus intracranial meningioma: expression of E-cadherin and Fascin with relation to clinicopathological features. Cancer Biomark 2019;25(4):333–9. https://doi.org/10.3233/CBM-190164.Google Scholar
Fomchenko, EI, Erson-Omay, EZ, Kundishora, AJ, et al. Genomic alterations underlying spinal metastases in pediatric H3K27M-mutant pineal parenchymal tumor of intermediate differentiation: case report. J Neurosurg Pediatr 2019. Online ahead of print. https://doi.org/10.3171/2019.8.PEDS18664.Google Scholar
Forschner, A, Forchhammer, S, Bonzheim, I. NTRK gene fusions in melanoma: detection, prevalence and potential therapeutic implications. J Dtsch Dermatol Ges 2020;18(12):1387–92. https://doi.org/10.1111/ddg.14160.Google Scholar
Garnier, L, Ducray, F, Verlut, C, et al. Prolonged response induced by single agent vemurafenib in a BRAF V600E spinal ganglioglioma: a case report and review of the literature. Front Oncol 2019;9:177. https://doi.org/10.3389/fonc.2019.00177.Google Scholar
Gdowski, AS, Ranjan, A, Vishwanatha, JK. Current concepts in bone metastasis, contemporary therapeutic strategies and ongoing clinical trials. J Exp Clin Cancer Res 2017;36(1):108. https://doi.org/10.1186/s13046-017-0578-1.Google Scholar
Glasker, S. Central nervous system manifestations in VHL: genetics, pathology and clinical phenotypic features. Fam Cancer 2005;4(1):3742. https://doi.org/10.1007/s10689-004-5347-6.Google Scholar
Gottfried, ON, Viskochil, DH, Couldwell, WT. Neurofibromatosis Type 1 and tumorigenesis: molecular mechanisms and therapeutic implications. Neurosurg Focus 2010;28(1):E8. https://doi.org/10.3171/2009.11.FOCUS09221.Google Scholar
Grimm, S, Chamberlain, MC. Adult primary spinal cord tumors. Expert Rev Neurother 2009;9(10):1487–95. https://doi.org/10.1586/ern.09.101.Google Scholar
Hamburger, C, Buttner, A, Weis, S. Ganglioglioma of the spinal cord: report of two rare cases and review of the literature. Neurosurgery 1997;41(6):1410–15; discussion 1415–6. https://doi.org/10.1097/00006123-199712000-00038.Google Scholar
Hashi, S, Goodwin, CR, Ahmed, AK, Sciubba, DM. Management of extranodal lymphoma of the spine: a study of 30 patients. CNS Oncol 2018;7(2):CNS11. https://doi.org/10.2217/cns-2017-0033.Google Scholar
Hasselblatt, M. Ependymal tumors. Recent Results Cancer Res 2009;171:5166. https://doi.org/10.1007/978-3-540-31206-2_3.Google Scholar
Healey, JH, Lane, JM. Chordoma: a critical review of diagnosis and treatment. Orthop Clin North Am 1989;20(3):417–26.Google Scholar
Horbinski, C. To BRAF or not to BRAF: is that even a question anymore? J Neuropathol Exp Neurol 2013;72(1):27. https://doi.org/10.1097/NEN.0b013e318279f3db.Google Scholar
Horbinski, C, Hamilton, RL, Nikiforov, Y, Pollack, IF. Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas. Acta Neuropathol 2010;119(5):641–9. https://doi.org/10.1007/s00401-009-0634-9.Google Scholar
Ilaslan, H, Sundaram, M, Unni, KK, Dekutoski, MB. Primary Ewing’s sarcoma of the vertebral column. Skeletal Radiol 2004;33(9):506–13. https://doi.org/10.1007/s00256-004-0810-xGoogle Scholar
Jett, K, Friedman, JM. Clinical and genetic aspects of neurofibromatosis 1. Genet Med. 2010;12(1):111. https://doi.org/10.1097/GIM.0b013e3181bf15e3.Google Scholar
Johnson, RA, Wright, KD, Poppleton, H, et al. Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 2010;466(7306):632–6. https://doi.org/10.1038/nature09173.Google Scholar
Jones, V, Wykes, V, Cohen, N, Thompson, D, Jacques, TS. The pathology of lumbosacral lipomas: macroscopic and microscopic disparity have implications for embryogenesis and mode of clinical deterioration. Histopathology 2018;72(7):1136–44. https://doi.org/10.1111/his.13469.Google Scholar
Karsy, M, Guan, J, Sivakumar, W, Neil, JA, Schmidt, MH, Mahan, MA. The genetic basis of intradural spinal tumors and its impact on clinical treatment. Neurosurg Focus 2015;39(2):E3. https://doi.org/10.3171/2015.5.FOCUS15143.Google Scholar
Katonis, P, Alpantaki, K, Michail, K, et al. Spinal chondrosarcoma: a review. Sarcoma 2011;2011:378957. https://doi.org/10.1155/2011/378957.Google Scholar
Katonis, P, Datsis, G, Karantanas, A, et al. Spinal osteosarcoma. Clin Med Insights Oncol 2013;7:199208. https://doi.org/10.4137/CMO.S10099.Google Scholar
Kitamura, H, Kubota, Y, Yamaguchi, K, et al. Successful autologous hematopoietic stem cell transplantation followed by bortezomib maintenance in a patient with relapsed CD138-low multiple solitary plasmacytomas harboring a 17p deletion. Intern Med 2018;57(6):855–60. https://doi.org/10.2169/internalmedicine.9446-17.Google Scholar
Korshunov, A, Neben, K, Wrobel, G, et al. Gene expression patterns in ependymomas correlate with tumor location, grade, and patient age. Am J Pathol 2003;163(5):1721–7. https://doi.org/10.1016/S0002-9440(10)63530-4.Google Scholar
Kubista, B, Klinglmueller, F, Bilban, M, et al. Microarray analysis identifies distinct gene expression profiles associated with histological subtype in human osteosarcoma. Int Orthop 2011;35(3):401–11. https://doi.org/10.1007/s00264-010-0996-6.Google Scholar
Liang, Y, Yi, L, Liu, P, et al. CX3CL1 involves in breast cancer metastasizing to the spine via the Src/FAK signaling pathway. J Cancer 2018;9(19):3603–12. https://doi.org/10.7150/jca.26497.Google Scholar
Liu, W, Wei, H, Gao, Z, et al. COL5A1 may contribute the metastasis of lung adenocarcinoma. Gene 2018;665:5766. https://doi.org/10.1016/j.gene.2018.04.066.Google Scholar
Liu, W, Xie, X, Wu, J. Mechanism of lung adenocarcinoma spine metastasis induced by CXCL17. Cell Oncol (Dordr) 2020;43(2):311–20. https://doi.org/10.1007/s13402-019-00491-7.Google Scholar
Louis, DN, Ohgaki, H, Wiestler, OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007;114(2):97109. https://doi.org/10.1007/s00401-007-0243-4.Google Scholar
Loya, JJ, Jung, H, Temmins, C, Cho, N, Singh, H. Primary spinal germ cell tumors: a case analysis and review of treatment paradigms. Case Rep Med 2013;2013:798358. https://doi.org/10.1155/2013/798358.Google Scholar
Ma, J, Ma, S, Yang, J, Jia, G, Jia, W. Primary spinal primitive neuroectodermal tumor: a single center series with literature review. J Spinal Cord Med 2020;43(6):895903. https://doi.org/10.1080/10790268.2018.1547862.Google Scholar
Maccauro, G, Spinelli, MS, Mauro, S, Perisano, C, Graci, C, Rosa, MA. Physiopathology of spine metastasis. Int J Surg Oncol 2011;2011:107969. https://doi.org/10.1155/2011/107969.Google Scholar
Magnaghi, P, Salom, B, Cozzi, L, et al. Afatinib is a new therapeutic approach in chordoma with a unique ability to target EGFR and brachyury. Mol Cancer Ther 2018;17(3):603–13. https://doi.org/10.1158/1535-7163.MCT-17-0324.Google Scholar
Mehta, VA, Kretzer, RM, Orr, B, Jallo, GI. Primary intramedullary spinal germ cell tumors. World Neurosurg 2011;76(5):478 e471–6. https://doi.org/10.1016/j.wneu.2011.01.024.Google Scholar
Nagaishi, M, Nobusawa, S, Yokoo, H, et al. Genetic mutations in high grade gliomas of the adult spinal cord. Brain Tumor Pathol 2016;33(4):267–9. https://doi.org/10.1007/s10014-016-0263-7.Google Scholar
Nagasawa, DT, Trang, A, Choy, W, et al. Genetic expression profiles of adult and pediatric ependymomas: molecular pathways, prognostic indicators, and therapeutic targets. Clin Neurol Neurosurg 2013;115(4):388–99. https://doi.org/10.1016/j.clineuro.2012.12.006.Google Scholar
Ostrom, QT, Gittleman, H, Liao, P, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 2014;16(Suppl 4):iv163. https://doi.org/10.1093/neuonc/nou223.Google Scholar
Pang, D, Zovickian, J, Oviedo, A. Long-term outcome of total and near-total resection of spinal cord lipomas and radical reconstruction of the neural placode, part II: outcome analysis and preoperative profiling. Neurosurgery 2010;66(2):253–72; discussion 272–3. https://doi.org/10.1227/01.NEU.0000363598.81101.7B.Google Scholar
Pasalic, I, Brgic, K, Nemir, J, Kolenc, D, Njiric, N, Mrak, G. Intramedullary spinal cord lipoma mimicking a late subacute hematoma. Asian J Neurosurg 2018;13(4):1282–4. https://doi.org/10.4103/ajns.AJNS_112_18.Google Scholar
Saeedinia, S, Nouri, M, Alimohammadi, M, Moradi, H, Amirjamshidi, A. Primary spinal extradural Ewing’s sarcoma (primitive neuroectodermal tumor): report of a case and meta-analysis of the reported cases in the literature. Surg Neurol Int 2012;3:55. https://doi.org/10.4103/2152-7806.96154.Google Scholar
Samak, EM, Abdel Latif, AM, Ghany, WA, Hewedi, IH, Amer, A, Moharram, H. Spinal intramedullary hamartoma with acute presentation in a 13-month old infant: case report. J Neurosurg Pediatr 2016;18(2):177–82. https://doi.org/10.3171/2016.2.PEDS15561.Google Scholar
Sayagues, JM, Tabernero, MD, Maillo, A, et al. Microarray-based analysis of spinal versus intracranial meningiomas: different clinical, biological, and genetic characteristics associated with distinct patterns of gene expression. J Neuropathol Exp Neurol 2006;65(5):445–54. https://doi.org/10.1097/01.jnen.0000229234.13372.d8.Google Scholar
Schindler, G, Capper, D, Meyer, J, et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 2011;121(3):397405. https://doi.org/10.1007/s00401-011-0802-6.Google Scholar
Schneider, SJ, Blacklock, JB, Bruner, JM. Melanoma arising in a spinal nerve root. Case report. J Neurosurg 1987;67(6):923–7. https://doi.org/10.3171/jns.1987.67.6.0923.Google Scholar
Shankar, GM, Lelic, N, Gill, CM, et al. BRAF alteration status and the histone H3F3A gene K27M mutation segregate spinal cord astrocytoma histology. Acta Neuropathol 2016;131(1):147–50. https://doi.org/10.1007/s00401-015-1492-2.Google Scholar
Singh, PK, Gutmann, DH, Fuller, CE, Newsham, IF, Perry, A. Differential involvement of protein 4.1 family members DAL-1 and NF2 in intracranial and intraspinal ependymomas. Mod Pathol 2002;15(5):526–31. https://doi.org/10.1038/modpathol.3880558.Google Scholar
Skarli, SO, Wolf, AL, Kristt, DA, Numaguchi, Y. Melanoma arising in a cervical spinal nerve root: report of a case with a benign course and malignant features. Neurosurgery 1994;34(3):533–7; discussion 637. https://doi.org/10.1227/00006123-199403000-00023.Google Scholar
Soutar, R, Lucraft, H, Jackson, G, et al. Guidelines on the diagnosis and management of solitary plasmacytoma of bone and solitary extramedullary plasmacytoma. Clin Oncol (R Coll Radiol) 2004;16(6):405–13. https://doi.org/10.1016/j.clon.2004.02.007.Google Scholar
Stacchiotti, S, Tamborini, E, Lo Vullo, S, et al. Phase II study on lapatinib in advanced EGFR-positive chordoma. Ann Oncol 2013;24(7):1931–6. https://doi.org/10.1093/annonc/mdt117.Google Scholar
Sumegi, J, Nishio, J, Nelson, M, Frayer, RW, Perry, D, Bridge, JA. A novel t(4;22)(q31;q12) produces an EWSR1–SMARCA5 fusion in extraskeletal Ewing sarcoma/primitive neuroectodermal tumor. Mod Pathol 2011;24(3):333–42. https://doi.org/10.1038/modpathol.2010.201.Google Scholar
Szerlip, NJ, Calinescu, A, Smith, E, et al. Dural cells release factors which promote cancer cell malignancy and induce immunosuppressive markers in bone marrow myeloid cells. Neurosurgery 2018;83(6):1306–16. https://doi.org/10.1093/neuros/nyx626.Google Scholar
Takai, K, Taniguchi, M, Takahashi, H, Usui, M, Saito, N. Comparative analysis of spinal hemangioblastomas in sporadic disease and Von Hippel–Lindau syndrome. Neurol Med Chir (Tokyo) 2010;50(7):560–7. https://doi.org/10.2176/nmc.50.560.Google Scholar
Tarpey, PS, Behjati, S, Young, MD, et al. The driver landscape of sporadic chordoma. Nat Commun 2017;8(1):890. https://doi.org/10.1038/s41467-017-01026-0.Google Scholar
Thiery, JP, Acloque, H, Huang, RY, Nieto, MA. Epithelial–mesenchymal transitions in development and disease. Cell 2009;139(5):871–90. https://doi.org/10.1016/j.cell.2009.11.007.Google Scholar
Uematsu, Y, Tsuura, Y, Miyamoto, K, Itakura, T, Hayashi, S, Komai, N. The recurrence of primary intracranial germinomas. Special reference to germinoma with STGC (syncytiotrophoblastic giant cell). J Neurooncol 1992;13(3):247–56. https://doi.org/10.1007/BF00172477.Google Scholar
Wellik, DM. Hox patterning of the vertebrate axial skeleton. Dev Dyn. 2007;236(9):2454–63. https://doi.org/10.1002/dvdy.21286.Google Scholar
Westhoff, MA, Serrels, B, Fincham, VJ, Frame, MC, Carragher, NO. SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Mol Cell Biol 2004;24(18):8113–33. https://doi.org/10.1128/MCB.24.18.8113-8133.2004.Google Scholar
Wright, CH, Wright, J, Onyewadume, L, et al. Diagnosis, treatment, and survival in spinal dissemination of primary intracranial glioblastoma: systematic literature review. J Neurosurg Spine 2019:110. Online ahead of print. https://doi.org/10.3171/2019.5.SPINE19164.Google Scholar
Yanamadala, V, Koffie, RM, Shankar, GM, et al. Spinal cord glioblastoma: 25 years of experience from a single institution. J Clin Neurosci 2016;27:138–41. https://doi.org/10.1016/j.jocn.2015.11.011.Google Scholar
Yang, J, Antin, P, Berx, G, et al. Guidelines and definitions for research on epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 2020;21(6):341–52. https://doi.org/10.1038/s41580-020-0237-9.Google Scholar
Yang, XR, Ng, D, Alcorta, DA, et al. T (brachyury) gene duplication confers major susceptibility to familial chordoma. Nat Genet 2009;41(11):1176–8. https://doi.org/10.1038/ng.454Google Scholar
Zheng, JS, Wang, M, Wan, S, et al. Isolated primary non-Hodgkin’s lymphoma of the thoracic spine: a case report with a review of the literature. J Int Med Res 2010;38(4):1553–60. https://doi.org/10.1177/147323001003800440.Google Scholar

References

Abdullahi, D, Annuar, AA, Mohamad, M, Aziz, I, Sanusi, J. Experimental spinal cord trauma: a review of mechanically induced spinal cord injury in rat models. Rev Neurosci 2017:28:1520. https://doi.org/10.1515/revneuro-2016-0050.Google Scholar
Ahuja, CS, Wilson, JR, Novi, S, et al. Traumatic spinal cord injury. Nat Rev Dis Primers (2017;3:17018. https://doi.org/10.1038/nrdp.2017.18.Google Scholar
Ajiboye, AB, Willett, FR, Young, DR, et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 2017;389:1821–30. https://doi.org/10.1016/S0140-6736(17)30601-3.Google Scholar
Alizadeh, A, Dyck, SM, Karimi-Abdolrezaee, S. Myelin damage and repair in pathologic CNS: challenges and prospects. Front Mol Neurosci 2015;8:35. https://doi.org/10.3389/fnmol.2015.00035.Google Scholar
Alizadeh, A, Dyck, SM, Karimi-Abdolrezaee, S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol 2019:10:282. https://doi.org/10.3389/fneur.2019.00282Google Scholar
Amit, I, Garber, M, Chevrier, N, et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 2009;326:257–63. https://doi.org/10.1126/science.1179050.Google Scholar
Anderson, DK, Means, ED. Iron-induced lipid peroxidation in spinal cord: protection with mannitol and methylprednisolone. J Free Radic Biol Med 1985;1:5964. https://doi.org/10.1016/0748-5514(85)90030-3.Google Scholar
Anderson, DK, Saunders, RD, Demediuk, P, et al. Lipid hydrolysis and peroxidation in injured spinal cord: partial protection with methylprednisolone or vitamin E and selenium. Cent Nerv Syst Trauma 1985;2:257–67. https://doi.org/10.1089/cns.1985.2.257.Google Scholar
Aslan, A, Cemek, M, Eser, O, et al. Does dexmedetomidine reduce secondary damage after spinal cord injury? An experimental study. Eur Spine J 2009;18:336–44. https://doi.org/10.1007/s00586-008-0872-x.Google Scholar
Badimon, A, Strasburger, HJ, Ayata, P, et al. Negative feedback control of neuronal activity by microglia. Nature 2020;586:417–23. https://doi.org/10.1038/s41586-020-2777-8.Google Scholar
Baker, SN, Perez, MA. Reticulospinal contributions to gross hand function after human spinal cord injury. J Neurosci 2017;37:9778–84. https://doi.org/10.1523/JNEUROSCI.3368-16.2017.Google Scholar
Ballermann, M, Fouad, K. Spontaneous locomotor recovery in spinal cord injured rats is accompanied by anatomical plasticity of reticulospinal fibers. Eur J Neurosci 2006;23:1988–96. https://doi.org/10.1111/j.1460-9568.2006.04726.x.Google Scholar
Barrière, G, Leblond, H, Provencher, J, Rossignol, S. Prominent role of the spinal central pattern generator in the recovery of locomotion after partial spinal cord injuries. J Neurosci 2008;28:3976–87. https://doi.org/10.1523/JNEUROSCI.5692-07.2008.Google Scholar
Barut, S, Canbolat, A, Bilge, T, Aydin, Y, Cokneşeli, B, Kaya, U. Lipid peroxidation in experimental spinal cord injury: time-level relationship. Neurosurg Rev 1993;16:53–9. https://doi.org/10.1007/BF00308614.Google Scholar
Basso, DM, Beattie, MS, Bresnahan, JC, et al. MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter animal spinal cord injury study. J Neurotrauma 1996;13:343–59. https://doi.org/10.1089/neu.1996.13.343.Google Scholar
Basso, DM, Fisher, LC, Anderson, AJ, Jakeman, LB, McTigue, DM, Popovich, PG. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J. Neurotrauma 2006;23:635–59. https://doi.org/10.1089/neu.2006.23.635.Google Scholar
Beattie, MS, Farooqui, AA, Bresnahan, JC. Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma 2000;17:915–25. https://doi.org/10.1089/neu.2000.17.915.Google Scholar
Bennett, GJ, Abdelmoumene, M, Hayashi, H, Dubner, R. Physiology and morphology of substantia gelatinosa neurons intracellularly stained with horseradish peroxidase. J Comp Neurol 1980;194:809–27. https://doi.org/10.1002/cne.901940407.Google Scholar
Bennett, GJ, Abdelmoumene, M, Hayashi, H, Hoffert, MJ, Dubner, R. Spinal cord layer I neurons with axon collaterals that generate local arbors. Brain Res 1981;209:421–6. https://doi.org/10.1016/0006-8993(81)90164-5.Google Scholar
Bracken, MB, Holford, TR. Neurological and functional status 1 year after acute spinal cord injury: estimates of functional recovery in National Acute Spinal Cord Injury Study II from results modeled in National Acute Spinal Cord Injury Study III. J Neurosurg 2002;96:259–66. https://doi.org/10.3171/spi.2002.96.3.0259.Google Scholar
Bracken, MB, Shepard, MJ, Holford, TR, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 1997;277:1597–604.Google Scholar
Breazile, JE, Kitchell, RL. A study of fiber systems within the spinal cord of the domestic pig that subserve pain. J Comp Neurol 1968;133:373–82. https://doi.org/10.1002/cne.901330307.Google Scholar
Bunge, RP, Puckett, WR, Becerra, JL, Marcillo, A, Quencer, RM. Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv Neurol 1993;59:7589.Google Scholar
Carrico, KM, Vaishnav, R, Hall, ED. Temporal and spatial dynamics of peroxynitrite-induced oxidative damage after spinal cord contusion injury. J Neurotrauma 2009;26:1369–78. https://doi.org/10.1089/neu.2008-0870.Google Scholar
Casha, S, Yu, WR, Fehlings, MG. Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. Neuroscience 2001;103:203–18. https://doi.org/10.1016/s0306-4522(00)00538-8.Google Scholar
Casha, S, Yu, WR, Fehlings, MG. FAS deficiency reduces apoptosis, spares axons and improves function after spinal cord injury. Exp Neurol 2005;196:390400. https://doi.org/10.1016/j.expneurol.2005.08.020.Google Scholar
Chaudhary, U, Birbaumer, N, Ramos-Murguialday, A. Brain–computer interfaces for communication and rehabilitation. Nat Rev Neurol 2016;12:513–25. https://doi.org/10.1038/nrneurol.2016.113.Google Scholar
Cheriyan, T, Ryan, DJ, Weinreb, JH, et al. Spinal cord injury models: a review. Spinal Cord 2014;52:588–95. https://doi.org/10.1038/sc.2014.91.Google Scholar
Choo, AM, Liu, J, Dvorak, M, Tetzlaff, W, Oxland, TR. Secondary pathology following contusion, dislocation, and distraction spinal cord injuries. Exp Neurol 2008;212: 490506. https://doi.org/10.1016/j.expneurol.2008.04.038.Google Scholar
Choo, AM-T, Liu, J, Liu, Z, Dvorak, M, Tetzlaff, W, Oxland, TR. Modeling spinal cord contusion, dislocation, and distraction: characterization of vertebral clamps, injury severities, and node of Ranvier deformations. J Neurosci Methods 2009;181:617. https://doi.org/10.1016/j.jneumeth.2009.04.007.Google Scholar
Courtine, G, Song, B, Hoy, RR, et al. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 2008;14:6974. https://doi.org/10.1038/nm1682.Google Scholar
Curtis, E, Martin, JR, Gabel, B, et al. A first-in-human, Phase I study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell 2018;22:941–50. https://doi.org/10.1016/j.stem.2018.05.014.Google Scholar
Dabney, KW, Ehrenshteyn, M, Agresta, CA, et al. A model of experimental spinal cord trauma based on computer-controlled intervertebral distraction: characterization of graded injury. Spine 2004;29:2357–64. https://doi.org/10.1097/01.brs.0000143108.65385.74.Google Scholar
Demopoulos, HB, Flamm, ES, Seligman, ML, Pietronigro, DD, Tomasula, J, DeCrescito, V. Further studies on free-radical pathology in the major central nervous system disorders: effect of very high doses of methylprednisolone on the functional outcome, morphology, and chemistry of experimental spinal cord impact injury. Can J Physiol Pharmacol 1982;60:1415–24. https://doi.org/10.1139/y82-210.Google Scholar
Domínguez-Rodríguez, LE, Stecina, K, García-Ramírez, DL, et al. Candidate interneurons mediating the resetting of the locomotor rhythm by extensor group I afferents in the cat. Neuroscience 2020;450:96112. https://doi.org/10.1016/j.neuroscience.2020.09.017.Google Scholar
Eccles, JC, Eccles, RM, Lundberg, A. The convergence of monosynaptic excitatory afferents on to many different species of alpha motoneurones. J Physiol 1957;137:2250. https://doi.org/10.1113/jphysiol.1957.sp005794.Google Scholar
Ferretti, P, Mackay, M, Walder, S. The developing human spinal cord contains distinct populations of neural precursors. Neurodegener Dis 2006;3:3844. https://doi.org/10.1159/000092091.Google Scholar
Filli, L, Engmann, AK, Zörner, B, et al. Bridging the gap: a reticulo-propriospinal detour bypassing an incomplete spinal cord injury. J Neurosci 2014;34:13399–410. https://doi.org/10.1523/JNEUROSCI.0701-14.2014.Google Scholar
Fougerousse, F, Bullen, P, Herasse, M, et al. Human–mouse differences in the embryonic expression patterns of developmental control genes and disease genes. Hum Mol Genet 2000;9:165–73. https://doi.org/10.1093/hmg/9.2.165.Google Scholar
Frigon, A. The cat model of spinal cord injury. In Aldskogius, H. (Ed.), Animal Models of Spinal Cord Repair. Humana Press, 2013; 159–83.Google Scholar
Fukuda, S, Nakamura, T, Kishigami, Y, et al. New canine spinal cord injury model free from laminectomy. Brain Res Brain Res Protoc 2005;14:171–80. https://doi.org/10.1016/j.brainresprot.2005.01.001.Google Scholar
Furlan, JC, Sakakibara, BM, Miller, WC, Krassioukov, AV. Global incidence and prevalence of traumatic spinal cord injury. Can J Neurol Sci 2013;40:456–64. https://doi.org/10.1017/s0317167100014530.Google Scholar
Gerasimenko, YP, Avelev, VD, Nikitin, OA, Lavrov, IA. Initiation of locomotor activity in spinal cats by epidural stimulation of the spinal cord. Neurosci Behav Physiol 2003;33:247–54. https://doi.org/10.1023/a:1022199214515.Google Scholar
Ghosh, A, Fleiss, F, Sydekum, E, et al. Rewiring of hindlimb corticospinal neurons after spinal cord injury. Nat Neurosci 2010;13:97104. https://doi.org/10.1038/nn.2448.Google Scholar
Göritz, C, Dias, DO, Tomilin, N, Barbacid, M, Shupliakov, O, Frisén, J. A pericyte origin of spinal cord scar tissue. Science 2011; 333:238–42 https://doi.org/10.1126/science.1203165.Google Scholar
Grillner, S, Zangger, P. On the central generation of locomotion in the low spinal cat. Exp Brain Res 1979;34:241–61. https://doi.org/10.1007/BF00235671.Google Scholar
Guger, C, Edlinger, G, Harkam, W, Niedermayer, I, Pfurtscheller, G. How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans Neural Syst Rehabil Eng 2003;11:145–7. https://doi.org/10.1109/TNSRE.2003.814481.Google Scholar
Hackett, AR, Lee, D-H, Dawood, A, et al. STAT3 and SOCS3 regulate NG2 cell proliferation and differentiation after contusive spinal cord injury. Neurobiol Dis 2016;89:1022. https://doi.org/10.1016/j.nbd.2016.01.017Google Scholar
Hall, ED, Braughler, JM. Effects of intravenous methylprednisolone on spinal cord lipid peroxidation and Na+ + K+)-ATPase activity. Dose–response analysis during 1st hour after contusion injury in the cat. J Neurosurg 1982;57:247–53. https://doi.org/10.3171/jns.1982.57.2.0247.Google Scholar
Hall, ED, Wolf, DL. A pharmacological analysis of the pathophysiological mechanisms of posttraumatic spinal cord ischemia. J Neurosurg 1986;64:951–61. https://doi.org/10.3171/jns.1986.64.6.0951.Google Scholar
Hall, ED, Yonkers, PA, Andrus, PK, Cox, JW, Anderson, DK. Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury. J Neurotrauma 1992;9(Suppl 2):S425–42.Google Scholar
Hawryluk, G, Whetstone, W, Saigal, R, et al. Mean arterial blood pressure correlates with neurological recovery after human spinal cord injury: analysis of high frequency physiologic data. J Neurotrauma 2015;32:1958–67. https://doi.org/10.1089/neu.2014.3778.Google Scholar
Heller, RA, Seelig, J, Bock, T, et al. Relation of selenium status to neuro-regeneration after traumatic spinal cord injury. J Trace Elem Med Biol 2019;51:141–9. https://doi.org/10.1016/j.jtemb.2018.10.006.Google Scholar
Honda, CN, Lee, CL. Immunohistochemistry of synaptic input and functional characterizations of neurons near the spinal central canal. Brain Res 1985;343:120–8. https://doi.org/10.1016/0006-8993(85)91165-5.Google Scholar
Hu, R., Zhou, J, Luo, C, et al. Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury. J Neurosurg Spine 2010;13:169–80. https://doi.org/10.3171/2010.3.SPINE09190.Google Scholar
Inman, DM, Steward, O. Ascending sensory, but not other long-tract axons, regenerate into the connective tissue matrix that forms at the site of a spinal cord injury in mice. J Comp Neurol 2003;462:431–49. https://doi.org/10.1002/cne.10768.Google Scholar
Jankowska, E, Maxwell, DJ, Bannatyne, BA. On coupling and decoupling of spinal interneuronal networks. Arch Ital Biol 2007;145:235–50.Google Scholar
Jeffery, ND, Hamilton, L, Granger, N. Designing clinical trials in canine spinal cord injury as a model to translate successful laboratory interventions into clinical practice. Vet Rec 2011;168:102–07. https://doi.org/10.1136/vr.d475.Google Scholar
Jeffery, ND, Smith, PM, Lakatos, A, Ibanez, C, Ito, D, Franklin, RJM. Clinical canine spinal cord injury provides an opportunity to examine the issues in translating laboratory techniques into practical therapy. Spinal Cord 2006;44:584–93. https://doi.org/10.1038/sj.sc.3101912.Google Scholar
Jones, CF, Lee, JHT, Kwon, BK, Cripton, PA. Development of a large-animal model to measure dynamic cerebrospinal fluid pressure during spinal cord injury: laboratory investigation. J Neurosurg Spine 2012;16:624–35. https://doi.org/10.3171/2012.3.SPINE11970.Google Scholar
Jordan, LM, Liu, J, Hedlund, PB, Akay, T, Pearson, KG. Descending command systems for the initiation of locomotion in mammals. Brain Res Rev 2008;57:183–91. https://doi.org/10.1016/j.brainresrev.2007.07.019.Google Scholar
Josephson, A, Greitz, D, Klason, T, Olson, L, Spenger, C. A spinal thecal sac constriction model supports the theory that induced pressure gradients in the cord cause edema and cyst formation. Neurosurgery 2001;48:636–45; discussion 645–6. https://doi.org/10.1097/00006123-200103000-00039.Google Scholar
Kakulas, BA. Neuropathology: the foundation for new treatments in spinal cord injury. Spinal Cord 2004;42:549–63. https://doi.org/10.1038/sj.sc.3101670.Google Scholar
Kamencic, H, Griebel, RW, Lyon, AW, Paterson, PG, Juurlink, BH. Promoting glutathione synthesis after spinal cord trauma decreases secondary damage and promotes retention of function. FASEB J 2001;15:243–50. https://doi.org/10.1096/fj.00-0228com.Google Scholar
Kawase, T, Sakurada, T, Koike, Y, Kansaku, K. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements. J Neural Eng 2017;14:016015. https://doi.org/10.1088/1741-2552/aa525f.Google Scholar
Kennedy, PR. Corticospinal, rubrospinal and rubro-olivary projections: a unifying hypothesis. Trends Neurosci 1990;13:474–9. https://doi.org/10.1016/0166-2236(90)90079-p.Google Scholar
Kubota, K, Saiwai, H, Kumamaru, H, et al. Myeloperoxidase exacerbates secondary injury by generating highly reactive oxygen species and mediating neutrophil recruitment in experimental spinal cord injury. Spine 2012;37:1363–9. https://doi.org/10.1097/BRS.0b013e31824b9e77.Google Scholar
Kucher, K, Johns, D, Maier, D, et al. First-in-man intrathecal application of neurite growth-promoting anti-Nogo-A antibodies in acute spinal cord injury. Neurorehabil Neural Repair 2018;32:578–89. https://doi.org/10.1177/1545968318776371.Google Scholar
Kumar, H, Choi, H, Jo, M-J, et al. Neutrophil elastase inhibition effectively rescued angiopoietin-1 decrease and inhibits glial scar after spinal cord injury. Acta Neuropathol Commun 2018;6:73. https://doi.org/10.1186/s40478-018-0576-3.Google Scholar
Lemke, M, Frei, B, Ames, BN, Faden, AI. Decreases in tissue levels of ubiquinol-9 and -10, ascorbate and alpha-tocopherol following spinal cord impact trauma in rats. Neurosci Lett 1990;108:201–06. https://doi.org/10.1016/0304-3940(90)90731-n.Google Scholar
Lemon, RN. Descending pathways in motor control. Annu Rev Neurosci 2008;31:195218. https://doi.org/10.1146/annurev.neuro.31.060407.125547.Google Scholar
Levi, AD, Anderson, KD, Okonkwo, DO, et al. Clinical outcomes from a multi-center study of human neural stem cell transplantation in chronic cervical spinal cord injury. J Neurot-rauma 2019;36:891902. https://doi.org/10.1089/neu.2018.5843.Google Scholar
Levi, L, Wolf, A, Belzberg, H. Hemodynamic parameters in patients with acute cervical cord trauma: description, intervention, and prediction of outcome. Neurosurgery 1993;33:1007–16; discussion 1016–7.Google Scholar
Levine, JM, Levine, GJ, Porter, BF, Topp, K, Noble-Haeusslein, LJ. Naturally occurring disk herniation in dogs: an opportunity for pre-clinical spinal cord injury research. J Neurotrauma 2011;28:675–88. https://doi.org/10.1089/neu.2010.1645.Google Scholar
Liu, D, Liu, J, Sun, D, Wen, J. The time course of hydroxyl radical formation following spinal cord injury: the possible role of the iron-catalyzed Haber–Weiss reaction. J Neurotrauma 2004;21:805–16. https://doi.org/10.1089/0897715041269650.Google Scholar
Liu, D, Sybert, TE, Qian, H, Liu, J. Superoxide production after spinal injury detected by microperfusion of cytochrome c. Free Radic Biol Med 1998;25:298304. https://doi.org/10.1016/s0891-5849(98)00055-0.Google Scholar
Liu, J-B, Tang, T-S, Xiao, D-S. Changes of free iron contents and its correlation with lipid peroxidation after experimental spinal cord injury. Chin J Traumatol 2004:7:229–32.Google Scholar
Lucas, JH, Wheeler, DG, Guan, Z, Suntres, Z, Stokes, BT. Effect of glutathione augmentation on lipid peroxidation after spinal cord injury. J Neurotrauma 2002;19:763–75. https://doi.org/10.1089/08977150260139138.Google Scholar
Ma, M, Basso, DM, Walters, P, Stokes, BT, Jakeman, LB. Behavioral and histological outcomes following graded spinal cord contusion injury in the C57Bl/6 mouse. Exp Neurol 2001;169:239–54. https://doi.org/10.1006/exnr.2001.7679.Google Scholar
Mannen, H, Sugiura, Y. Reconstruction of neurons of dorsal horn proper using Golgi-stained serial sections. J Comp Neurol 1976;168:303–12. https://doi.org/10.1002/cne.901680205.Google Scholar
Martinez, M, Delivet-Mongrain, H, Leblond, H, Rossignol, S. Recovery of hindlimb locomotion after incomplete spinal cord injury in the cat involves spontaneous compensatory changes within the spinal locomotor circuitry. J Neurophysiol 2011;106:1969–84. https://doi.org/10.1152/jn.00368.2011.Google Scholar
Martirosyan, N L, Kalani, MYS, Bichard, WD, et al. Cerebrospinal fluid drainage and induced hypertension improve spinal cord perfusion after acute spinal cord injury in pigs. Neurosurgery 2015;76:461–8; discussion 468–9. https://doi.org/10.1227/NEU.0000000000000638.Google Scholar
Mazensky, D, Flesarova, S, Sulla, I. Arterial blood supply to the spinal cord in animal models of spinal cord injury. A review. Anat Rec 2017;300:2091–106. https://doi.org/10.1002/ar.23694.Google Scholar
Metz, GA, Curt, A, van de Meent, H, Klusman, I, Schwab, ME, Dietz, V. Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma 2000;17:117. https://doi.org/10.1089/neu.2000.17.1.Google Scholar
Monyer, H, Hartley, DM, Choi, D W. 21-Aminosteroids attenuate excitotoxic neuronal injury in cortical cell cultures. Neuron 1990;5:121–6. https://doi.org/10.1016/0896-6273(90)90302-v.Google Scholar
Moore, SA, Granger, N, Olby, NJ, et al. Targeting translational successes through CANSORT-SCI: using pet dogs to identify effective treatments for spinal cord injury. J Neurotrauma 2017;34:2007–18. https://doi.org/10.1089/neu.2016.4745.Google Scholar
Moore, SA, Zidan, N, Spitzbarth, I, et al. Development of an International Canine Spinal Cord Injury observational registry: a collaborative data-sharing network to optimize translational studies of SCI. Spinal Cord 2018;56:656–65. https://doi.org/10.1038/s41393-018-0145-4.Google Scholar
Müller, K, Gürster, D. Hydroxyl radical damage to DNA sugar and model membranes induced by anthralin (dithranol). Biochem Pharmacol 1993;46:1695–704. https://doi.org/10.1016/0006-2952(93)90573-f.Google Scholar
Nashmi, R, Fehlings, MG. Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord. Neuroscience 2001;104:235–51. https://doi.org/10.1016/s0306-4522(01)00009-4.Google Scholar
Nathan, PW. Effects on movement of surgical incisions into the human spinal cord. Brain 1994;117(Pt 2):337–46. https://doi.org/10.1093/brain/117.2.337.Google Scholar
Navarro, R, Juhas, S, Keshavarzi, S, et al. Chronic spinal compression model in minipigs: a systematic behavioral, qualitative, and quantitative neuropathological study. J Neurotrauma 2012;29:499513. https://doi.org/10.1089/neu.2011.2076.Google Scholar
Neirinckx, V, Coste, C, Franzen, F, Gothot, A, Rogister, B, Wislet, S. Neutrophil contribution to spinal cord injury and repair. J Neuroinflammation 2014;11:150. https://doi.org/10.1186/s12974-014-0150-2.Google Scholar
Nesathurai, S, Graham, WA, Mansfield, K, et al. Model of traumatic spinal cord injury in Macaca fascicularis: similarity of experimental lesions created by epidural catheter to human spinal cord injury. J Med Primatol 2006;35:401–04. https://doi.org/10.1111/j.1600-0684.2006.00162.x.Google Scholar
Nguyen, HX, O’Barr, TJ, Anderson, AJ. Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-alpha. J Neurochem 2007;102:900–12. https://doi.org/10.1111/j.1471-4159.2007.04643.x.Google Scholar
Nielsen, JB. How we walk: central control of muscle activity during human walking. Neuroscientist 2003;9:195204. https://doi.org/10.1177/1073858403009003012.Google Scholar
Noble, LJ, Wrathall, JR. Spinal cord contusion in the rat: morphometric analyses of alterations in the spinal cord. Exp Neurol 1985;88:135–49. https://doi.org/10.1016/0014-4886(85)90119-0.Google Scholar
Norenberg, MD, Smith, J, Marcillo, A. The pathology of human spinal cord injury: defining the problems. J Neurotrauma 2004;21:429–40. https://doi.org/10.1089/089771504323004575.Google Scholar
O’Rahilly, RR, Müller, F. The Embryonic Human Brain: An Atlas Of Developmental Stages. John Wiley & Sons, 2006.Google Scholar
O’Shea, TM, Burda, JE, Sofroniew, MV. Cell biology of spinal cord injury and repair. J Clin Invest 2017;127:3259–70. https://doi.org/10.1172/JCI90608.Google Scholar
Ohtani, K, Abe, H, Kadoya, S. Beneficial effects of methylprednisolone sodium succinate in the treatment of acute spinal cord injury. Sekitsui Sekizui 1994;7:633–47.Google Scholar
Okon, EB, Streijger, F, Lee, JHT, Anderson, LM, Russell, AK, Kwon, BK. Intraparenchymal microdialysis after acute spinal cord injury reveals differential metabolic responses to contusive versus compressive mechanisms of injury. J Neurotrauma 2013;30:1564–76. https://doi.org/10.1089/neu.2013.2956.Google Scholar
Onifer, SM, Smith, GM, Fouad, K. Plasticity after spinal cord injury: relevance to recovery and approaches to facilitate it. Neurotherapeutics 2011;8:283–93. https://doi.org/10.1007/s13311-011-0034-4.Google Scholar
Orr, MB, Gensel, JC. Spinal cord injury scarring and inflammation: therapies targeting glial and inflammatory responses. Neurotherapeutics 2018;15:541–53. https://doi.org/10.1007/s13311-018-0631-6.Google Scholar
Petersen, TH, Willerslev-Olsen, M, Conway, BA, Nielsen, JB. The motor cortex drives the muscles during walking in human subjects. J Physiol 2012;590:2443–52. https://doi.org/10.1113/jphysiol.2012.227397.Google Scholar
Pietronigro, DD, Hovsepian, M, Demopoulos, HB, Flamm, ES. Loss of ascorbic acid from injured feline spinal cord. J Neurochem 1983;41:1072–6. https://doi.org/10.1111/j.1471-4159.1983.tb09053.x.Google Scholar
Pointillart, V, Petitjean, ME, Wiart, L, et al. Pharmacological therapy of spinal cord injury during the acute phase. Spinal Cord 2000;38:71–6. https://doi.org/10.1038/sj.sc.3100962.Google Scholar
Ramesh, T, Nagula, SV, Tardieu, GG, et al. Update on the notochord including its embryology, molecular development, and pathology: a primer for the clinician. Cureus 2017;9:e1137. https://doi.org/10.7759/cureus.1137Google Scholar
Readdy, WJ, Dhall, SS. Vasopressor administration in spinal cord injury: should we apply a universal standard to all injury patterns? Neural Regeneration Res 2016);11:420–1. https://doi.org/10.4103/1673-5374.179051.Google Scholar
Rexed, B. The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 1952;96:414–95. https://doi.org/10.1002/cne.900960303.Google Scholar
Rexed, B. A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 1954;100:297379. https://doi.org/10.1002/cne.901000205.Google Scholar
Rohm, M, Schneider, M, Müller, C, et al. Hybrid brain–computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. Artif Intell Med 2013;59:133–42. https://doi.org/10.1016/j.artmed.2013.07.004.Google Scholar
Rossignol, S, Schwab, M, Schwartz, M, Fehlings, MG. Spinal cord injury: time to move? J Neurosci 2007;27:11782–92. https://doi.org/10.1523/JNEUROSCI.3444-07.2007.Google Scholar
Rothwell, J. Ascending and descending pathways of the spinal cord. In Rothwell, J (Ed.), Control of Human Voluntary Movement. Springer Netherlands, 1994; 217–51.Google Scholar
Rowland, JW, Hawryluk, GWJ, Kwon, B, Fehlings, MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg. Focus 2008;25:E2. https://doi.org/10.3171/FOC.2008.25.11.E2.Google Scholar
Saiwai, H, Ohkawa, Y, Yamada, H, et al. The LTB4–BLT1 axis mediates neutrophil infiltration and secondary injury in experimental spinal cord injury. Am J Pathol 2010;176:2352–66. https://doi.org/10.2353/ajpath.2010.090839Google Scholar
Schoenen, J. Dendritic organization of the human spinal cord: the motoneurons. J Comp Neurol 1982a;211:226–47. https://doi.org/10.1002/cne.902110303.Google Scholar
Schoenen, J. The dendritic organization of the human spinal cord: the dorsal horn. Neuroscience 1982b;7:2057–87. https://doi.org/10.1016/0306-4522(82)90120-8.Google Scholar
Schomberg, DT, Miranpuri, GS, Chopra, A, et al. Translational relevance of swine models of spinal cord injury. J Neurotrauma 2017;34:541–51. https://doi.org/10.1089/neu.2016.4567.Google Scholar
Schucht, P, Raineteau, O, Schwab, ME, Fouad, K. Anatomical correlates of locomotor recovery following dorsal and ventral lesions of the rat spinal cord. Exp Neurol 2002;176:143–53. https://doi.org/10.1006/exnr.2002.7909.Google Scholar
Semple, BD, Blomgren, K, Gimlin, K, Ferriero, DM, Noble-Haeusslein, LJ. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 2013;106–107:116. https://doi.org/10.1016/j.pneurobio.2013.04.001.Google Scholar
Sharif-Alhoseini, M, Khormali, M, Rezaei, M, et al. Animal models of spinal cord injury: a systematic review. Spinal Cord 2017;55:714–21. https://doi.org/10.1038/sc.2016.187Google Scholar
Simon, F, Oberhuber, A. Ischemia and reperfusion injury of the spinal cord: experimental strategies to examine postischemic paraplegia. Neural Regeneration Res 2016;11:414–15. https://doi.org/10.4103/1673-5374.179050.Google Scholar
Stockwell, BR, Freidmann Angeli, JP, Bayir, H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017;171:273–85. https://doi.org/10.1016/j.cell.2017.09.021.Google Scholar
Strauch, JT, Lauten, A, Zhang, N, Wahlers, T, Griepp, RB. Anatomy of spinal cord blood supply in the pig. Ann Thorac Surg 2007);83:2130–4. https://doi.org/10.1016/j.athoracsur.2007.01.060.Google Scholar
Su, L-J, Zhang, J-H, Gomez, H, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev 2019:2019:5080843. https://doi.org/10.1155/2019/5080843.Google Scholar
Tabakow, P, Jarmundowicz, W, Czapiga, B, et al. Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant 2013;22:1591–612. https://doi.org/10.3727/096368912X663532.Google Scholar
Tidoni, E, Gergondet, P, Fusco, G, Kheddar, A, Aglioti, SM. The role of audio-visual feedback in a thought-based control of a humanoid robot: a BCI study in healthy and spinal cord injured people. IEEE Trans Neural Syst Rehabil Eng 2017;25:772–81. https://doi.org/10.1109/TNSRE.2016.2597863.Google Scholar
Tohyama, T, Kinoshita, M, Kobayashi, K, et al. Contribution of propriospinal neurons to recovery of hand dexterity after corticospinal tract lesions in monkeys. Proc Natl Acad Sci U S A 2017;114:604–09. https://doi.org/10.1073/pnas.1610787114.Google Scholar
Totoiu, MO, Nistor, GI, Lane, TE, Keirstead, HS. Remyelination, axonal sparing, and locomotor recovery following transplantation of glial-committed progenitor cells into the MHV model of multiple sclerosis. Exp Neurol 2004;187:254–65. https://doi.org/10.1016/j.expneurol.2004.01.028.Google Scholar
Vale, FL, Burns, J, Jackson, AB, Hadley, MN. Combined medical and surgical treatment after acute spinal cord injury: results of a prospective pilot study to assess the merits of aggressive medical resuscitation and blood pressure management. J Neurosurg 1997;87:239–46. https://doi.org/10.3171/jns.1997.87.2.0239.Google Scholar
van der Scheer, JW, Martin Ginis, KA, Ditor, DS, et al. Effects of exercise on fitness and health of adults with spinal cord injury: a systematic review. Neurology 2017;89:736–45. https://doi.org/10.1212/WNL.0000000000004224.Google Scholar
Volpe, E, Sambucci, M, Battistini, L, Borsellino, G. Fas–Fas ligand: checkpoint of T cell functions in multiple sclerosis. Front Immunol 2016l7:382. https://doi.org/10.3389/fimmu.2016.00382.Google Scholar
Wang, X, Cao, K, Sun, X, et al. Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris. Glia 2015;63:635–51. https://doi.org/10.1002/glia.22774.Google Scholar
Werneburg, S, Feinberg, PA, Johnson, KM, Schafer, DP. A microglia–cytokine axis to modulate synaptic connectivity and function. Curr Opin Neurobiol 2017;47:138–45. https://doi.org/10.1016/j.conb.2017.10.002.Google Scholar
Whalen, MJ, Dalkara, T, You, Z, et al. Acute plasmalemma permeability and protracted clearance of injured cells after controlled cortical impact in mice. J Cereb Blood Flow Metab 2008;28:490505. https://doi.org/10.1038/sj.jcbfm.9600544.Google Scholar
Whelan, PJ. Control of locomotion in the decerebrate cat. Prog Neurobiol 1996;49:481515. https://doi.org/10.1016/0301-0082(96)00028-7.Google Scholar
Xiao, Z, Tang, F, Zhao, Y, et al. Significant improvement of acute complete spinal cord injury patients diagnosed by a combined criteria implanted with NeuroRegen scaffolds and mesenchymal stem cells. Cell Transplant 2018;27:907–15. https://doi.org/10.1177/0963689718766279.Google Scholar
Yune, TY, Lee, JY, Jiang, MH, Kim, DW, Choi, SY, Oh, TH. Systemic administration of PEP-1–SOD1 fusion protein improves functional recovery by inhibition of neuronal cell death after spinal cord injury. Free Radic Biol Med 2008;45:1190–200. https://doi.org/10.1016/j.freeradbiomed.2008.07.016.Google Scholar
Zakaryan, H, Cholakyans, V, Simonyan, L, et al. A study of lymphoid organs and serum proinflammatory cytokines in pigs infected with African swine fever virus genotype II. Arch Virol 2015;160:1407–14. https://doi.org/10.1007/s00705-015-2401-7.Google Scholar
Zhang, C, Chen, K, Han, X, et al. Diffusion tensor imaging in diagnosis of post-traumatic syringomyelia in spinal cord injury in rats. Med Sci Monit 2018;24:177–82. https://doi.org/10.12659/MSM.907955.Google Scholar
Zhang, N, Fang, M, Chen, H, Gou, F, Ding, M. Evaluation of spinal cord injury animal models. Neural Regeneration Res 2014;9:2008–12. https://doi.org/10.4103/1673-5374.143436.Google Scholar
Zivin, JA, DeGirolami, U. Spinal cord infarction: a highly reproducible stroke model. Stroke 1980;11:200–02. https://doi.org/10.1161/01.str.11.2.200.Google Scholar
Zörner, B, Bachmann, LC, Filli, L, et al. Chasing central nervous system plasticity: the brainstem’s contribution to locomotor recovery in rats with spinal cord injury. Brain 2014;137:1716–32. https://doi.org/10.1093/brain/awu078.Google Scholar

References

Alder, J, Fujioka, W, Lifshitz, J, Crockett, DP, Thakker-Varia, S. Lateral fluid percussion: model of traumatic brain injury in mice. J Vis Exp 2011;54:3063. https://doi.org/10.3791/3063.Google Scholar
Ansari, MA, Roberts, KN, Scheff, SW. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radic Biol Med 2008;45(4):443–52. https://doi.org/10.1016/j.freeradbiomed.2008.04.038Google Scholar
Bales, JW, Ma, X, Yan, HQ, Jenkins, LW, Dixon, CE. Expression of protein phosphatase 2B (calcineurin) subunit A isoforms in rat hippocampus after traumatic brain injury. J Neurotrauma 2010;27(1):109–20. https://doi.org/10.1089/neu.2009.1072.Google Scholar
Bayır, H, Kochanek, PM, Kagan, VE. Oxidative stress in immature brain after traumatic brain injury. Dev Neurosci 2006;28(4–5):420–31. https://doi.org/10.1159/000094168.Google Scholar
Bodnar, CN, Roberts, KN, Higgins, EK, Bachstetter, AD. A systematic review of closed head injury models of mild traumatic brain injury in mice and rats. J Neurotrauma 2019;36(11):1683–706. https://doi.org/10.1089/neu.2018.6127.Google Scholar
Bolkvadze, T, Pitkänen, A. Development of post-traumatic epilepsy after controlled cortical impact and lateral fluid-percussion-induced brain injury in the mouse. J Neurotrauma 2012;29(5):789812. https://doi.org/10.1089/neu.2011.1954.Google Scholar
Capizzi, A, Woo, J, Verduzco-Gutierrez, M. Traumatic brain injury. Med Clin N Am 2020;104(2):213–38. https://doi.org/10.1016/j.mcna.2019.11.001.Google Scholar
Centers for Disease Control and Prevention, U.S. Department of Health and Human Services. Surveillance Report of Traumatic Brain Injury-related Emergency Department Visits, Hospitalizations, and Deaths – United States, 2014. [Internet]. www.cdc.gov/traumaticbraininjury/get_the_facts.html.Google Scholar
Cernak, I. The importance of systemic response in the pathobiology of blast-induced neurotrauma. Front Neur [Internet] 2010;1:151. http://journal.frontiersin.org/article/10.3389/fneur.2010.00151/abstractGoogle Scholar
Cernak, I. Understanding blast-induced neurotrauma: how far have we come? Concussion 2017;2(3):CNC42. https://doi.org/10.2217/cnc-2017-0006.Google Scholar
Dewan, MC, Rattani, A, Gupta, S, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg 2019;130(4):1080–97. https://doi.org/10.3171/2017.10.JNS17352.Google Scholar
Dixon, CE, Clifton, GL, Lighthall, JW, Yaghmai, AA, Hayes, RL. A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 1991;39(3):253–62. https://doi.org/10.1016/0165-0270(91)90104-8.Google Scholar
Faden, A, Demediuk, P, Panter, S, Vink, R. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 1989;244(4906):798800. https://doi.org/10.1126/science.2567056Google Scholar
Folkerts, MM, Parks, EA, Dedman, JR, Kaetzel, MA, Lyeth, BG, Berman, RF. Phosphorylation of calcium calmodulin–dependent protein kinase II following lateral fluid percussion brain injury in rats. J Neurotrauma 2007;24(4):638–50. https://doi.org/10.1089/neu.2006.0188.Google Scholar
Frati, A, Cerretani, D, Fiaschi, A, et al. Diffuse axonal injury and oxidative stress: a comprehensive review. Int J Mol Sci 2017;18(12):2600. https://doi.org/10.3390/ijms18122600.Google Scholar
Golarai, G, Greenwood, AC, Feeney, DM, Connor, JA. Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. J Neurosci 2001;21(21):8523–37. https://doi.org/10.1523/JNEUROSCI.21-21-08523.2001.Google Scholar
Hagberg, H, Peebles, D, Mallard, C. Models of white matter injury: comparison of infectious, hypoxic–ischemic, and excitotoxic insults. Ment Retard Dev Disabil Res Rev 2002;8(1):30–8. https://doi.org/10.1002/mrdd.10007.Google Scholar
Hall, ED, Detloff, MR, Johnson, K, Kupina, NC. Peroxynitrite-mediated protein nitration and lipid peroxidation in a mouse model of traumatic brain injury. J Neurotrauma 2004;21(1):920. https://doi.org/10.1089/089771504772695904.Google Scholar
Hergenroeder, GW, Moore, AN, McCoy, JP, et al. Serum IL-6: a candidate biomarker for intracranial pressure elevation following isolated traumatic brain injury. J Neuroinflamm 2010;7(1):19. https://doi.org/10.1186/1742-2094-7-19.Google Scholar
Hill, RL, Singh, IN, Wang, JA, Hall, ED. Time courses of post-injury mitochondrial oxidative damage and respiratory dysfunction and neuronal cytoskeletal degradation in a rat model of focal traumatic brain injury. Neurochem Int 2017;111:4556. https://doi.org/10.1016/j.neuint.2017.03.015.Google Scholar
Hsieh, T-H, Kang, J-W, Lai, J-H, et al. Relationship of mechanical impact magnitude to neurologic dysfunction severity in a rat traumatic brain injury model. PLoS One 2017;12(5):e0178186. https://doi.org/10.1371/journal.pone.0178186.Google Scholar
Hunt, RF, Haselhorst, LA, Schoch, KM, et al. Posttraumatic mossy fiber sprouting is related to the degree of cortical damage in three mouse strains. Epilepsy Res 2012;99(1–2):167–70. https://doi.org/10.1016/j.eplepsyres.2011.10.011.Google Scholar
Kaur, P, Sharma, S. Recent advances in pathophysiology of traumatic brain injury. Curr Neuropharmacol 2018;16(9):1224–38. https://doi.org/10.2174/1570159X15666170613083606.Google Scholar
Kendirli, MT, Rose, DT, Bertram, EH. A model of posttraumatic epilepsy after penetrating brain injuries: effect of lesion size and metal fragments. Epilepsia 2014;55(12):1969–77. https://doi.org/10.1111/epi.12854.Google Scholar
Kochanek, PM, Wallisch, JS, Bayır, H, Clark, RSB. Pre-clinical models in pediatric traumatic brain injury – challenges and lessons learned. Childs Nerv Syst 2017;33(10):1693–701. https://doi.org/10.1007/s00381-017-3474-2.CrossRefGoogle ScholarPubMed
Landeghem, FKHV, Weiss, T, Oehmichen, M, Deimling, AV. Decreased expression of glutamate transporters in astrocytes after human traumatic brain injury. J Neurotrauma 2006;23(10):1518–28. https://doi.org/10.1089/neu.2006.23.1518.Google Scholar
Lu, K-T, Cheng, N-C, Wu, C-Y, Yang, Y-L. NKCC1-mediated traumatic brain injury-induced brain edema and neuron death via Raf/MEK/MAPK cascade. Crit Care Med 2008;36(3):917–22. https://doi.org/10.1097/CCM.0B013E31816590C4.Google Scholar
Marmarou, A, Foda, MAA-E, van den Brink, W, Campbell, J, Kita, H, Demetriadou, K. A new model of diffuse brain injury in rats: Part I: pathophysiology and biomechanics. J Neurosurg 1994;80(2):291300. https://doi.org/10.3171/jns.1994.80.2.0291.Google Scholar
Meldrum, BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 2000;130(4):1007S1015S. https://doi.org/10.1093/jn/130.4.1007S.Google Scholar
Mendez, MF, Owens, EM, Reza Berenji, G, Peppers, DC, Liang, L-J, Licht, EA. Mild traumatic brain injury from primary blast vs. blunt forces: post-concussion consequences and functional neuroimaging. NeuroRehabilitation 2013;32(2):397407. https://doi.org/10.3233/NRE-130861.Google Scholar
Namjoshi, DR, Cheng, W, McInnes, KA, et al. Merging pathology with biomechanics using CHIMERA (Closed-Head Impact Model of Engineered Rotational Acceleration): a novel, surgery-free model of traumatic brain injury. Mol Neurodegen 2014;9(1):55. https://doi.org/10.1186/1750-1326-9-55.Google Scholar
Ng, SY, Lee, AYW. Traumatic brain injuries: pathophysiology and potential therapeutic targets. Front Cell Neurosci 2019;13:528. https://doi.org/10.3389/fncel.2019.00528.Google Scholar
Osier, ND, Dixon, CE. The controlled cortical impact model: applications, considerations for researchers, and future directions. Front Neurol [Internet] 2016;7:134. http://journal.frontiersin.org/Article/10.3389/fneur.2016.00134/abstractGoogle Scholar
Raghavendra Rao, VL, Başkaya, MK, Doğan, A, Rothstein, JD, Dempsey, RJ. Traumatic brain injury down-regulates glial glutamate transporter (GLT-1 and GLAST) proteins in rat brain. J Neurochem 2002;70(5):2020–7. https://doi.org/10.1046/j.1471-4159.1998.70052020.x.Google Scholar
Ray, SK, Dixon, CE, Banik, NL. Molecular mechanisms in the pathogenesis of traumatic brain injury. Histol Histopathol 2002;17:1137–52. https://doi.org/10.14670/HH-17.1137.Google Scholar
Sapan, HB, Paturusi, I, Jusuf, I, et al. Pattern of cytokine (IL-6 and IL-10) level as inflammation and anti-inflammation mediator of multiple organ dysfunction syndrome (MODS) in polytrauma. Int J Burns Trauma 2016;6(2):3743.Google Scholar
Sauerbeck, AD, Fanizzi, C, Kim, JH, et al. modCHIMERA: a novel murine closed-head model of moderate traumatic brain injury. Sci Rep 2018;8(1):7677. https://doi.org/10.1038/s41598-018-25737-6.Google Scholar
Shively, SB, Horkayne-Szakaly, I, Jones, RV, Kelly, JP, Armstrong, RC, Perl, DP. Characterisation of interface astroglial scarring in the human brain after blast exposure: a post-mortem case series. Lancet Neurol 2016;15(9):944–53. https://doi.org/10.1016/S1474-4422(16)30057-6.Google Scholar
Shively, SB, Perl, DP. Viewing the invisible wound: novel lesions identified in postmortem brains of U.S. service members with military blast exposure. Military Med 2017;182(1):1461–3. https://doi.org/10.7205/MILMED-D-16-00239.Google Scholar
Skandsen, T, Kvistad, KA, Solheim, O, Strand, IH, Folvik, M, Vik, A. Prevalence and impact of diffuse axonal injury in patients with moderate and severe head injury: a cohort study of early magnetic resonance imaging findings and 1-year outcome. J Neurosurg 2010;113(3):556–63. https://doi.org/10.3171/2009.9.JNS09626.Google Scholar
Statler, KD, Scheerlinck, P, Pouliot, W, Hamilton, M, White, HS, Dudek, FE. A potential model of pediatric posttraumatic epilepsy. Epilepsy Res 2009;86(2–3):221–3. https://doi.org/10.1016/j.eplepsyres.2009.05.006Google Scholar
Sullivan, PG, Thompson, MB, Scheff, SW. Cyclosporin A attenuates acute mitochondrial dysfunction following traumatic brain injury. Exp Neurol 1999;160(1):226–34. https://doi.org/10.1006/exnr.1999.7197.Google Scholar
Thompson, HJ, Lifshitz, J, Marklund, N, et al. Lateral fluid percussion brain injury: a 15-year review and evaluation. J Neurotrauma 2005;22(1):4275. https://doi.org/10.1089/neu.2005.22.42.Google Scholar
Vakil, MT, Singh, AK. A review of penetrating brain trauma: epidemiology, pathophysiology, imaging assessment, complications, and treatment. Emerg Radiol 2017;24(3):301–09. https://doi.org/10.1007/s10140-016-1477-z.Google Scholar
Valiyaveettil, M, Alamneh, Y, Wang, Y, et al. Contribution of systemic factors in the pathophysiology of repeated blast-induced neurotrauma. Neurosci Lett 2013;539:16. https://doi.org/10.1016/j.neulet.2013.01.028.Google Scholar
Weber, JT. Altered calcium signaling following traumatic brain injury. Front Pharmacol [Internet] 2012;3:60. http://journal.frontiersin.org/article/10.3389/fphar.2012.00060/abstractGoogle Scholar
Woodcock, T, Morganti-Kossmann, MC. The role of markers of inflammation in traumatic brain injury. Front Neurol [Internet] 2013;4:18. http://journal.frontiersin.org/article/10.3389fneur.2013.00018/abstractGoogle Scholar
Woodroofe, MN, Sarna, GS, Wadhwa, M, et al. Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J Neuroimmunol 1991;33(3):227–36. https://doi.org/10.1016/0165-5728(91)90110-s.Google Scholar
Xiong, Y, Mahmood, A, Chopp, M. Animal models of traumatic brain injury. Nat Rev Neurosci 2013;14(2):128–42. https://doi.org/10.1038/nrn3407.Google Scholar
Yakovlev, AG, Ota, K, Wang, G, et al. Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. J Neurosci 2001;21(19):7439–46. https://doi.org/10.1523/JNEUROSCI.21-19-07439.2001.Google Scholar
Yang, L, Afroz, S, Michelson, HB, Goodman, JH, Valsamis, HA, Ling, DSF. Spontaneous epileptiform activity in rat neocortex after controlled cortical impact injury. J Neurotrauma 2010;27(8):1541–8. https://doi.org/10.1089/neu.2009.1244.Google Scholar

References

ACROSS. Epidemiology of aneurysmal subarachnoid hemorrhage in Australia and New Zealand: incidence and case fatality from the Australasian Cooperative Research on Subarachnoid Hemorrhage Study (ACROSS). Stroke 2000;31(8):1843–50. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10926945Google Scholar
Alg, VS, Sofat, R, Houlden, H, Werring, DJ. Genetic risk factors for intracranial aneurysms: a meta-analysis in more than 116,000 individuals. Neurology 2013;80(23):2154. www.ncbi.nlm.nih.gov/pmc/articles/PMC3716358/Google Scholar
Allcock, JM, Drake, CG. Postoperative angiography in cases of ruptured intracranial aneurysm. J Neurosurg 1963;20:752–9. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14184993Google Scholar
Allen, G, Henderson, L, Chou, S, French, L. Cerebral arterial spasm. 1. In vitro contractile activity of vasoactive agents on canine basilar and middle cerebral arteries. J Neurosurg 1974;40(4):433–41. https://pubmed.ncbi.nlm.nih.gov/4360691/Google Scholar
Al-Tamimi, YZ, Bhargava, D, Feltbower, RG, et al. Lumbar drainage of cerebrospinal fluid after aneurysmal subarachnoid hemorrhage: a prospective, randomized, controlled trial (LUMAS). Stroke 2012;43(3):677–82. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=22282887Google Scholar
Anetsberger, A, Gempt, J, Blobner, M, et al. Impact of goal-directed therapy on delayed ischemia after aneurysmal subarachnoid hemorrhage. Stroke 2020;51(8):2287–96. www.ahajournals.org/doi/10.1161/STROKEAHA.120.029279Google Scholar
Aoki, T, Kataoka, H, Ishibashi, R, Nozaki, K, Egashira, K, Hashimoto, N. Impact of monocyte chemoattractant protein-1 deficiency on cerebral aneurysm formation. Stroke 2009;40(3):942–51. www.ahajournals.org/doi/10.1161/STROKEAHA.108.532556Google Scholar
Aoki, T, Kataoka, H, Shimamura, M, et al. NF-κB is a key mediator of cerebral aneurysm formation. Circulation 2007;116(24):2830–40. www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.107.728303CrossRefGoogle ScholarPubMed
Barry, K, Gogjian, M, Stein, B. Small animal model for investigation of subarachnoid hemorrhage and cerebral vasospasm. Stroke 1979;10(5). https://pubmed.ncbi.nlm.nih.gov/505495/Google Scholar
Bederson, J, Germano, I, Guarino, L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke 1995;26(6):1086–91. https://pubmed.ncbi.nlm.nih.gov/7762027/Google Scholar
Budohoski, KP, Czosnyka, M, Smielewski, P, et al. Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: a prospective observational study. Stroke 2012;43(12):3230–7. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=23150652Google Scholar
Cahill, J, Calvert, JW, Zhang, JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2006;26(11):1341–53. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16482081Google Scholar
Cajander, S, Hassler, O. Enzymatic destruction of the elastic lamella at the mouth of cerebral berry aneurysm? Acta Neurol Scand 1976;53(3):171–81. http://doi.wiley.com/10.1111/j.1600-0404.1976.tb04335.xGoogle Scholar
Chalouhi, N, Hoh, B, Hasan, D. Review of cerebral aneurysm formation, growth, and rupture. Stroke 2013;44(12):3613–22. https://pubmed.ncbi.nlm.nih.gov/24130141/CrossRefGoogle ScholarPubMed
Chen, HI, Stiefel, MF, Oddo, M, et al. Detection of cerebral compromise with multimodality monitoring in patients with subarachnoid hemorrhage. Neurosurgery 2011;69(1):5363; discussion 63. www.ncbi.nlm.nih.gov/pubmed/21796073Google Scholar
Claassen, J, Carhuapoma, JR, Kreiter, KT, Du, EY, Connolly, ES, Mayer, SA. Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke 2002;33(5):1225–32. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11988595Google Scholar
Connolly, ES Jr, Rabinstein, AA, Carhuapoma, JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2012;43(6):1711–37. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=22556195Google Scholar
Conway, L, McDonald, L. Structural changes of the intradural arteries following subarachnoid hemorrhage. J Neurosurg 1972;37(6):715–23. https://pubmed.ncbi.nlm.nih.gov/4654701/CrossRefGoogle ScholarPubMed
Crompton, M. The pathogenesis of cerebral infarction following the rupture of cerebral berry aneurysms. Brain 1964;87:491510. https://pubmed.ncbi.nlm.nih.gov/14215175/Google Scholar
Delgado-Zygmunt, T, Arbab, M, Shiokawa, Y, Svendgaard, N. A primate model for acute and late cerebral vasospasm: angiographic findings. Acta Neurochir (Wien) 1992;118(3–4):130–6. https://pubmed.ncbi.nlm.nih.gov/1456096/Google Scholar
De Oliveira Manoel, AL, Macdonald, RL. Neuroinflammation as a target for intervention in subarachnoid hemorrhage. Front Neurol 2018;9:292. www.ncbi.nlm.nih.gov/pmc/articles/PMC5941982/Google Scholar
Diringer, MN, Bleck, TP, Hemphill 3rd, JC, et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocrit Care 2011;15(2):211–40. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21773873CrossRefGoogle ScholarPubMed
Doczi, T, Joo, F, Adam, G, Bozoky, B, Szerdahelyi, P. Blood–brain barrier damage during the acute stage of subarachnoid hemorrhage, as exemplified by a new animal model. Neurosurgery 1986;18(6):733–9. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed%26dopt=Citation%26list_uids=3736802Google Scholar
Dreier, JP, Major, S, Manning, A, et al. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain 2009;132(Pt7):1866–81. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19420089Google Scholar
Echlin, F. Spasm of basilar and vertebral arteries caused by experimental subarachnoid hemorrhage. J Neurosurg 1965;23(1):111. https://pubmed.ncbi.nlm.nih.gov/4953757/Google Scholar
Echlin, F. Experimental vasospasm, acute and chronic, due to blood in the subarachnoid space. J Neurosurg 1971;35(6):646–56. https://pubmed.ncbi.nlm.nih.gov/5000661/Google Scholar
Ecker, A, Riemenschneider, PA. Arteriographic demonstration of spasm of the intracranial arteries, with special reference to saccular arterial aneurysms. J Neurosurg 1951;8(6):660–7. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14889314Google Scholar
Edvinsson, L, Egund, N, Owman, O, Sahlin, C, Svendgaard, N. Reduced noradrenaline uptake and retention in cerebrovascular nerves associated with angiographically visible vasoconstriction following experimental subarachnoid hemorrhage in rabbits. Brain Res Bull 1982;9(1–6):799805. https://pubmed.ncbi.nlm.nih.gov/7172049/CrossRefGoogle ScholarPubMed
Eldevik, O, Kristiansen, K, Torvik, A. Subarachnoid hemorrhage and cerebrovascular spasm. Morphological study of intracranial arteries based on animal experiments and human autopsies. J Neurosurg 1981;55(6):869–76. https://pubmed.ncbi.nlm.nih.gov/7299462/Google Scholar
Espinosa, F, Weir, B, Overton, T, Castor, W, Grace, M, Boisvert, D. A randomized placebo-controlled double-blind trial of nimodipine after SAH in monkeys. Part 1: Clinical and radiological findings. J Neurosurg 1984;60(6):1167–75. https://pubmed.ncbi.nlm.nih.gov/6726360/Google Scholar
Fassbender, K, Hodapp, B, Rossol, S, et al. Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries. J Neurol Neurosurg Psychiatry 2001;70(4):534–7. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11254783Google Scholar
Findlay, J, Weir, B, Kanamaru, K, Espinosa, F. Arterial wall changes in cerebral vasospasm. Neurosurgery 1989;25(5):736–45. https://pubmed.ncbi.nlm.nih.gov/2586727/Google Scholar
Findlay, JM, Kassell, NF, Weir, BK, et al. A randomized trial of intraoperative, intracisternal tissue plasminogen activator for the prevention of vasospasm. Neurosurgery 1995;37(1):168. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8587685Google Scholar
Frösen, J, Tulamo, R, Heikura, T, et al. Lipid accumulation, lipid oxidation, and low plasma levels of acquired antibodies against oxidized lipids associate with degeneration and rupture of the intracranial aneurysm wall. Acta Neuropathol Commun 2013;1(1):71. https://actaneurocomms.biomedcentral.com/articles/10.1186/2051-5960-1-71Google Scholar
Fukuroda, T, Nishikibe, M, Ohta, Y, et al. Analysis of responses to endothelins in isolated porcine blood vessels by using a novel endothelin antagonist, BQ-153. Life Sci 1992;50(15):PL107–12. https://pubmed.ncbi.nlm.nih.gov/1313516/Google Scholar
Geraghty, JR, Davis, JL, Testai, FD. Neuroinflammation and microvascular dysfunction after experimental subarachnoid hemorrhage: emerging components of early brain injury related to outcome. Neurocrit Care 2019;31(2):373. www.ncbi.nlm.nih.gov/pmc/articles/PMC6759381/Google Scholar
Guglielmi, G. History of the genesis of detachable coils. A review. J Neurosurg 2009;111(1):18. https://pubmed.ncbi.nlm.nih.gov/19284239/Google Scholar
Gules, I, Satoh, M, Nanda, A, Zhang, JH. Apoptosis, blood–brain barrier, and subarachnoid hemorrhage. Acta Neurochir Suppl 2003;86:483–7. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14753491Google Scholar
Hanafy, KA, Morgan Stuart, R, Fernandez, L, et al. Cerebral inflammatory response and predictors of admission clinical grade after aneurysmal subarachnoid hemorrhage. J Clin Neurosci 2010;17(1):22–5. www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2830726&tool=pmcentrez&rendertype=abstractGoogle Scholar
Hashimoto, N, Handa, H, Hazama, F. Experimentally induced cerebral aneurysms in rats. Surg Neurol 1978;10(1):38. https://europepmc.org/article/med/684603Google Scholar
Hijdra, A, Van Gijn, J, Stefanko, S, Van Dongen, KJ, Vermeulen, M, Van Crevel, H. Delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: clinicoanatomic correlations. Neurology 1986;36(3):329–33. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3951698Google Scholar
Hino, A, Tokuyama, Y, Weir, B, et al. Changes in endothelial nitric oxide synthase mRNA during vasospasm after subarachnoid hemorrhage in monkeys. Neurosurgery 1996;39(3):562–8. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8875487Google Scholar
Hop, JW, Rinkel, GJ, Algra, A, van Gijn, J. Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review. Stroke 1997;28(3):660–4. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9056628Google Scholar
Hop, JW, Rinkel, GJ, Algra, A, van Gijn, J. Initial loss of consciousness and risk of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Stroke 1999;30(11):2268–71. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10548655Google Scholar
Hop, JW, Rinkel, GJ, Algra, A, van Gijn, J. Quality of life in patients and partners after aneurysmal subarachnoid hemorrhage. Stroke 1998;29(4):798804. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9550514Google Scholar
Hossler, FE, Douglas, JE. Vascular corrosion casting: review of advantages and limitations in the application of some simple quantitative methods. Microsc Microanal 2001;7(3):253–64. www.cambridge.org/core/product/identifier/S1431927601010261/type/journal_articleCrossRefGoogle ScholarPubMed
Hughes, J, Schianchi, P. Cerebral artery spasm. A histological study at necropsy of the blood vessels in cases of subarachnoid hemorrhage. J Neurosurg 1978;48(4):515–25. https://pubmed.ncbi.nlm.nih.gov/632876/Google Scholar
International Study of Unruptured Intracranial Aneurysms Investigators. Unruptured intracranial aneurysms – risk of rupture and risks of surgical intervention. N Engl J Med 1998;339(24):1725–33. https://pubmed.ncbi.nlm.nih.gov/9867550/Google Scholar
Jaeger, M, Soehle, M, Schuhmann, MU, Winkler, D, Meixensberger, J. Correlation of continuously monitored regional cerebral blood flow and brain tissue oxygen. Acta Neurochir 2005;147(1):51–6; discussion 56. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15565486Google Scholar
Jickling, GC, Sharp, FR. Improving the translation of animal ischemic stroke studies to humans. Metab Brain Dis 2015;30(2):461. www.ncbi.nlm.nih.gov/pmc/articles/PMC4186910/Google Scholar
Johnston, SC, Selvin, S, Gress, DR. The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology 1998;50(5):1413–8. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9595997Google Scholar
Juvela, S. Plasma endothelin concentrations after aneurysmal subarachnoid hemorrhage. J Neurosurg 2000;92(3):390400. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10701524Google Scholar
Kamii, H, Kato, I, Kinouchi, H, et al. Amelioration of vasospasm after subarachnoid hemorrhage in transgenic mice overexpressing CuZn-superoxide dismutase. Stroke 1999;30(4):867–71. https://pubmed.ncbi.nlm.nih.gov/10187893/Google Scholar
Kassell, NF, Torner, JC, Jane, JA, Haley, EC Jr., Adams, HP. The International Cooperative Study on the Timing of Aneurysm Surgery. Part 2: Surgical results. J Neurosurg 1990;73(1):3747. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2191091Google Scholar
Kramer, AH, Fletcher, JJ. Locally-administered intrathecal thrombolytics following aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. Neurocrit Care 2011;14(3):489–99. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20740327Google Scholar
Kuwayama, K, Zervas, N, Belson, R, Shintani, A, Pickren, K. A model for experimental cerebral arterial spasm. Stroke 1972;3(1):4956. https://pubmed.ncbi.nlm.nih.gov/5008305/Google Scholar
Landau, B, Ransohoff, J. Prolonged cerebral vasospasm in experimental subarachnoid hemorrhage. Neurology 1968;18(11):1056–65. https://pubmed.ncbi.nlm.nih.gov/4975163/Google Scholar
Lin, C, Calisaneller, T, Ukita, N, Dumont, A, Kassell, N, Lee, K. A murine model of subarachnoid hemorrhage-induced cerebral vasospasm. J Neurosci Methods 2003;123(1):8997. https://pubmed.ncbi.nlm.nih.gov/12581852/Google Scholar
Linn, FH, Rinkel, GJ, Algra, A, van Gijn, J. Incidence of subarachnoid hemorrhage: role of region, year, and rate of computed tomography: a meta-analysis. Stroke 1996;27(4):625–9. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8614919Google Scholar
Logothetis, J, Karacostas, D, Karoutas, G, Artemis, N, Mansouri, A, Milonas, I. A new model of subarachnoid hemorrhage in experimental animals with the purpose to examine cerebral vasospasm. Exp Neurol 1983;81(2):257–78. https://pubmed.ncbi.nlm.nih.gov/6873215/Google Scholar
Lovelock, CE, Rinkel, GJ, Rothwell, PM. Time trends in outcome of subarachnoid hemorrhage: population-based study and systematic review. Neurology 2010;74(19):1494–501. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20375310Google Scholar
Macdonald, RL, Higashida, RT, Keller, E, et al. Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol 2011;10(7):618–25. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21640651Google Scholar
Macdonald, RL, Higashida, RT, Keller, E, et al. Randomized trial of clazosentan in patients with aneurysmal subarachnoid hemorrhage undergoing endovascular coiling. Stroke 2012;43(6):1463–9. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=22403047CrossRefGoogle ScholarPubMed
Macdonald, RL, Pluta, RM, Zhang, JH. Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pr Neurol 2007;3(5):256–63. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17479073Google Scholar
Macdonald, RL, Weir, BK, Grace, MG, Martin, TP, Doi, M, Cook, DA. Morphometric analysis of monkey cerebral arteries exposed in vivo to whole blood, oxyhemoglobin, methemoglobin, and bilirubin. Blood Vessels 1991a;28(6):498510. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1782405Google Scholar
Macdonald, RL, Weir, BK, Runzer, TD, et al. Etiology of cerebral vasospasm in primates. J Neurosurg 1991b;75(3):415–24. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1869943Google Scholar
Marbacher, S, Fandino, J, Kitchen, ND. Standard intracranial in vivo animal models of delayed cerebral vasospasm. Br J Neurosurg 2010;24(4):415–34.Google Scholar
Marbacher, S, Grüter, B, Schöpf, S, et al. Systematic review of in vivo animal models of subarachnoid hemorrhage: species, standard parameters, and outcomes. Transl Stroke Res 2019;10(3):250–8.CrossRefGoogle Scholar
McGirt, M, Parra, A, Sheng, H, et al. Attenuation of cerebral vasospasm after subarachnoid hemorrhage in mice overexpressing extracellular superoxide dismutase. Stroke 2002;33(9):2317–23. https://pubmed.ncbi.nlm.nih.gov/12215605/Google Scholar
Megyesi, JF, Vollrath, B, Cook, DA, Findlay, JM. In vivo animal models of cerebral vasospasm: a review. Neurosurgery 2000;46(2):448–61. https://academic.oup.com/neurosurgery/article/46/2/448/2931531Google Scholar
Molyneux, A, Kerr, R, Stratton, I, et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet 2002;360(9342):1267–74. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12414200Google Scholar
Morimoto, M, Miyamoto, S, Mizoguchi, A, Kume, N, Kita, T, Hashimoto, N. Mouse model of cerebral aneurysm: experimental induction by renal hypertension and local hemodynamic changes. Stroke 2002;33(7):1911–5. https://pubmed.ncbi.nlm.nih.gov/12105374/Google Scholar
Nornes, H. The role of intracranial pressure in the arrest of hemorrhage in patients with ruptured intracranial aneurysm. J Neurosurg 1973;39(2):226–34. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4719700Google Scholar
Nosko, M, Weir, B, Krueger, C, et al. Nimodipine and chronic vasospasm in monkeys: Part 1. Clinical and radiological findings. Neurosurgery 1985;16(2):129–36. https://pubmed.ncbi.nlm.nih.gov/3974822/Google Scholar
Nuki, Y, Tsou, T-L, Kurihara, C, Kanematsu, M, Kanematsu, Y, Hashimoto, T. Elastase-induced intracranial aneurysms in hypertensive mice. Hypertension 2009;54(6):1337–44. www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.109.138297Google Scholar
Ollikainen, E, Tulamo, R, Lehti, S, et al. Smooth muscle cell foam cell formation, apolipoproteins, and ABCA1 in intracranial aneurysms: implications for lipid accumulation as a promoter of aneurysm wall rupture. J Neuropathol Exp Neurol 2016;75(7):689–99. https://academic.oup.com/jnen/article-lookup/doi/10.1093/jnen/nlw041Google Scholar
Parra, A, McGirt, M, Sheng, H, Laskowitz, D, Pearlstein, R, Warner, D. Mouse model of subarachnoid hemorrhage associated cerebral vasospasm: methodological analysis. Neurol Res 2002;24(5):510–6. https://pubmed.ncbi.nlm.nih.gov/12117325/Google Scholar
Pickard, JD, Murray, GD, Illingworth, R, et al. Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. BMJ 1989;298(6674):636–42. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2496789Google Scholar
Pluta, RM, Dejam, A, Grimes, G, Gladwin, MT, Oldfield, EH. Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage. JAMA 2005;293(12):1477–84. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15784871Google Scholar
Pluta, RM, Hansen-Schwartz, J, Dreier, J, et al. Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res 2009;31(2):151–8. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19298755Google Scholar
Rabinstein, AA. Secondary brain injury after aneurysmal subarachnoid haemorrhage: more than vasospasm. Lancet Neurol 2011;10(7):593–5. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21640652Google Scholar
Rabinstein, AA, Friedman, JA, Weigand, SD, et al. Predictors of cerebral infarction in aneurysmal subarachnoid hemorrhage. Stroke 2004;35(8):1862–6. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15218156Google Scholar
Rosengart, AJ, Schultheiss, KE, Tolentino, J, Macdonald, RL. Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage. Stroke 2007;38(8):2315–21. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17569871Google Scholar
Sahlin, C, Brismar, J, Delgado, T, Owman, C, Salford, L, Svendgaard, N. Cerebrovascular and metabolic changes during the delayed vasospasm following experimental subarachnoid hemorrhage in baboons, and treatment with a calcium antagonist. Brain Res 1987;403(2):313–32. https://pubmed.ncbi.nlm.nih.gov/3828823/CrossRefGoogle ScholarPubMed
Saito, A, Kamii, H, Kato, I, et al. Transgenic CuZn-superoxide dismutase inhibits NO synthase induction in experimental subarachnoid hemorrhage. Stroke 2001;32(7):1652–7. https://pubmed.ncbi.nlm.nih.gov/11441215/Google Scholar
Samuel, N, Radovanovic, I. Genetic basis of intracranial aneurysm formation and rupture: clinical implications in the postgenomic era. Neurosurg Focus 2019;47(1):E10. https://pubmed.ncbi.nlm.nih.gov/31261114/Google Scholar
Schievink, WI. Intracranial aneurysms. N Engl J Med 1997;336(1):2840. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8970938Google Scholar
Schöller, K, Trinkl, A, Klopotowski, M, et al. Characterization of microvascular basal lamina damage and blood–brain barrier dysfunction following subarachnoid hemorrhage in rats. Brain Res 2007;1142:237–46. www.ncbi.nlm.nih.gov/pubmed/17303089Google Scholar
Schubert, GA, Seiz, M, Hegewald, AA, Manville, J, Thome, C. Acute hypoperfusion immediately after subarachnoid hemorrhage: a xenon contrast-enhanced CT study. J Neurotrauma 2009;26(12):2225–31. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19929373Google Scholar
Schwartz, AY, Masago, A, Sehba, FA, Bederson, JB. Experimental models of subarachnoid hemorrhage in the rat: a refinement of the endovascular filament model. J Neurosci Methods 2000;96(2):161–7.Google Scholar
Sehba, FA, Pluta, RM. Aneurysmal subarachnoid hemorrhage models: do they need a fix? Stroke Res Treat 2013;2013:615154. https://doi.org/10.1155/2013/615154Google Scholar
Seifert, V, Loffler, BM, Zimmermann, M, Roux, S, Stolke, D. Endothelin concentrations in patients with aneurysmal subarachnoid hemorrhage. Correlation with cerebral vasospasm, delayed ischemic neurological deficits, and volume of hematoma. J Neurosurg 1995;82(1):5562. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7815135Google Scholar
Simeone, FA, Trepper, PJ, Brown, DJ. Cerebral blood flow evaluation of prolonged experimental vasospasm. J Neurosurg 1972;37(3):302–11. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4627019Google Scholar
Solomon, R, Antunes, J, Chen, R, Bland, L, Chien, S. Decrease in cerebral blood flow in rats after experimental subarachnoid hemorrhage: a new animal model. Stroke 1985;16(1):5864. https://pubmed.ncbi.nlm.nih.gov/3966267/Google Scholar
The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995;333(24):1581–7. https://pubmed.ncbi.nlm.nih.gov/7477192/Google Scholar
Thompson, JW, Elwardany, O, McCarthy, DJ, Shelnberg, DL, Alvarez, CM, Nada, A, Snelling, BM, Chen, SH, Sur, S, Starke, RM. In vIvo cerebral aneurysm models. Neurosurg Focus. 2019; 1; 47(1): E20. doi: 10.3171/2019.4.FOCUS19219.Google Scholar
Toda, N. Mechanisms of contracting action of oxyhemoglobin in isolated monkey and dog cerebral arteries. Am J Physiol 1990;258(1 Pt 2):H5763. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2105667Google Scholar
Toda, N, Shimizu, K, Ohta, T. Mechanism of cerebral arterial contraction induced by blood constituents. J Neurosurg 1980;53(3):312–22. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7420146Google Scholar
Trojanowski, T. Early effects of experimental arterial subarachnoid haemorrhage on the cerebral circulation. Part I: Experimental subarachnoid haemorrhage in cat and its pathophysiological effects. Methods of regional cerebral blood flow measurement and evaluation of microcirulation. Acta Neurochir (Wien) 1984a;72(1–2):7994. https://pubmed.ncbi.nlm.nih.gov/6741649/Google Scholar
Trojanowski, T. Early effects of experimental arterial subarachnoid haemorrhage on the cerebral circulation. Part II: Regional cerebral blood flow and cerebral microcirculation after experimental subarachnoid haemorrhage. Acta Neurochir (Wien) 1984b;72(3–4):241–55. https://pubmed.ncbi.nlm.nih.gov/6475579/Google Scholar
Tsuji, T, Cook, D, Weir, B, Handa, Y. Effect of clot removal on cerebrovascular contraction after subarachnoid hemorrhage in the monkey: pharmacological study. Heart Vessels 1996;11(2):6979. https://pubmed.ncbi.nlm.nih.gov/8836754/Google Scholar
Turowski, B, Hänggi, D, Beck, A, Aurich, V, Steiger, H, Moedder, U. New angiographic measurement tool for analysis of small cerebral vessels: application to a subarachnoid haemorrhage model in the rat. Neuroradiology 2007;49(2):129–37. https://pubmed.ncbi.nlm.nih.gov/17111162/Google Scholar
van Gijn, J, Kerr, RS, Rinkel, GJ. Subarachnoid haemorrhage. Lancet 2007;369(9558):306–18. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17258671Google Scholar
Varsos, V, Liszczak, T, Han, D, et al. Delayed cerebral vasospasm is not reversible by aminophylline, nifedipine, or papaverine in a “two-hemorrhage” canine model. J Neurosurg 1983;58(1):11–7. https://pubmed.ncbi.nlm.nih.gov/6847896/Google Scholar
Vatter, H, Weidauer, S, Konczalla, J, et al. Time course in the development of cerebral vasospasm after experimental subarachnoid hemorrhage: clinical and neuroradiological assessment of the rat double hemorrhage model. Neurosurgery 2006;58(6):1190–7. https://pubmed.ncbi.nlm.nih.gov/16723899/Google Scholar
Vatter, H, Zimmermann, M, Tesanovic, V, Raabe, A, Schilling, L, Seifert, V. Cerebrovascular characterization of clazosentan, the first nonpeptide endothelin receptor antagonist clinically effective for the treatment of cerebral vasospasm. Part I: inhibitory effect on endothelin(A) receptor-mediated contraction. J Neurosurg 2005;102(6):1101–7. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16028770Google Scholar
Veelken, J, Laing, R, Jakubowski, J. The Sheffield model of subarachnoid hemorrhage in rats. Stroke 1995;26(7):1279–83. https://pubmed.ncbi.nlm.nih.gov/7604426/Google Scholar
Vergouwen, MD, Etminan, N, Ilodigwe, D, Macdonald, RL. Lower incidence of cerebral infarction correlates with improved functional outcome after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 2011a;31(7):1545–53. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21505477Google Scholar
Vergouwen, MD, Ilodigwe, D, Macdonald, RL. Cerebral infarction after subarachnoid hemorrhage contributes to poor outcome by vasospasm-dependent and -independent effects. Stroke 2011b;42(4):924–9. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21311062Google Scholar
Verlooy, J, Van Reempts, J, Haseldonckx, M, Borgers, M, Selosse, P. The course of vasospasm following subarachnoid haemorrhage in rats. A vertebrobasilar angiographic study. Acta Neurochir (Wien) 1992;117(1–2):4852. https://pubmed.ncbi.nlm.nih.gov/1514428/Google Scholar
Voldby, B, Enevoldsen, EM. Intracranial pressure changes following aneurysm rupture. Part 1: clinical and angiographic correlations. J Neurosurg 1982;56(2):186–96. www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7054427Google Scholar
Weir, B. Unruptured intracranial aneurysms: a review. J Neurosurg 2002;96(1):342. https://pubmed.ncbi.nlm.nih.gov/11794601/Google Scholar
White, R, Hagen, A, Robertson, J. Effect of nonsteroid anti-inflammatory drugs on subarachnoid hemorrhage in dogs. J Neurosurg 1979;51(2):164–71. https://pubmed.ncbi.nlm.nih.gov/582181/Google Scholar
Wiebers, D, Whisnant, J, Huston, J, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 2003;362(9378):103–10. https://pubmed.ncbi.nlm.nih.gov/12867109/Google Scholar
Yatsushige, H, Yamaguchi, M, Zhou, C, Calvert, J, Zhang, J. Role of c-Jun N-terminal kinase in cerebral vasospasm after experimental subarachnoid hemorrhage. Stroke 2005;36(7):1538–43. https://pubmed.ncbi.nlm.nih.gov/15947258/Google Scholar
Yoshimoto, Y, Kim, P, Sasaki, T, Takakura, K. Temporal profile and significance of metabolic failure and trophic changes in the canine cerebral arteries during chronic vasospasm after subarachnoid hemorrhage. J Neurosurg 1993;78(5):807–12. https://pubmed.ncbi.nlm.nih.gov/8468611/Google Scholar
Zhang, X, Fei, Z, Zhang, W, et al. Emergency transsphenoidal surgery for hemorrhagic pituitary adenomas. Surg Oncol 2007;16(2):115–20. www.ncbi.nlm.nih.gov/pubmed/17643985Google Scholar
Zhou, M, Shi, J, Zhu, J, et al. Comparison between one- and two-hemorrhage models of cerebral vasospasm in rabbits.J Neurosci Methods 2007;159(2):318–24. https://pubmed.ncbi.nlm.nih.gov/16942802/Google Scholar
Zivin, J, Fisher, M, DeGirolami, U, Hemenway, C, Stashak, J. Tissue plasminogen activator reduces neurological damage after cerebral embolism. Science 1985;230(4731):1289–92. https://pubmed.ncbi.nlm.nih.gov/3934754/Google Scholar

References

Adil, MM, Qureshi, AI, Beslow, LA, Malik, AA, Jordan, LC. Factors associated with increased in-hospital mortality among children with intracerebral hemorrhage. J Child Neurol 2015;30(8):1024–8. https://doi.org/10.1177/0883073814552191.Google Scholar
Al-Jarallah, A, Al-Rifai, MT, Riela, AR, Roach, ES. Nontraumatic brain hemorrhage in children: etiology and presentation. J Child Neurol 2000;15:284–9. https://doi.org/10.1177/088307380001500503.Google Scholar
Al-Shahi, R, Bhattacharya, JJ, Currie, DG, et al. Prospective, population-based detection of intracranial vascular malformations in adults: the Scottish Intracranial Vascular Malformation Study (SIVMS). Stroke 2003;34:1163–9. https://doi.org/10.1161/01.STR.0000069018.90456.C9.Google Scholar
Awad, IA, Polster, SP. Cavernous angiomas: deconstructing a neurosurgical disease. J Neurosurg 2019;131:113. https://doi.org/10.3171/2019.3.JNS181724.Google Scholar
Awad, IA, Robinson, JR, Jr., Mohanty, S, Estes, ML. Mixed vascular malformations of the brain: clinical and pathogenetic considerations. Neurosurgery 1993;33:179–88; discussion 88. https://doi.org/10.1227/00006123-199308000-00001.Google Scholar
Bacigaluppi, S, Retta, SF, Pileggi, S, et al. Genetic and cellular basis of cerebral cavernous malformations: implications for clinical management. Clin Genet 2013;83:714. https://doi.org/10.1111/j.1399-0004.2012.01892.x.Google Scholar
Barnes, B, Cawley, CM, Barrow, DL. Intracerebral hemorrhage secondary to vascular lesions. Neurosurg Clin N Am 2002;13:289–97, v. https://doi.org/10.1016/s1042-3680(02)00015-3.Google Scholar
Baumgartner, JE, Ater, JL, Ha, CS, et al. Pathologically proven cavernous angiomas of the brain following radiation therapy for pediatric brain tumors. Pediatr Neurosurg 2003;39:201–07. https://doi.org/10.1159/000072472.Google Scholar
Beslow, LA, Licht, DJ, Smith, SE, et al. Predictors of outcome in childhood intracerebral hemorrhage: a prospective consecutive cohort study. Stroke 2010;41:313–8. https://doi.org/10.1161/STROKEAHA.109.568071.Google Scholar
Boon, LM, Mulliken, JB, Vikkula, M. RASA1: variable phenotype with capillary and arteriovenous malformations. Curr Opin Genet Dev 2005;15:265–9. https://doi.org/10.1016/j.gde.2005.03.004.Google Scholar
Bower, RS, Mallory, GW, Nwojo, M, Kudva, YC, Flemming, KD, Meyer, FB. Moyamoya disease in a primarily white, Midwestern US population: increased prevalence of autoimmune disease. Stroke 2013;44:1997–9. https://doi.org/10.1161/STROKEAHA.111.000307.Google Scholar
Broderick, J, Talbot, GT, Prenger, E, Leach, A, Brott, T. Stroke in children within a major metropolitan area: the surprising importance of intracerebral hemorrhage. J Child Neurol 1993;8:250–5. https://doi.org/10.1177/088307389300800308.Google Scholar
Cavalcanti, DD, Kalani, MY, Martirosyan, NL, Eales, J, Spetzler, RF, Preul, MC. Cerebral cavernous malformations: from genes to proteins to disease. J Neurosurg 2012;116:122–32. https://doi.org/10.3171/2011.8.JNS101241.Google Scholar
Cecchi, AC, Guo, D, Ren, Z, et al. RNF213 rare variants in an ethnically diverse population with Moyamoya disease. Stroke 2014;45:3200–07. https://doi.org/10.1161/STROKEAHA.114.006244.Google Scholar
Chan, AC, Li, DY, Berg, MJ, Whitehead, KJ. Recent insights into cerebral cavernous malformations: animal models of CCM and the human phenotype. FEBS J 2010;277:1076–83. https://doi.org/10.1111/j.1742-4658.2009.07536.x.Google Scholar
Chee, D, Phillips, R, Maixner, W, Southwell, BR, Hutson, JM. The potential of capillary birthmarks as a significant marker for capillary malformation–arteriovenous malformation syndrome in children who had nontraumatic cerebral hemorrhage. J Pediatr Surg 2010;45:2419–22. https://doi.org/10.1016/j.jpedsurg.2010.08.043.Google Scholar
Chen, L, Tanriover, G, Yano, H, Friedlander, R, Louvi, A, Gunel, M. Apoptotic functions of PDCD10/CCM3, the gene mutated in cerebral cavernous malformation 3. Stroke 2009;40:1474–81. https://doi.org/10.1161/STROKEAHA.108.527135.Google Scholar
Cooke, D, Tatum, J, Farid, H, Dowd, C, Higashida, R, Halbach, V. Transvenous embolization of a pediatric pial arteriovenous fistula. J Neurointerv Surg 2012;4:e14. https://doi.org/10.1136/neurintsurg-2011-010028.Google Scholar
Craig, HD, Gunel, M, Cepeda, O, et al. Multilocus linkage identifies two new loci for a mendelian form of stroke, cerebral cavernous malformation, at 7p15-13 and 3q25.2-27. Hum Mol Genet 1998;7:1851–8. https://doi.org/10.1093/hmg/7.12.1851.Google Scholar
Denier, C, Labauge, P, Bergametti, F, et al. Genotype–phenotype correlations in cerebral cavernous malformations patients. Ann Neurol 2006;60:550–6. https://doi.org/10.1002/ana.20947.Google Scholar
Di Rocco, C, Iannelli, A, Tamburrini, G. Cavernous angiomas of the brain stem in children. Pediatr Neurosurg 1997;27:92–9. https://doi.org/10.1159/000121233.Google Scholar
Dubovsky, J, Zabramski, JM, Kurth, J, et al. A gene responsible for cavernous malformations of the brain maps to chromosome 7q. Hum Mol Genet 1995;4:453–8. https://doi.org/10.1093/hmg/4.3.453.Google Scholar
Dupre, N, Verlaan, DJ, Hand, CK, et al. Linkage to the CCM2 locus and genetic heterogeneity in familial cerebral cavernous malformation. Can J Neurol Sci 2003;30:122–8. https://doi.org/10.1017/s0317167100053385.Google Scholar
Duran, D, Karschnia, P, Gaillard, JR, et al. Human genetics and molecular mechanisms of vein of Galen malformation. J Neurosurg Pediatr 2018;21:367–74. https://doi.org/10.3171/2017.9.PEDS17365.Google Scholar
Eerola, I, Boon, LM, Mulliken, JB, et al. Capillary malformation–arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am J Hum Genet 2003;73:1240–9. https://doi.org/10.1086/379793.Google Scholar
Faughnan, ME, Palda, VA, Garcia-Tsao, G, et al. International guidelines for the diagnosis and management of hereditary haemorrhagic telangiectasia. J Med Genet 2011;48:7387. https://doi.org/10.1136/jmg.2009.069013.Google Scholar
Fehnel, KP, Penn, DL, Duggins-Warf, M, et al. Dysregulation of the EphrinB2–EphB4 ratio in pediatric cerebral arteriovenous malformations is associated with endothelial cell dysfunction in vitro and functions as a novel noninvasive biomarker in patients. Exp Mol Med 2020;52:658–71. https://doi.org/10.1038/s12276-020-0414-0.Google Scholar
Ferriero, DM, Fullerton, HJ, Bernard, TJ, et al. Management of stroke in neonates and children: a scientific statement from the American Heart Association/American Stroke Association. Stroke 2019;50:e51e96. https://doi.org/10.1161/STR.0000000000000183.Google Scholar
Fish, JE, Flores-Suarez, CP, Boudreau, E, et al. Somatic gain of KRAS function in the endothelium is sufficient to cause vascular malformations that require MEK but not PI3K signaling. Circ Res 2020;127(6):727–43. https://doi.org/10.1161/CIRCRESAHA.Google Scholar
Frim, DM, Scott, RM. Management of cavernous malformations in the pediatric population. Neurosurg Clin N Am 1999;10:513–8. https://doi.org/10.1016/S1042-3680(18)30182-7.Google Scholar
Fujimura, M, Watanabe, M, Narisawa, A, Shimizu, H, Tominaga, T. Increased expression of serum matrix metalloproteinase-9 in patients with moyamoya disease. Surg Neurol 2009;72:476–80; discussion 80. https://doi.org/10.1016/j.surneu.2008.10.009.Google Scholar
Fukui, M. Guidelines for the diagnosis and treatment of spontaneous occlusion of the circle of Willis (‘moyamoya’ disease). Research Committee on Spontaneous Occlusion of the Circle of Willis (Moyamoya Disease) of the Ministry of Health and Welfare, Japan. Clin Neurol Neurosurg 1997;99(Suppl 2):S238–40.Google Scholar
Fullerton, HJ, Wu, YW, Zhao, S, Johnston, SC. Risk of stroke in children: ethnic and gender disparities. Neurology 2003;61:189–94. https://doi.org/10.1212/01.wnl.0000078894.79866.95.Google Scholar
Gaillard, J, Klein, J, Duran, D, et al. Incidence, clinical features, and treatment of familial moyamoya in pediatric patients: a single-institution series. J Neurosurg Pediatr 2017;19:553–9. https://doi.org/10.3171/2016.12.PEDS16468.Google Scholar
Ganesan, V, Smith, ER. Moyamoya: defining current knowledge gaps. Dev Med Child Neurol 2015;57:786–7. https://doi.org/10.1111/dmcn.12708.Google Scholar
Garcia-Monaco, R, Taylor, W, Rodesch, G, et al. Pial arteriovenous fistula in children as presenting manifestation of Rendu–Osler–Weber disease. Neuroradiology 1995;37:60–4. https://doi.org/10.1007/BF00588522.Google Scholar
Garrido-Martin, EM, Nguyen, HL, Cunningham, TA, et al. Common and distinctive pathogenetic features of arteriovenous malformations in hereditary hemorrhagic telangiectasia 1 and hereditary hemorrhagic telangiectasia 2 animal models – brief report. Arterioscler Thromb Vasc Biol 2014;34:2232–6. https://doi.org/10.1161/ATVBAHA.114.303984.Google Scholar
Gauden, AJ, McRobb, LS, Lee, VS, et al. Occlusion of animal model arteriovenous malformations using vascular targeting. Transl Stroke Res 2020;11:689–99. https://doi.org/10.1007/s12975-019-00759-y.Google Scholar
Gault, J, Sarin, H, Awadallah, NA, Shenkar, R, Awad, IA. Pathobiology of human cerebrovascular malformations: basic mechanisms and clinical relevance. Neurosurgery 2004;55:116; discussion 16–7. https://doi.org/10.1227/01.neu.0000440729.59133.c9.Google Scholar
Gil-Nagel, A, Dubovsky, J, Wilcox, KJ, et al. Familial cerebral cavernous angioma: a gene localized to a 15-cM interval on chromosome 7q. Ann Neurol 1996;39:807–10. https://doi.org/10.1002/ana.410390619.Google Scholar
Goss, JA, Huang, AY, Smith, E, et al. Somatic mutations in intracranial arteriovenous malformations. PLoS One 2019;14:e0226852. https://doi.org/10.1371/journal.pone.0226852.Google Scholar
Gross, BA, Du, R, Orbach, DB, Scott, RM, Smith, ER. The natural history of cerebral cavernous malformations in children. J Neurosurg Pediatr 2016;17(2):123–8. https://doi.org/10.3171/2015.2.PEDS14541.Google Scholar
Gross, BA, Smith, ER, Goumnerova, L, Proctor, MR, Madsen, JR, Scott, RM. Resection of supratentorial lobar cavernous malformations in children: clinical article. J Neurosurg Pediatr 2013a;12:367–73. https://doi.org/10.3171/2013.7.PEDS13126.Google Scholar
Gross, BA, Smith, ER, Scott, RM. Cavernous malformations of the basal ganglia in children. J Neurosurg Pediatr 2013b;12:171–4. https://doi.org/10.3171/2013.5.PEDS1335.Google Scholar
Guey, S, Tournier-Lasserve, E, Herve, D, Kossorotoff, M. Moyamoya disease and syndromes: from genetics to clinical management. Appl Clin Genet 2015;8:4968. https://doi.org/10.2147/TACG.S42772.Google Scholar
Gunel, M, Awad, IA, Anson, J, Lifton, RP. Mapping a gene causing cerebral cavernous malformation to 7q11.2-q21. Proc Natl Acad Sci U S A 1995;92:6620–4. https://doi.org/10.1073/pnas.92.14.6620.Google Scholar
Gunel, M, Awad, IA, Finberg, K, et al. A founder mutation as a cause of cerebral cavernous malformation in Hispanic Americans. N Engl J Med 1996;334:946–51. https://doi.org/10.1056/NEJM199604113341503.Google Scholar
Hang, Z, Shi, Y, Wei, Y. [A pathological analysis of 180 cases of vascular malformation of brain]. Zhonghua Bing Li Xue Za Zhi 1996;25:135–8.Google Scholar
Hayman, LA, Evans, RA, Ferrell, RE, Fahr, LM, Ostrow, P, Riccardi, VM. Familial cavernous angiomas: natural history and genetic study over a 5-year period. Am J Med Genet 1982;11:147–60. https://doi.org/10.1002/ajmg.1320110205.Google Scholar
Hetts, SW, Keenan, K, Fullerton, HJ, et al. Pediatric intracranial nongalenic pial arteriovenous fistulas: clinical features, angioarchitecture, and outcomes. Am J Neuroradiol 2012;33:1710–9. https://doi.org/10.3174/ajnr.A3194.Google Scholar
Hyacinth, HI, Sugihara, CL, Spencer, TL, Archer, DR, Shih, AY. Higher prevalence of spontaneous cerebral vasculopathy and cerebral infarcts in a mouse model of sickle cell disease. J Cereb Blood Flow Metab 2019;39:342–51. https://doi.org/10.1177/0271678X17732275.Google Scholar
Jia, L, Wang, L, Wei, F, et al. Effects of wall shear stress in venous neointimal hyperplasia of arteriovenous fistulae. Nephrology (Carlton) 2015;20:335–42. https://doi.org/10.1111/nep.12394.Google Scholar
Jordan, LC, Kleinman, JT, Hillis, AE. Intracerebral hemorrhage volume predicts poor neurologic outcome in children. Stroke 2009;40:1666–71. https://doi.org/10.1161/STROKEAHA.108.541383.Google Scholar
Kang, HS, Kim, JH, Phi, JH, et al. Plasma matrix metalloproteinases, cytokines and angiogenic factors in moyamoya disease. J Neurol Neurosurg Psychiatry 2010;81:673–8. https://doi.org/10.1136/jnnp.2009.191817.Google Scholar
Kim, J. Introduction to cerebral cavernous malformation: a brief review. BMB Rep 2016;49:255–62. https://doi.org/10.5483/bmbrep.2016.49.5.036.Google Scholar
Kim, YH, Choe, SW, Chae, MY, Hong, S, Oh, SP. SMAD4 deficiency leads to development of arteriovenous malformations in neonatal and adult mice. J Am Heart Assoc 2018;7:e009514. https://doi.org/10.1161/JAHA.118.009514.Google Scholar
Kurek, KC, Luks, VL, Ayturk, UM, et al. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet 2012;90:1108–15. https://doi.org/10.1016/j.ajhg.2012.05.006.Google Scholar
Labauge, P, Enjolras, O, Bonerandi, JJ, et al. An association between autosomal dominant cerebral cavernomas and a distinctive hyperkeratotic cutaneous vascular malformation in 4 families. Ann Neurol 1999;45:250–4. https://doi.org/10.1002/1531-8249(199902)45:2<250::aid-ana17>3.0.co;2-v.Google Scholar
Laberge, S, Labauge, P, Marechal, E, Maciazek, J, Tournier-Lasserve, E. Genetic heterogeneity and absence of founder effect in a series of 36 French cerebral cavernous angiomas families. Eur J Hum Genet 1999;7:499504. https://doi.org/10.1038/sj.ejhg.5200324.Google Scholar
Laberge-le Couteulx, S, Jung, HH, Labauge, P, et al. Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat Genet 1999;23:189–93. https://doi.org/10.1038/13815.Google Scholar
Larson, JJ, Ball, WS, Bove, KE, Crone, KR, Tew, JM, Jr. Formation of intracerebral cavernous malformations after radiation treatment for central nervous system neoplasia in children. J Neurosurg 1998;88:51–6. https://doi.org/10.3171/jns.1998.88.1.0051.Google Scholar
Lasjaunias, P. Vascular Diseases in Neonates, Infants and Children. Springer Verlag; 1997.Google Scholar
Laurans, MS, DiLuna, ML, Shin, D, et al. Mutational analysis of 206 families with cavernous malformations. J Neurosurg 2003;99:3843. https://doi.org/10.3171/jns.2003.99.1.0038.Google Scholar
Lawton, MT, Rutledge, WC, Kim, H, et al. Brain arteriovenous malformations. Nat Rev Dis Primers 2015;1:15008. https://doi.org/10.1038/nrdp.2015.8.Google Scholar
Lee, MJ, Chen, YF, Fan, PC, et al. Mutation genotypes of RNF213 gene from moyamoya patients in Taiwan. J Neurol Sci 2015;353:161–5. https://doi.org/10.1016/j.jns.2015.04.019.Google Scholar
Liu, J, Wang, D, Lei, C, et al. Etiology, clinical characteristics and prognosis of spontaneous intracerebral hemorrhage in children: a prospective cohort study in China. J Neurol Sci 2015;358:367–70. https://doi.org/10.1016/j.jns.2015.09.366.Google Scholar
Mansour, A, Niizuma, K, Rashad, S, et al. A refined model of chronic cerebral hypoperfusion resulting in cognitive impairment and a low mortality rate in rats. J Neurosurg 2018;131:892902. https://doi.org/10.3171/2018.3.JNS172274.Google Scholar
Marchuk, DA, Gallione, CJ, Morrison, LA, et al. A locus for cerebral cavernous malformations maps to chromosome 7q in two families. Genomics 1995;28:311–4. https://doi.org/10.1006/geno.1995.1147.Google Scholar
Matsuda, Y, Mineharu, Y, Kimura, M, et al. RNF213 p.R4810K variant and intracranial arterial stenosis or occlusion in relatives of patients with moyamoya disease. J Stroke Cerebrovasc Dis 2017;26:1841–7. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.04.019.Google Scholar
Merello, E, Pavanello, M, Consales, A, et al. Genetic screening of pediatric cavernous malformations. J Mol Neurosci 2016;60:232–8. https://doi.org/10.1007/s12031-016-0806-8.Google Scholar
Miskinyte, S, Butler, MG, Herve, D, et al. Loss of BRCC3 deubiquitinating enzyme leads to abnormal angiogenesis and is associated with syndromic moyamoya. Am J Hum Genet 2011;88:718–28. https://doi.org/10.1016/j.ajhg.2011.04.017.Google Scholar
Mohr, JP, Parides, MK, Stapf, C, et al. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet 2014;383:614–21. https://doi.org/10.1016/S0140-6736(13)62302-8.Google Scholar
Mottolese, C, Hermier, M, Stan, H, et al. Central nervous system cavernomas in the pediatric age group. Neurosurg Rev 2001;24:5571; discussion 23. https://doi.org/10.1007/pl00014581.Google Scholar
Munot, P, Saunders, DE, Milewicz, DM, et al. A novel distinctive cerebrovascular phenotype is associated with heterozygous Arg179 ACTA2 mutations. Brain 2012;135:2506–14. https://doi.org/10.1093/brain/aws172.Google Scholar
Pinard, A, Guey, S, Guo, D, et al. The pleiotropy associated with de novo variants in CHD4, CNOT3, and SETD5 extends to moyamoya angiopathy. Genet Med 2020;22:427–31. https://doi.org/10.1038/s41436-019-0639-2.Google Scholar
Pricola Fehnel, K, Duggins-Warf, M, Zurakowski, D, et al. Using urinary bFGF and TIMP3 levels to predict the presence of juvenile pilocytic astrocytoma and establish a distinct biomarker signature. J Neurosurg Pediatr 2016;18:396407. https://doi.org/10.3171/2015.12.PEDS15448.Google Scholar
Protack, CD, Foster, TR, Hashimoto, T, et al. Eph-B4 regulates adaptive venous remodeling to improve arteriovenous fistula patency. Sci Rep 2017;7:15386. https://doi.org/10.1038/s41598-017-13071-2.Google Scholar
Raj, JA, Stoodley, M. Experimental animal models of arteriovenous malformation: a review. Vet Sci 2015;2:97110. https://doi.org/10.3390/vetsci2020097.Google Scholar
Raybaud, CA, Strother, CM, Hald, JK. Aneurysms of the vein of Galen: embryonic considerations and anatomical features relating to the pathogenesis of the malformation. Neuroradiology 1989;31:109–28. https://doi.org/10.1007/BF00698838.Google Scholar
Recinos, PF, Rahmathulla, G, Pearl, M, et al. Vein of Galen malformations: epidemiology, clinical presentations, management. Neurosurg Clin N Am 2012;23:165–77. https://doi.org/10.1016/j.nec.2011.09.006.Google Scholar
Research Committee on the Pathology and Treatment of Spontaneous Occlusion of the Circle of Willis, and Health Labour Sciences Research Grant for Research on Measures for Infractable Diseases. Guidelines for diagnosis and treatment of moyamoya disease (spontaneous occlusion of the circle of Willis). Neurol Med Chir (Tokyo) 2012;52:245–66. https://doi.org/10.2176/nmc.52.245.Google Scholar
Rigamonti, D, Hadley, MN, Drayer, BP, et al. Cerebral cavernous malformations. Incidence and familial occurrence. N Engl J Med 1988;319:343–7. https://doi.org/10.1056/NEJM198808113190605.Google Scholar
Riordan, CP, Orbach, DB, Smith, ER, Scott, RM. Acute fatal hemorrhage from previously undiagnosed cerebral arteriovenous malformations in children: a single-center experience. J Neurosurg Pediatr 2018;22:244–50. https://doi.org/10.3171/2018.3.PEDS1825.Google Scholar
Roberts, JM, Maniskas, ME, Fraser, JF, Bix, GJ. Internal carotid artery stenosis: a novel surgical model for moyamoya syndrome. PLoS One 2018;13:e0191312. https://doi.org/10.1371/journal.pone.0191312Google Scholar
Rutledge, WC, Abla, AA, Nelson, J, Halbach, VV, Kim, H, Lawton, MT. Treatment and outcomes of ARUBA-eligible patients with unruptured brain arteriovenous malformations at a single institution. Neurosurg Focus 2014;37:E8. https://doi.org/10.3171/2014.7.FOCUS14242.Google Scholar
Saliou, G, Eyries, M, Iacobucci, M, et al. Clinical and genetic findings in children with CNS arteriovenous fistulas. Ann Neurol 2017;82(6):972–80. https://doi.org/10.1002/ana.25106.Google Scholar
Scott, RM. Brain stem cavernous angiomas in children. Pediatr Neurosurg 1990;16:281–6. https://doi.org/10.1159/000120543.Google Scholar
Scott, RM, Barnes, P, Kupsky, W, Adelman, LS. Cavernous angiomas of the central nervous system in children. J Neurosurg 1992;76:3846. https://doi.org/10.3171/jns.1992.76.1.0038.Google Scholar
Scott, RM, Smith, ER. Moyamoya disease and moyamoya syndrome. N Engl J Med 2009;360:1226–37. https://doi.org/10.1056/NEJMra0804622.Google Scholar
Seki, T, Yun, J, Oh, SP. Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular remodeling. Circ Res 2003;93:682–9. https://doi.org/10.1161/01.RES.0000095246.40391.3B.Google Scholar
Shenkar, R, Elliott, JP, Diener, K, et al. Differential gene expression in human cerebrovascular malformations. Neurosurgery 2003;52:465–77; discussion 77–8. https://doi.org/10.1227/01.neu.0000044131.03495.22.Google Scholar
Singla, A, Brace O’Neill, JE, Smith, E, Scott, RM. Cavernous malformations of the brain after treatment for acute lymphocytic leukemia: presentation and long-term follow-up. J Neurosurg Pediatr 2013;11:127–32. https://doi.org/10.3171/2012.11.PEDS12235.Google Scholar
Sirvente, J, Enjolras, O, Wassef, M, Tournier-Lasserve, E, Labauge, P. Frequency and phenotypes of cutaneous vascular malformations in a consecutive series of 417 patients with familial cerebral cavernous malformations. J Eur Acad Dermatol Venereol 2009;23(9):1066–72. https://www/doi/10.1111/j.1468-3083.2009.03263.x.Google Scholar
Smith, ER. Moyamoya biomarkers. J Korean Neurosurg Soc 2015;57:415–21. https://doi.org/10.3340/jkns.2015.57.6.415.Google Scholar
Smith, ER, Scott, RM. Spontaneous occlusion of the circle of Willis in children: pediatric moyamoya summary with proposed evidence-based practice guidelines. A review. J Neurosurg Pediatr 2012;9:353–60. https://doi.org/10.3171/2011.12.PEDS1172.Google Scholar
Somarathna, M, Isayeva-Waldrop, T, Al-Balas, A, Guo, L, Lee, T. Novel, A Model of balloon angioplasty injury in rat arteriovenous fistula. J Vasc Res 2020;57(4):223–35. https://doi.org/10.1159/000507080.Google Scholar
Soriano, SG, Cowan, DB, Proctor, MR, Scott, RM. Levels of soluble adhesion molecules are elevated in the cerebrospinal fluid of children with moyamoya syndrome. Neurosurgery 2002;50:544–9. https://doi.org/10.1097/00006123-200203000-00022.Google Scholar
Spiegler, S, Rath, M, Paperlein, C, Felbor, U. Cerebral cavernous malformations: an update on prevalence, molecular genetic analyses, and genetic counselling. Mol Syndromol 2018;9:60–9. https://doi.org/10.1159/000486292.Google Scholar
Starke, RM, McCarthy, DJ, Komotar, RJ, Connolly, ES. Gut microbiome and endothelial TLR4 activation provoke cerebral cavernous malformations. Neurosurgery 2017;81:N44–N6. https://doi.org/10.1093/neuros/nyx450.Google Scholar
Tang, AT, Choi, JP, Kotzin, JJ, et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature 2017;545:305–10. https://doi.org/10.1038/nature22075.Google Scholar
Tanriover, G, Boylan, AJ, Diluna, ML, Pricola, KL, Louvi, A, Gunel, M. PDCD10, the gene mutated in cerebral cavernous malformation 3, is expressed in the neurovascular unit. Neurosurgery 2008;62:930–8; discussion 8. https://doi.org/10.1227/01.neu.0000318179.02912.ca.Google Scholar
Thiex, R, Mulliken, JB, Revencu, N, et al. A novel association between RASA1 mutations and spinal arteriovenous anomalies.Am J Neuroradiol 2010;31:775–9. https://doi.org/10.3174/ajnr.A1907.Google Scholar
Toll, A, Parera, E, Gimenez-Arnau, AM, et al. Cutaneous venous malformations in familial cerebral cavernomatosis caused by KRIT1 gene mutations. Dermatology 2009;218:307–13. https://doi.org/10.1159/000199461.Google Scholar
Tomlinson, FH, Rufenacht, DA, Sundt, TM, Jr., Nichols, DA, Fode, NC. Arteriovenous fistulas of the brain and the spinal cord. J Neurosurg 1993;79:1627. https://doi.org/10.3171/jns.1993.79.1.0016Google Scholar
Vanaman, MJ, Hervey-Jumper, SL, Maher, CO. Pediatric and inherited neurovascular diseases. Neurosurg Clin N Am 2010;21:427–41. https://doi.org/10.1016/j.nec.2010.03.001.Google Scholar
Vivanti, A, Ozanne, A, Grondin, C, et al. Loss of function mutations in EPHB4 are responsible for vein of Galen aneurysmal malformation. Brain 2018;141:979–88. https://doi.org/10.1093/brain/awy020.Google Scholar
Walcott, BP, Smith, ER, Scott, RM, Orbach, DB. Dural arteriovenous fistulae in pediatric patients: associated conditions and treatment outcomes. J Neurointerv Surg 2013a;5(1):69. https://doi.org/10.1136/neurintsurg-2011-010169.Google Scholar
Walcott, BP, Smith, ER, Scott, RM, Orbach, DB. Pial arteriovenous fistulae in pediatric patients: associated syndromes and treatment outcome. J Neurointerv Surg 2013b;5(1):10–4. https://doi.org/10.1136/neurintsurg-2011-010168.Google Scholar
Wallace, S, Guo, DC, Regalado, E, et al. Disrupted nitric oxide signaling due to GUCY1A3 mutations increases risk for moyamoya disease, achalasia and hypertension. Clin Genet 2016;90:351–60. https://doi.org/10.1111/cge.12739.Google Scholar
Wang, K, Zhou, HJ, Wang, M. CCM3 and cerebral cavernous malformation disease. Stroke Vasc Neurol 2019;4:6770. https://doi.org/10.1136/svn-2018-000195.Google Scholar
Warejko, JK, Schueler, M, Vivante, A, et al. Whole exome sequencing reveals a monogenic cause of disease in approximately 43% of 35 families with midaortic syndrome. Hypertension 2018;71:691–9. https://doi.org/10.1161/HYPERTENSIONAHA.117.10296.Google Scholar
Wen, J, Sun, X, Chen, H, et al. Mutation of rnf213a by TALEN causes abnormal angiogenesis and circulation defects in zebrafish. Brain Res 2016;1644:70–8. https://doi.org/10.1016/j.brainres.2016.04.051.Google Scholar
Weon, YC, Yoshida, Y, Sachet, M, et al. Supratentorial cerebral arteriovenous fistulas (AVFs) in children: review of 41 cases with 63 non choroidal single-hole AVFs. Acta Neurochir (Wien) 2005;147:1731. https://doi.org/10.1007/s00701-004-0341-1.Google Scholar
Wetzel-Strong, SE, Detter, MR, Marchuk, DA. The pathobiology of vascular malformations: insights from human and model organism genetics. J Pathol 2017;241:281–93. https://doi.org/10.1002/path.4844.Google Scholar
Whitehead, KJ, Plummer, NW, Adams, JA, Marchuk, DA, Li, DY. Ccm1 is required for arterial morphogenesis: implications for the etiology of human cavernous malformations. Development 2004;131:1437–48. https://doi.org/10.1242/dev.01036.Google Scholar
Willinsky, RA, Lasjaunias, P, Terbrugge, K, Burrows, P. Multiple cerebral arteriovenous malformations (AVMs). Review of our experience from 203 patients with cerebral vascular lesions.Neuroradiology 1990;32:207–10. https://doi.org/10.1007/BF00589113.Google Scholar
Woodall, MN, McGettigan, M, Figueroa, R, Gossage, JR, Alleyne, CH, Jr. Cerebral vascular malformations in hereditary hemorrhagic telangiectasia. J Neurosurg 2014;120:8792. https://doi.org/10.3171/2013.10.JNS122402.Google Scholar
Yoshida, Y, Weon, YC, Sachet, M, et al. Posterior cranial fossa single-hole arteriovenous fistulae in children: 14 consecutive cases. Neuroradiology 2004;46:474–81. https://doi.org/10.1007/s00234-004-1176-4.Google Scholar
Zabramski, JM, Wascher, TM, Spetzler, RF, et al. The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg 1994;80:422–32. https://doi.org/10.3171/jns.1994.80.3.0422.Google Scholar
Zeng, X, Hunt, A, Jin, SC, Duran, D, Gaillard, J, Kahle, KT. EphrinB2–EphB4–RASA1 signaling in human cerebrovascular development and disease. Trends Mol Med 2019;25:265–86. https://doi.org/10.1016/j.molmed.2019.01.009.Google Scholar
Zhang, J, Rigamonti, D, Dietz, HC, Clatterbuck, RE. Interaction between krit1 and malcavernin: implications for the pathogenesis of cerebral cavernous malformations. Neurosurgery 2007;60:353–9; discussion 9. https://doi.org/10.1227/01.NEU.0000249268.11074.83.Google Scholar

References

Adeeb, N, Mortazavi, MM, Tubbs, RS, Cohen-Gadol, AA. The cranial dura mater: a review of its history, embryology, and anatomy. Childs Nerv Syst 2012;28(6):827–37. https://doi.org/10.1007/s00381-012-1744-6.Google Scholar
Agochukwu, NB, Solomon, BD, Muenke, M. Impact of genetics on the diagnosis and clinical management of syndromic craniosynostoses. Childs Nerv Syst 2012;28(9):1447–63. https://doi.org/10.1007/s00381-012-1756-2.Google Scholar
Aldridge, K, Kane, AA, Marsh, JL, Yan, P, Govier, D, Richtsmeier, JT. Relationship of brain and skull in pre- and postoperative sagittal synostosis. J Anat 2005;206(4):373–85. https://doi.org/10.1111/j.1469-7580.2005.00397.x.Google Scholar
Azoury, SC, Reddy, S, Shukla, V, Deng, C-X. Fibroblast Growth Factor Receptor 2 (FGFR2) mutation related syndromic craniosynostosis. Int J Biol Sci 2017;13(12):1479–88. https://doi.org/10.7150/ijbs.22373.Google Scholar
Becker, DB, Petersen, JD, Kane, AA, Cradock, MM, Pilgram, TK, Marsh, JL. Speech, cognitive, and behavioral outcomes in nonsyndromic craniosynostosis. Plast Reconstr Surg 2005;116(2):400–7. https://doi.org/10.1097/01.prs.0000172763.71043.b8.Google Scholar
Beckett, JS, Brooks, ED, Lacadie, C, et al. Altered brain connectivity in sagittal craniosynostosis. J Neurosurg Pediatr 2014;13(6):690–8. https://doi.org/10.3171/2014.3.PEDS13516.Google Scholar
Bolthauser, E, Ludwig, S, Dietrich, F, Landolt, MA. Sagittal craniosynostosis: cognitive development, behaviour, and quality of life in unoperated children. Neuropediatrics 2003;34(6):293300. https://doi.org/10.1055/s-2003-44667.Google Scholar
Bonfield, CM, Foley, LM, Kundu, S, et al. The influence of surgical correction on white matter microstructural integrity in rabbits with familial coronal suture craniosynostosis. Neurosurg Focus 2015;38(5):E3. https://doi.org/10.3171/2015.2.FOCUS14849.Google Scholar
Bottero, L, Lajeunie, E, Arnaud, E, Marchac, D, Renier, D. Functional outcome after surgery for trigonocephaly. Plast Reconstr Surg 1998;102(4):952–8; discussion 959–60.Google Scholar
Boulet, SL, Rasmussen, SA, Honein, MA. A population-based study of craniosynostosis in metropolitan Atlanta, 1989–2003. Am J Med Genet A 2008;146A(8):984–91. https://doi.org/10.1002/ajmg.a.32208.Google Scholar
Boyadjiev, S, for the International Craniosynostosis Consortium. Genetic analysis of non-syndromic craniosynostosis. Orthod Craniofac Res 2007;10(3):129–37. https://doi.org/10.1111/j.1601-6343.2007.00393.x.Google Scholar
Brooks, ED, Yang, J, Beckett, JS, et al. Normalization of brain morphology after surgery in sagittal craniosynostosis. J Neurosurg Pediatr 2016;17(4):460–8. https://doi.org/10.3171/2015.7.PEDS15221.Google Scholar
Cabrejo, R, Lacadie, C, Brooks, E, et al. Understanding the learning disabilities linked to sagittal craniosynostosis. J Craniofac Surg 2019a;30(2):497502. https://doi.org/10.1097/SCS.0000000000005194.Google Scholar
Cabrejo, R, Lacadie, C, Chuang, C, et al. What is the functional difference between sagittal with metopic and isolated sagittal craniosynotosis? J Craniofac Surg 2019b;30(4):968–73. https://doi.org/10.1097/SCS.0000000000005288.Google Scholar
Cariboni, A, Maggi, R. Kallmann’s syndrome, a neuronal migration defect. Cell Mol Life Sci 2006;63(21):2512–26. https://doi.org/10.1007/s00018-005-5604-3.Google Scholar
Christensen, FK, Clark, DB. The effect of restricted suture growth on brain growth in dogs. Surg Forum 1970;21:439–40. https://doi.org/10.3389/fcell.2021.653579.Google Scholar
Chuang, C, Rolison, M, Yang, JF, et al. Normalization of speech processing after whole-vault cranioplasty in sagittal synostosis: J Craniofac Surg 2018;29(5):1132–6. https://doi.org/10.1097/SCS.0000000000004474.Google Scholar
Church, MW, Parent-Jenkins, L, Rozzelle, AA, Eldis, FE, Kazzi, SNJ. Auditory brainstem response abnormalities and hearing loss in children with craniosynostosis. Pediatrics 2007;119(6):e1351–60. https://doi.org/10.1542/peds.2006-3009.Google Scholar
Churchill, JD, Grossman, AW, Irwin, SA, et al. A converging-methods approach to fragile X syndrome. Dev Psychobiol 2002;40(3):323338. https://doi.org/10.1002/dev.10036.Google Scholar
Ciurea, AV, Toader, C. Genetics of craniosynostosis: review of the literature. J Med Life 2009;2(1):517.Google Scholar
Cohen, SR, Persing, JA. Intracranial pressure in single-suture craniosynostosis. Cleft Palate–Craniofacial J 1998;35(3):194–6. https://doi.org/10.1597/1545-1569_1998_035_0194_ipissc_2.3.co_2.Google Scholar
Collett, BR, Kapp-Simon, KA, Wallace, E, Cradock, MM, Buono, L, Speltz, ML. Attention and executive function in children with and without single-suture craniosynostosis. Child Neuropsychol 2017;23(1):8398. https://doi.org/10.1080/09297049.2015.1085005.Google Scholar
Collmann, H, Sörensen, N, Krauß, J. Hydrocephalus in craniosynostosis: a review. Childs Nerv Syst 2005;21(10):902–12. https://doi.org/10.1007/s00381-004-1116-y.Google Scholar
Cradock, MM, Gray, KE, Kapp-Simon, KA, Collett, BR, Buono, LA, Speltz, ML. Sex differences in the neurodevelopment of school-age children with and without single-suture craniosynostosis. Childs Nerv Syst 2015;31(7):1103–11. https://doi.org/10.1007/s00381-015-2671-0.Google Scholar
Creuzet, SE, Martinez, S, Le Douarin, NM. The cephalic neural crest exerts a critical effect on forebrain and midbrain development. Proc Natl Acad Sci 2006;103(38):14033–8. https://doi.org/10.1073/pnas.0605899103.Google Scholar
Da Costa, AC, Walters, I, Savarirayan, R, Anderson, VA, Wrennall, JA, Meara, JG. Intellectual outcomes in children and adolescents with syndromic and nonsyndromic craniosynostosis. Plast Reconstr Surg 2006;118(1):175–81. https://doi.org/10.1097/01.prs.0000221009.93022.50.Google Scholar
David, LR, Wilson, JA, Watson, NE, Argenta, LC. Cerebral perfusion defects secondary to simple craniosynostosis. J Craniofac Surg 1996;7(3):177–85. https://doi.org/10.1097/00001665-199605000-00003.Google Scholar
de Jong, T, Maliepaard, M, Bannink, N, Raat, H, Mathijssen, IMJ. Health-related problems and quality of life in patients with syndromic and complex craniosynostosis. Childs Nerv Syst 2012;28(6):879–82. https://doi.org/10.1007/s00381-012-1681-4.Google Scholar
Delahaye, S, Bernard, JP, Rénier, D, Ville, Y. Prenatal ultrasound diagnosis of fetal craniosynostosis: fetal craniosynostosis. Ultrasound Obstet Gynecol 2003;21(4):347–53. https://doi.org/10.1002/uog.91.Google Scholar
Delashaw, JB, Persing, JA, Broaddus, WC, Jane, JA. Cranial vault growth in craniosynostosis. J Neurosurg 1989;70(2):159–65. https://doi.org/10.3171/jns.1989.70.2.0159.Google Scholar
Di Rocco, F, Arnaud, E, Renier, D. Evolution in the frequency of nonsyndromic craniosynostosis: clinical article. J Neurosurg Pediatr 2009;4(1):21–5. https://doi.org/10.3171/2009.3.PEDS08355.Google Scholar
Doerga, PN, Lequin, MH, Dremmen, MHG, et al. Cerebral blood flow in children with syndromic craniosynostosis: cohort arterial spin labeling studies. J Neurosurg Pediatr 2020;25(4):340–50. https://doi.org/10.3171/2019.10.PEDS19150.Google Scholar
Doherty, P, Walsh, FS. CAM–FGF receptor interactions: a model for axonal growth. Mol Cell Neurosci 1996;8(2–3):99111. https://doi.org/10.1006/mcne.1996.0049.Google Scholar
Donati, R, Landi, A, Rovati, LC, et al. Neurophysiological evaluation with multimodality evoked potentials in craniostenosis and craniofacial stenosis. J Craniofac Surg 1997;8(4):286–9. https://doi.org/10.1097/00001665-199707000-00011.Google Scholar
Engel, M, Hoffmann, J, Mühling, J, Castrillón-Oberndorfer, G, Seeberger, R, Freudlsperger, C. Magnetic resonance imaging in isolated sagittal synostosis. J Craniofac Surg 2012;23(4):e366–9. https://doi.org/10.1097/SCS.0b013e3182543258.Google Scholar
Fellows-Mayle, W, Hitchens, TK, Simplaceanu, E, et al. Testing causal mechanisms of nonsyndromic craniosynostosis using path analysis of cranial contents in rabbits with uncorrected craniosynostosis. Cleft Palate Craniofac J 2006;43(5):524–31. https://doi.org/10.1597/05-107.Google Scholar
Florisson, JMG, Dudink, J, Koning, IV, et al. Assessment of white matter microstructural integrity in children with syndromic craniosynostosis: a diffusion-tensor imaging study. Radiology 2011;261(2):534–41. https://doi.org/10.1148/radiol.11101024.Google Scholar
Gabrick, KS, Wu, RT, Singh, A, Persing, JA, Alperovich, M. Radiographic severity of metopic craniosynostosis correlates with long-term neurocognitive outcomes. Plast Reconstr Surg 2020;145(5):1241–8. https://doi.org/10.1097/PRS.0000000000006746.Google Scholar
Grandhi, R, Peitz, GW, Foley, LM, et al. The influence of suturectomy on age-related changes in cerebral blood flow in rabbits with familial bicoronal suture craniosynostosis: a quantitative analysis. PLoS One 2018;13(6):e0197296. https://doi.org/10.1371/journal.pone.0197296.Google Scholar
Graziani, LJ, Weitzman, ED, Velasco, MS. Neurologic maturation and auditory evoked responses in low birth weight infants. Pediatrics 1968;41(2):483–94.Google Scholar
Guttorm, TK, Leppänen, PHT, Hämäläinen, JA, Eklund, KM, Lyytinen, HJ. Newborn event-related potentials predict poorer pre-reading skills in children at risk for dyslexia. J Learn Disabil 2010;43(5):391401. https://doi.org/:10.1177/0022219409345005.Google Scholar
Hack, M, Taylor, HG, Drotar, D, et al. Poor predictive validity of the Bayley Scales of Infant Development for cognitive function of extremely low birth weight children at school age. Pediatrics 2005;116(2):333–41. https://doi.org/10.1542/peds.2005-0173.Google Scholar
Hashim, PW, Patel, A, Yang, JF, et al. The effects of whole-vault cranioplasty versus strip craniectomy on long-term neuropsychological outcomes in sagittal craniosynostosis. Plast Reconstr Surg 2014;134(3):491501. https://doi.org/10.1097/PRS.0000000000000420.Google Scholar
Hebert, JM. FGF signaling through FGFR1 is required for olfactory bulb morphogenesis. Development 2003;130(6):1101–11. https://doi.org/10.1242/dev.00334.Google Scholar
Heller, JB, Heller, MM, Knoll, B, Gabbay, JS, Duncan, C, Persing, JA. Intracranial volume and cephalic index outcomes for total calvarial reconstruction among nonsyndromic sagittal synostosis patients. Plast Reconstr Surg 2008;121(1):187–95. https://doi.org/10.1097/01.prs.0000293762.71115.c5.Google Scholar
Hukki, A, Koljonen, V, Karppinen, A, Valanne, L, Leikola, J. Brain anomalies in 121 children with non-syndromic single suture craniosynostosis by MR imaging. Eur J Paediatr Neurol 2012;16(6):671–5. https://doi.org/10.1016/j.ejpn.2012.04.003.Google Scholar
Inglis-Broadgate, SL, Thomson, RE, Pellicano, F, et al. FGFR3 regulates brain size by controlling progenitor cell proliferation and apoptosis during embryonic development. Dev Biol 2005;279(1):7385. https://doi.org/10.1016/j.ydbio.2004.11.035.Google Scholar
Jessell, TM, Sanes, JR. Development. Curr Opin Neurobiol 2000;10(5):599611. https://doi.org/10.1016/S0959-4388(00)00136-7.Google Scholar
Kamiguchi, H, Lemmon, V. Neural cell adhesion molecule L1: signaling pathways and growth cone motility. J Neurosci Res 1997;49(1):18. https://doi.org/10.1002/(sici)1097-4547(19970701)49:1<1::aid-jnr1>3.0.co;2-h.Google Scholar
Kapp-Simon, KA, Speltz, ML, Cunningham, ML, Patel, PK, Tomita, T. Neurodevelopment of children with single suture craniosynostosis: a review. Childs Nerv Syst 2007;23(3):269–81. https://doi.org/10.1007/s00381-006-0251-z.Google Scholar
Kljajić, M, Maltese, G, Tarnow, P, Sand, P, Kölby, L. The cognitive profile of children with nonsyndromic craniosynostosis. Plast Reconstr Surg 2019;143(5):1037e–52e. https://doi.org/10.1097/PRS.0000000000005515.Google Scholar
Kostović, I, Judaš, M, Petanjek, Z, Šimić, G. Ontogenesis of goal-directed behavior: anatomo-functional considerations. Int J Psychophysiol 1995;19(2):85102. https://doi.org/10.1016/0167-8760(94)00081-O.Google Scholar
Kurtzberg, D, Hitpert, PL, Kreuzer, JA, Vaughan, HG. Differential maturation of cortical auditory evoked potentials to speech sounds in normal fullterm and very low-birthweight infants. Dev Med Child Neurol 2008;26(4):466–75. https://doi.org/10.1111/j.1469-8749.1984.tb04473.x.Google Scholar
Lajeunie, E, Crimmins, DW, Arnaud, E, Renier, D. Genetic considerations in nonsyndromic midline craniosynostoses: a study of twins and their families. J Neurosurg Pediatr 2005;103(4):353–6. https://doi.org/10.3171/ped.2005.103.4.0353.Google Scholar
Lajeunie, E, Le Merrer, M, Bonaïti-Pellie, C, Marchac, D, Renier, D. Genetic study of scaphocephaly. Am J Med Genet 1996;62(3):282–5. https://doi.org/10.1002/(SICI)1096-8628(19960329)62:3<282::AID-AJMG15>3.0.CO;2-G.Google Scholar
Lajeunie, E, Le Merrer, M, Marchac, D, Renier, D. Syndromal and nonsyndromal primary trigonocephaly: analysis of a series of 237 patients. Am J Med Genet 1998;75(2):211–5. https://doi.org/10.1002/(sici)1096-8628(19980113)75:2<211::aid-ajmg19>3.0.co;2-s.Google Scholar
Lenton, KA, Nacamuli, RP, Wan, DC, Helms, JA, Longaker, MT. Cranial suture biology. Curr Topics Devel Biol 2005;66:287328. https://doi.org/10.1016/S0070-2153(05)66009-7.Google Scholar
Levitt, P. Structural and functional maturation of the developing primate brain. J Pediatr 2003;143(4):3545. https://doi.org/10.1067/S0022-3476(03)00400-1.Google Scholar
Liasis, A. Monitoring visual function in children with syndromic craniosynostosis: a comparison of 3 methods. Arch Ophthalmol 2006;124(8):1119. https://doi.org/10.1001/archopht.124.8.1119.Google Scholar
Lu, X, Forte, AJ, Steinbacher, DM, Alperovich, M, Alonso, N, Persing, JA. Enlarged anterior cranial fossa and restricted posterior cranial fossa, the disproportionate growth of basicranium in Crouzon syndrome. J Cranio-Maxillofac Surg 2019;47(9):1426–35. https://doi.org/10.1016/j.jcms.2019.06.003.Google Scholar
Lu, X, Sawh-Martinez, R, Forte, AJ, et al. Classification of subtypes of Crouzon syndrome based on the type of vault suture synostosis. J Craniofac Surg 2020;31(3):678–84. https://doi.org/10.1097/SCS.0000000000006173.Google Scholar
Magge, SN, Westerveld, M, Pruzinsky, T, Persing, JA. Long-term neuropsychological effects of sagittal craniosynostosis on child development. J Craniofac Surg 2002;13(1):99104. https://doi.org/10.1097/00001665-200201000-00023.Google Scholar
Martini, M, Röhrig, A, Wenghoefer, M, Schindler, E, Messing-Jünger, AM. Cerebral oxygenation and hemodynamic measurements during craniosynostosis surgery with near-infrared spectroscopy. Childs Nerv Syst 2014;30(8):1367–74. https://doi.org/10.1007/s00381-014-2418-3.Google Scholar
Molfese, DL. Predicting dyslexia at 8 years of age using neonatal brain responses. Brain Lang 2000;72(3):238–45. https://doi.org/10.1006/brln.2000.2287.Google Scholar
Mooney, MP, Siegel, MI, Burrows, AM, et al. A rabbit model of human familial, nonsyndromic unicoronal suture synostosis I. Synostotic onset, pathology, and sutural growth patterns. Childs Nerv Syst 1998;14(6):236–46. https://doi.org/10.1007/s003810050219.Google Scholar
Morton, JB, Munakata, Y. What’s the difference? Contrasting modular and neural network approaches to understanding developmental variability. J Dev Behav Pediatr 2005;26(2):128–39. https://doi.org/10.1097/00004703-200504000-00010.Google Scholar
Moss, ML, Salentijn, L. The primary role of functional matrices in facial growth. Am J Orthod 1969;55(6):566–77. https://doi.org/10.1016/0002-9416(69)90034-7.Google Scholar
Munakata, Y, Casey, BJ, Diamond, A. Developmental cognitive neuroscience: progress and potential. Trends Cogn Sci 2004;8(3):122–8. https://doi.org/10.1016/j.tics.2004.01.005.Google Scholar
Mursch, K, Brockmann, K, Lang, JK, Markakis, E, Behnke-Mursch, J. Visually evoked potentials in 52 children requiring operative repair of craniosynostosis. Pediatr Neurosurg 1998;29(6):320–3. https://doi.org/10.1159/000028746.Google Scholar
Novak, GP, Kurtzberg, D, Kreuzer, JA, Vaughan, HG. Cortical responses to speech sounds and their formants in normal infants: maturational sequence and spatiotemporal analysis. Electroencephalogr Clin Neurophysiol 1989;73(4):295305. https://doi.org/10.1016/0013-4694(89)90108-9.Google Scholar
Passos-Bueno, MR, Sertié, AL, Jehee, FS, Fanganiello, R, Yeh, E. Genetics of craniosynostosis: genes, syndromes, mutations and genotype–phenotype correlations. In Rice, DP (Ed.), Frontiers of Oral Biology, Vol 12. S. KARGER AG; 2008, pp. 107–43. https://doi.org/10.1159/000115035.Google Scholar
Patel, A, Yang, JF, Hashim, PW, et al. The impact of age at surgery on long-term neuropsychological outcomes in sagittal craniosynostosis. Plast Reconstr Surg 2014;134(4):608e–17e. https://doi.org/10.1097/PRS.0000000000000511.Google Scholar
Persing, JA, Babler, WJ, Jane, JA, Duckworth, PF. Experimental unilateral coronal synostosis in rabbits. Plast Reconstr Surg 1986;77(3):369–76. https://doi.org/10.1097/00006534-198603000-00003.Google Scholar
Persing, JA, Jane, JA. Craniosynostosis. Semin Neurol 1989;9(3):200–09. https://doi.org/10.1055/s-2008-1041326.Google Scholar
Persson, KM, Roy, WA, Persing, JA, Rodeheaver, GT, Winn, HR. Craniofacial growth following experimental craniosynostosis and craniectomy in rabbits. J Neurosurg 1979;50(2):187–97. https://doi.org/10.3171/jns.1979.50.2.0187.Google Scholar
Proudman, TW, Clark, BE, Moore, MH, Abbott, AH, David, DJ. Central nervous system imaging in Crouzonʼs syndrome: J Craniofac Surg 1995;6(5):401–05. https://doi.org/10.1097/00001665-199509000-00016.Google Scholar
Quintero-Rivera, F, Robson, CD, Reiss, RE, et al. Intracranial anomalies detected by imaging studies in 30 patients with Apert syndrome. Am J Med Genet A 2006;140A(12):1337–8. https://doi.org/10.1002/ajmg.a.31277.Google Scholar
Raybaud, C, Di Rocco, C. Brain malformation in syndromic craniosynostoses, a primary disorder of white matter: a review. Childs Nerv Syst 2007;23(12):1379–88. https://doi.org/10.1007/s00381-007-0474-7.Google Scholar
Renier, D, Lajeunie, E, Arnaud, E, Marchac, D. Management of craniosynostoses. Childs Nerv Syst 2000;16(10–11):645–58. https://doi.org/10.1007/s003810000320.Google Scholar
Renier, D, Sainte-Rose, C, Marchac, D, Hirsch, J-F. Intracranial pressure in craniostenosis. J Neurosurg 1982;57(3):370–7. https://doi.org/10.3171/jns.1982.57.3.0370.Google Scholar
Richtsmeier, JT, Aldridge, K, DeLeon, VB, et al. Phenotypic integration of neurocranium and brain. J Exp Zoolog B Mol Dev Evol 2006;306B(4):360–78. https://doi.org/10.1002/jez.b.21092.Google Scholar
Rijken, BFM, Leemans, A, Lucas, Y, van Montfort, K, Mathijssen, IMJ, Lequin, MH. Diffusion tensor imaging and fiber tractography in children with craniosynostosis syndromes. Am J Neuroradiol 2015;36(8):1558–64. https://doi.org/10.3174/ajnr.A4301.Google Scholar
Salazar, V, Gamer, L, Rosen, V. BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol 2016;12:203–21. https://doi.org/10.1038/nrendo.2016.1.Google Scholar
Satoh, M, Ishikawa, N, Enomoto, T, Takeda, T, Yoshizawa, T, Nose, T. [Study by I-123-IMP-SPECT before and after surgery for craniosynostosis]. Kaku Igaku 1990;27(12):1411–8.Google Scholar
Selber, J, Reid, RR, Chike-Obi, CJ, et al. The changing epidemiologic spectrum of single-suture synostoses. Plast Reconstr Surg 2008;122(2):527–33. https://doi.org/10.1097/PRS.0b013e31817d548c.Google Scholar
Sen, A, Dougal, P, Padhy, AK, et al. Technetium-99m-HMPAO SPECT cerebral blood flow study in children with craniosynostosis. J Nucl Med 1995;36(3):394–8.Google Scholar
Sun, AH, Eilbott, J, Chuang, C, et al. An investigation of brain functional connectivity by form of craniosynostosis. J Craniofac Surg 2019;30(6):1719–23. https://doi.org/10.1097/SCS.0000000000005537.Google Scholar
Thiele-Nygaard, AE, Foss-Skiftesvik, J, Juhler, M. Intracranial pressure, brain morphology and cognitive outcome in children with sagittal craniosynostosis. Childs Nerv Syst 2020;36(4):689–95. https://doi.org/10.1007/s00381-020-04502-z.Google Scholar
Thompson, DA, Liasis, A, Hardy, S, et al. Prevalence of abnormal pattern reversal visual evoked potentials in craniosynostosis. Plast Reconstr Surg 2006;118(1):184–92. https://doi.org/10.1097/01.prs.0000220873.72953.3e.Google Scholar
Thwin, M, Schultz, TJ, Anderson, PJ. Morphological, functional and neurological outcomes of craniectomy versus cranial vault remodeling for isolated nonsyndromic synostosis of the sagittal suture: a systematic review. JBI Database Syst Rev Implement Rep 2015;13(9):309–68. https://doi.org/10.11124/jbisrir-2015-2470.Google Scholar
Timberlake, AT, Choi, J, Zaidi, S, et al. Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles. eLife 2016;5. https://doi.org/10.7554/eLife.20125.Google Scholar
Timberlake, AT, Jin, SC, Nelson-Williams, C, et al. Mutations in TFAP2B and previously unimplicated genes of the BMP, Wnt, and Hedgehog pathways in syndromic craniosynostosis. Proc Natl Acad Sci U S A 2019;116(30):15116–21. https://doi.org/10.1073/pnas.1902041116.Google Scholar
Timberlake, AT, Persing, JA. Genetics of nonsyndromic craniosynostosis. Plast Reconstr Surg 2018;141(6):1508–16. https://doi.org/10.1097/PRS.0000000000004374.Google Scholar
Tokumaru, AM, Barkovich, AJ, Ciricillo, SF, Edwards, MS. Skull base and calvarial deformities: association with intracranial changes in craniofacial syndromes. Am J Neuroradiol 1996;17(4):619–30.Google Scholar
Tonni, G, Panteghini, M, Rossi, A, et al. Craniosynostosis: prenatal diagnosis by means of ultrasound and SSSE-MRI. Family series with report of neurodevelopmental outcome and review of the literature. Arch Gynecol Obstet 2011;283(4):909–16. https://doi.org/10.1007/s00404-010-1643-6.Google Scholar
Wu, RT, Timberlake, AT, Abraham, PF, et al. SMAD6 genotype predicts neurodevelopment in nonsyndromic craniosynostosis. Plast Reconstr Surg 2020;145(1):117e–25e. https://doi.org/10.1097/PRS.0000000000006319.Google Scholar
Wu, RT, Yang, JF, Zucconi, W, et al. Frustration and emotional regulation in nonsyndromic craniosynostosis: a functional magnetic resonance imaging study. Plast Reconstr Surg 2019;144(6):1371–83. https://doi.org/10.1097/PRS.0000000000005850.Google Scholar
Yacubian-Fernandes, A, Palhares, A, Giglio, A, et al. Apert syndrome: analysis of associated brain malformations and conformational changes determined by surgical treatment. J Neuroradiol 2004;31(2):116–22. https://doi.org/10.1016/S0150-9861(04)96978-7.Google Scholar
Yang, JF, Brooks, ED, Hashim, PW, et al. The severity of deformity in metopic craniosynostosis is correlated with the degree of neurologic dysfunction. Plast Reconstr Surg 2017;139(2):442–7. https://doi.org/10.1097/PRS.0000000000002952.Google Scholar

References

Alessi, DR, Zhang, J, Khanna, A, Hochdorfer, T, Shang, Y, Kahle, KT. The WNK–SPAK/OSR1 pathway: master regulator of cation–chloride cotransporters. Sci Signal 2014;7(334): re3. https://doi.org/10.1126/scisignal.2005365.Google Scholar
Aranha, A, Choudhary, A, Bhaskar, S, Gupta, LN. A randomized study comparing endoscopic third ventriculostomy versus ventriculoperitoneal shunt in the management of hydrocephalus due to tuberculous meningitis. Asian J Neurosurg 2018;13(4):1140–7. https://doi.org/10.4103/ajns.AJNS_107_18.Google Scholar
Aziz, IA. Hydrocephalus in the Sudan. J R Coll Surg Edinb 1976;21(4):222–4.Google Scholar
Baird, LC. First treatment in infants with hydrocephalus: the case for endoscopic third ventriculostomy/choroid plexus cauterization. Neurosurgery 2016;63(Suppl 1):7882. https://doi.org/10.1227/NEU.0000000000001299.Google Scholar
Barichello, T, Fagundes, GD, Generoso, JS, Elias, SG, Simoes, LR, Teixeira, AL. Pathophysiology of neonatal acute bacterial meningitis. J Med Microbiol 2013;62(Pt 12):1781–9. https://doi.org/10.1099/jmm.0.059840-0.Google Scholar
Bateman, GA, Brown, KM. The measurement of CSF flow through the aqueduct in normal and hydrocephalic children: from where does it come, to where does it go? Childs Nerv Syst 2012;28(1):5563. http://doi.org/10.1007/s00381-011-1617-4.Google Scholar
Benveniste, H, Lee, H, Volkow, ND. The glymphatic pathway: waste removal from the CNS via cerebrospinal fluid transport. Neuroscientist 2017;23(5):454–65. https://doi.org/10.1177/1073858417691030.Google Scholar
Berkes, J, Viswanathan, VK, Savkovic, SD, Hecht, G. Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut 2003;52(3):439–51. https://doi.org/10.1136/gut.52.3.439.Google Scholar
Bir, SC, Patra, DP, Maiti, TK, et al. Epidemiology of adult-onset hydrocephalus: institutional experience with 2001 patients. Neurosurg Focus 2016;41(3):E5. https://doi.org/10.3171/2016.7.FOCUS16188.Google Scholar
Brinker, T, Stopa, E, Morrison, J, Klinge, P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 2014;11:10. https://doi.org/10.1186/2045-8118-11-10.Google Scholar
Chahlavi, A, El-Babaa, SK, Luciano, MG. Adult-onset hydrocephalus. Neurosurg Clin N Am 2001;12(4):753–60, ix.Google Scholar
Chen, Q, Feng, Z, Tan, Q, et al. Post-hemorrhagic hydrocephalus: recent advances and new therapeutic insights. J Neurol Sci 2017;375:220–30. https://doi.org/10.1016/j.jns.2017.01.072.Google Scholar
Cherian, S, Whitelaw, A, Thoresen, M, Love, S. The pathogenesis of neonatal post-hemorrhagic hydrocephalus. Brain Pathol 2004;14(3):305–11. https://doi.org/10.1111/j.1750-3639.2004.tb00069.x.Google Scholar
Cioca, A, Gheban, D, Perju-Dumbrava, D, Chiroban, O, Mera, M. Sudden death from ruptured choroid plexus arteriovenous malformation. Am J Forens Med Pathol 2014;35(2):100–02. https://doi.org/10.1097/PAF.0000000000000091.Google Scholar
Coorens, M, Schneider, VAF, de Groot, AM, et al. Cathelicidins inhibit Escherichia coli-induced TLR2 and TLR4 activation in a viability-dependent manner. J Immunol 2017;199(4):1418–28. https://doi.org/10.4049/jimmunol.1602164.Google Scholar
Cox, KH, Cox, ME, Woo-Rasberry, V, Hasty, DL. Pathways involved in the synergistic activation of macrophages by lipoteichoic acid and hemoglobin. PLoS One 2012;7(10):e47333. https://doi.org/10.1371/journal.pone.0047333.Google Scholar
Damkier, HH, Brown, PD, Praetorius, J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev 2013;93(4):1847–92. https://doi.org/10.1152/physrev.00004.2013.Google Scholar
de Los, HP, Alessi, DR, Gourlay, R, et al. The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+–Cl co-transporters. Biochem J 2014;458(3):559–73. https://doi.org/10.1042/BJ20131478.Google Scholar
Demeestere, D, Libert, C, Vandenbroucke, RE. Clinical implications of leukocyte infiltration at the choroid plexus in (neuro)inflammatory disorders. Drug Discov Today 2015;20(8):928–41. https://doi.org/10.1016/j.drudis.2015.05.003.Google Scholar
Dessing, MC, Schouten, M, Draing, C, Levi, M, von Aulock, S, van der Poll, T. Role played by Toll-like receptors 2 and 4 in lipoteichoic acid-induced lung inflammation and coagulation. J Infect Dis 2008;197(2):245–52. https://doi.org/10.1086/524873.Google Scholar
Dewan, MC, Rattani, A, Mekary, R, et al. Global hydrocephalus epidemiology and incidence: systematic review and meta-analysis. J Neurosurg 2018: online ahead of publication. https://doi.org/10.3171/2017.10.JNS17439.Google Scholar
Doyle, WJ, Skoner, DP, Hayden, F, Buchman, CA, Seroky, JT, Fireman, P. Nasal and otologic effects of experimental influenza A virus infection. Ann Otol Rhinol Laryngol 1994;103(1):5969. https://doi.org/10.1177/000348949410300111.Google Scholar
Drake, JM, Kulkarni, AV, Kestle, J. Endoscopic third ventriculostomy versus ventriculoperitoneal shunt in pediatric patients: a decision analysis. Childs Nerv Syst 2009;25(4):467–72. https://doi.org/10.1007/s00381-008-0761-y.Google Scholar
Ehrchen, JM, Sunderkotter, C, Foell, D, Vogl, T, Roth, J. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukocyte Biol 2009;86(3):557–66. https://doi.org/10.1189/jlb.1008647.Google Scholar
Eming, SA, Hammerschmidt, M, Krieg, T, Roers, A. Interrelation of immunity and tissue repair or regeneration. Semin Cell Dev Biol 2009;20(5):517–27. https://doi.org/10.1016/j.semcdb.2009.04.009.Google Scholar
Erker, T, Brandt, C, Tollner, K, et al. The bumetanide prodrug BUM5, but not bumetanide, potentiates the antiseizure effect of phenobarbital in adult epileptic mice. Epilepsia 2016;57(5):698705. https://doi.org/10.1111/epi.13346.Google Scholar
Fang, H, Wu, Y, Huang, X, et al. Toll-like receptor 4 (TLR4) is essential for Hsp70-like protein 1 (HSP70L1) to activate dendritic cells and induce Th1 response. J Biol Chem 2011;286(35):30393–400. https://doi.org/10.1074/jbc.M111.266528.Google Scholar
Fassbender, K, Schminke, U, Ries, S, et al. Endothelial-derived adhesion molecules in bacterial meningitis: association to cytokine release and intrathecal leukocyte-recruitment. J Neuroimmunol 1997;74(1–2):130–4. https://doi.org/10.1016/s0165-5728(96)00214-7.Google Scholar
Flo, TH, Halaas, O, Lien, E, et al. Human toll-like receptor 2 mediates monocyte activation by Listeria monocytogenes, but not by group B streptococci or lipopolysaccharide. J Immunol 2000;164(4):2064–9. https://doi.org/10.4049/jimmunol.164.4.2064.Google Scholar
Furey, CG, Choi, J, Jin, SC, et al. De novo mutation in genes regulating neural stem cell fate in human congenital hydrocephalus. Neuron 2018;99(2):302–14. https://doi.org/10.1016/j.neuron.2018.06.019.Google Scholar
Gao, C, Du, H, Hua, Y, Keep, RF, Strahle, J, Xi, G. Role of red blood cell lysis and iron in hydrocephalus after intraventricular hemorrhage. J Cerebr Blood Flow Metab 2014;34(6):1070–5. https://doi.org/10.1038/jcbfm.2014.56.Google Scholar
Gharagozloo, M, Gris, KV, Mahvelati, T, Amrani, A, Lukens, JR, Gris, D. NLR-dependent regulation of inflammation in multiple sclerosis. Front Immunol 2017;8:2012. https://doi.org/10.3389/fimmu.2017.02012.Google Scholar
Gram, M, Sveinsdottir, S, Cinthio, M, et al. Extracellular hemoglobin – mediator of inflammation and cell death in the choroid plexus following preterm intraventricular hemorrhage. J Neuroinflam 2014;11:200. https://doi.org/10.1186/s12974-014-0200-9.Google Scholar
Gram, M, Sveinsdottir, S, Ruscher, K, et al. Hemoglobin induces inflammation after preterm intraventricular hemorrhage by methemoglobin formation. J Neuroinflam 2013;10:100. https://doi.org/10.1186/1742-2094-10-100.Google Scholar
Grandgirard, D, Leib, SL. Meningitis in neonates: bench to bedside. Clin Perinatol 2010;37(3):655–76. https://doi.org/10.1016/j.clp.2010.05.004.Google Scholar
Habiyaremye, G, Morales, DM, Morgan, CD, et al. Chemokine and cytokine levels in the lumbar cerebrospinal fluid of preterm infants with post-hemorrhagic hydrocephalus. Fluids Barriers CNS 2017;14(1):35. https://doi.org/10.1186/s12987-017-0083-0.Google Scholar
Hayashi, F, Smith, KD, Ozinsky, A, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001;410(6832):1099–103. https://doi.org/10.1038/35074106.Google Scholar
Hill, A, Shackelford, GD, Volpe, JJ. A potential mechanism of pathogenesis for early posthemorrhagic hydrocephalus in the premature newborn. Pediatrics 1984;73(1):1921.Google Scholar
Hladky, SB, Barrand, MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 2014;11(1):26. https://doi.org/10.1186/2045-8118-11-26.Google Scholar
Hoffmann, A, Pfeil, J, Mueller, AK, et al. MRI of iron oxide nanoparticles and myeloperoxidase activity links inflammation to brain edema in experimental cerebral malaria. Radiology 2019;290(2):359–67. https://doi.org/10.1148/radiol.2018181051.Google Scholar
Hu, Y, Wang, Z, Pan, S, et al. Melatonin protects against blood–brain barrier damage by inhibiting the TLR4/ NF-κB signaling pathway after LPS treatment in neonatal rats. Oncotarget 2017;8(19):31638–54. https://doi.org/10.18632/oncotarget.15780.Google Scholar
Isaacs, AM, Riva-Cambrin, J, Yavin, D, et al. Age-specific global epidemiology of hydrocephalus: systematic review, metanalysis and global birth surveillance. PLoS One 2018;13(10):e0204926. https://doi.org/10.1371/journal.pone.0204926.Google Scholar
Janot, L, Secher, T, Torres, D, et al. CD14 works with toll-like receptor 2 to contribute to recognition and control of Listeria monocytogenes infection. J Infect Dis 2008;198(1):115–24. https://doi.org/10.1086/588815.Google Scholar
Kahle, KT, Kulkarni, AV, Limbrick, DD, Jr., Warf, BC. Hydrocephalus in children. Lancet 2016;387(10020):788–99. https://doi.org/10.1016/S0140-6736(15)60694-8.Google Scholar
Kamat, AS, Gretschel, A, Vlok, AJ, Solomons, R. CSF protein concentration associated with ventriculoperitoneal shunt obstruction in tuberculous meningitis. Int J Tuberc Lung Dis 2018;22(7):788–92. https://doi.org/10.5588/ijtld.17.0008.Google Scholar
Karimy, JK, Duran, D, Hu, JK, et al. Cerebrospinal fluid hypersecretion in pediatric hydrocephalus. Neurosurg Focus 2016;41(5):E10. https://doi.org/10.3171/2016.8.FOCUS16278.Google Scholar
Karimy, JK, Kahle, KT, Kurland, DB, Yu, E, Gerzanich, V, Simard, JM. A novel method to study cerebrospinal fluid dynamics in rats. J Neurosci Methods 2015;241:7884. https://doi.org/10.1016/j.jneumeth.2014.12.015.Google Scholar
Karimy, JK, Zhang, J, Kurland, DB, et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nature Med 2017;23(8):9971003. https://doi.org/10.1038/nm.4361.Google Scholar
Keep, RF, Jones, HC. A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Brain Res Dev Brain Res 1990;56(1):4753. https://doi.org/10.1016/0165-3806(90)90163-s.Google Scholar
Kim, KS. Mechanisms of microbial traversal of the blood–brain barrier. Nature Rev Microbiol 2008;6(8):625–34. https://doi.org/10.1038/nrmicro1952.Google Scholar
Kleine, TO, Benes, L. Immune surveillance of the human central nervous system (CNS): different migration pathways of immune cells through the blood–brain barrier and blood–cerebrospinal fluid barrier in healthy persons. Cytometry Part A 2006;69(3):147–51. https://doi.org/10.1002/cyto.a.20225.Google Scholar
Koedel, U, Klein, M, Pfister, H-W. New understandings on the pathophysiology of bacterial meningitis. Curr Opin Infect Dis 2010;23(3):217–23. https://doi.org/10.1097/QCO.0b013e328337f49e.Google Scholar
Kotas, ME, Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 2015;160(5):816–27. https://doi.org/10.1016/j.cell.2015.02.010.Google Scholar
Krebs, VL, Okay, TS, Okay, Y, Vaz, FA. Tumor necrosis factor-alpha, interleukin-1beta and interleukin-6 in the cerebrospinal fluid of newborn with meningitis. Arq Neuropsiquiatr 2005;63(1):713. https://doi.org/10.1590/s0004-282x2005000100002.Google Scholar
Kulkarni, AV. First treatment in infants with hydrocephalus: the case for shunt. Neurosurgery 2016;63(Suppl 1):73–7. https://doi.org/10.1227/NEU.0000000000001287.Google Scholar
Kulkarni, AV, Drake, JM, Kestle, JR, Mallucci, CL, Sgouros, S, Constantini, S. Endoscopic third ventriculostomy vs cerebrospinal fluid shunt in the treatment of hydrocephalus in children: a propensity score-adjusted analysis. Neurosurgery 2010;67(3):588–93. https://doi.org/10.1227/01.NEU.0000373199.79462.21.Google Scholar
Kulkarni, AV, Drake, JM, Mallucci, CL, Sgouros, S, Roth, J, Constantini, S. Endoscopic third ventriculostomy in the treatment of childhood hydrocephalus. J Pediatrics 2009;155(2):254–9. https://doi.org/10.1016/j.jpeds.2009.02.048.Google Scholar
Kulkarni, AV, Riva-Cambrin, J, Browd, SR, et al. Endoscopic third ventriculostomy and choroid plexus cauterization in infants with hydrocephalus: a retrospective Hydrocephalus Clinical Research Network study. J Neurosurg Pediatr 2014;14(3):224–9. https://doi.org/10.3171/2014.6.PEDS13492.Google Scholar
Kulkarni, AV, Riva-Cambrin, J, Butler, J, et al. Outcomes of CSF shunting in children: comparison of Hydrocephalus Clinical Research Network cohort with historical controls. J Neurosurg Pediatr 2013;12(4):334–8. https://doi.org/10.3171/2013.7.PEDS12637.Google Scholar
Kulkarni, AV, Schiff, SJ, Mbabazi-Kabachelor, E, et al. Endoscopic treatment versus shunting for infant hydrocephalus in Uganda. New Engl J Med 2017;377(25):2456–64. https://doi.org/10.1056/NEJMoa1707568.Google Scholar
Kwon, MS, Woo, SK, Kurland, DB, et al. Methemoglobin is an endogenous toll-like receptor 4 ligand-relevance to subarachnoid hemorrhage. Int J Molec Sci 2015;16(3):5028–46. https://doi.org/10.3390/ijms16035028.Google Scholar
Lahrtz, F, Piali, L, Spanaus, KS, Seebach, J, Fontana, A. Chemokines and chemotaxis of leukocytes in infectious meningitis. J Neuroimmunol 1998;85(1):3343. https://doi.org/10.1016/s0165-5728(97)00267-1.Google Scholar
Lan, CC, Peng, CK, Tang, SE, et al. Inhibition of Na–K–Cl cotransporter isoform 1 reduces lung injury induced by ischemia–reperfusion. J Thorac Cardiovasc Surg 2017;153(1):206–15. https://doi.org/10.1016/j.jtcvs.2016.09.068.Google Scholar
Larroche, JC. Post-haemorrhagic hydrocephalus in infancy. Anatomical study. Biol Neonate 1972;20(3):287–99. https://doi.org/10.1159/000240472.Google Scholar
Lategan, B, Chodirker, BN, Del Bigio, MR. Fetal hydrocephalus caused by cryptic intraventricular hemorrhage. Brain Pathol 2010;20(2):391–8. https://doi.org/10.1111/j.1750-3639.2009.00293.x.Google Scholar
Lee, LV. Neurotuberculosis among Filipino children: an 11-year experience at the Philippine Children’s Medical Center. Brain Dev 2000;22(8):469–74. https://doi.org/10.1016/s0387-7604(00)00190-x.Google Scholar
Lemonnier, E, Ben-Ari, Y. The diuretic bumetanide decreases autistic behaviour in five infants treated during 3 months with no side effects. Acta Paediatr 2010;99(12):1885–8. https://doi.org/10.1111/j.1651-2227.2010.01933.x.Google Scholar
Lemonnier, E, Degrez, C, Phelep, M, et al. A randomised controlled trial of bumetanide in the treatment of autism in children. Transl Psychiatry 2012;2:e202. https://doi.org/10.1038/tp.2012.124.Google Scholar
Lemonnier, E, Villeneuve, N, Sonie, S, et al. Effects of bumetanide on neurobehavioral function in children and adolescents with autism spectrum disorders. Transl Psychiatry 2017;7(3):e1056. https://doi.org/10.1038/tp.2017.10.Google Scholar
Li, K, Tang, H, Yang, Y, et al. Clinical features, long-term clinical outcomes, and prognostic factors of tuberculous meningitis in West China: a multivariate analysis of 154 adults. Expert Rev Anti Infect Ther 2017;15(6):629–35. https://doi.org/10.1080/14787210.2017.1309974.Google Scholar
Li, L, Padhi, A, Ranjeva, SL, et al. Association of bacteria with hydrocephalus in Ugandan infants. J Neurosurg Pediatr 2011;7(1):7387. https://doi.org/10.3171/2010.9.PEDS10162.Google Scholar
Limbrick, DD, Jr., Baird, LC, Klimo, P, Jr., Riva-Cambrin, J, Flannery, AM. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 4: Cerebrospinal fluid shunt or endoscopic third ventriculostomy for the treatment of hydrocephalus in children. J Neurosurg Pediatr 2014;14(Suppl 1):30–4. https://doi.org/10.3171/2014.7.PEDS14324.Google Scholar
Lin, TJ, Yang, SS, Hua, KF, Tsai, YL, Lin, SH, Ka, SM. SPAK plays a pathogenic role in IgA nephropathy through the activation of NF-kappaB/MAPKs signaling pathway. Free Rad Biol Med 2016;99:214–24. https://doi.org/10.1016/j.freeradbiomed.2016.08.008.Google Scholar
Liu, J, Chen, ZL, Li, M, et al. Ventriculoperitoneal shunts in non-HIV cryptococcal meningitis. BMC Neurol 2018;18(1):58. https://doi.org/10.1186/s12883-018-1053-0.Google Scholar
Liu, SF, Ye, X, Malik, AB. Inhibition of NF-B activation by pyrrolidine dithiocarbamate prevents in vivo expression of proinflammatory genes. Circulation 1999;100(12):1330–7. https://doi.org/10.1161/01.cir.100.12.1330.Google Scholar
Lohrberg, M, Wilting, J. The lymphatic vascular system of the mouse head. Cell Tissue Res 2016;366(3):667–77. https://doi.org/10.1007/s00441-016-2493-8.Google Scholar
Louveau, A, Plog, BA, Antila, S, Alitalo, K, Nedergaard, M, Kipnis, J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest 2017;127(9):3210–9. https://doi.org/10.1172/JCI90603.Google Scholar
Louveau, A, Smirnov, I, Keyes, TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015;523(7560):337–41. https://doi.org/10.1038/nature14432.Google Scholar
Malley, R, Henneke, P, Morse, SC, et al. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci U S A 2003;100(4):1966–71. https://doi.org/10.1073/pnas.0435928100.Google Scholar
Marques, F, Sousa, JC, Brito, MA, et al. The choroid plexus in health and in disease: dialogues into and out of the brain. Neurobiol Dis 2017;107:3240. https://doi.org/10.1016/j.nbd.2016.08.011.Google Scholar
McAllister, JP, Guerra, MM, Ruiz, LC, et al. Ventricular zone disruption in human neonates with intraventricular hemorrhage. J Neuropathol Exp Neurol 2017;76(5):358–75. https://doi.org/10.1093/jnen/nlx017.Google Scholar
Medzhitov, R. TLR-mediated innate immune recognition. Semin Immunol 2007;19(1):12. https://doi.org/10.1016/j.smim.2007.02.001.Google Scholar
Millward, JM, Ariza de Schellenberger, A, Berndt, D, et al. Application of europium-doped very small iron oxide nanoparticles to visualize neuroinflammation with MRI and fluorescence microscopy. Neuroscience 2019;403:136144. https://doi.org/10.1016/j.neuroscience.2017.12.014Google Scholar
Miyajima, M, Arai, H. Evaluation of the production and absorption of cerebrospinal fluid. Neurol Med Chir (Tokyo) 2015;55(8):647–56. https://doi.org/10.2176/nmc.ra.2015-0003.Google Scholar
Miyake, K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol 2007;19(1):310. https://doi.org/10.1016/j.smim.2006.12.002.Google Scholar
Mook-Kanamori, BB, Geldhoff, M, van der Poll, T, van de Beek, D. Pathogenesis and pathophysiology of pneumococcal meningitis. Clin Microbiol Rev 2011;24(3):557–91. https://doi.org/10.1128/CMR.00008-11.Google Scholar
Muir, RT, Wang, S, Warf, BC. Global surgery for pediatric hydrocephalus in the developing world: a review of the history, challenges, and future directions. Neurosurg Focus 2016;41(5):E11. https://doi.org/10.3171/2016.7.FOCUS16273.Google Scholar
Murphy, BP, Inder, TE, Rooks, V, et al. Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome. Arch Dis Child Fetal Neonatal Ed 2002;87(1):F3741. https://doi.org/10.1136/fn.87.1.f37.Google Scholar
Nowarski, R, Jackson, R, Flavell, RA. The stromal intervention: regulation of immunity and inflammation at the epithelial-mesenchymal barrier. Cell 2017;168(3):362–75. https://doi.org/10.1016/j.cell.2016.11.040.Google Scholar
Oi, S, Di Rocco, C. Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst 2006;22(7):662–9. https://doi.org/10.1007/s00381-005-0020-4.Google Scholar
Olstad, EW, Ringers, C, Hansen, JN, et al. Ciliary beating compartmentalizes cerebrospinal fluid flow in the brain and regulates ventricular development. Curr Biol 2019;29(2):229–41. https://doi.org/10.1016/j.cub.2018.11.059.Google Scholar
Omar, AT, 2nd, Bagnas, MAC, Del Rosario-Blasco, KAR, Diestro, JDB, Khu, KJO. Shunt surgery for neurocutaneous melanosis with hydrocephalus: case report and review of the literature. World Neurosurg 2018;120:583–9. https://doi.org/10.1016/j.wneu.2018.09.002.Google Scholar
Oreskovic, D, Rados, M, Klarica, M. Role of choroid plexus in cerebrospinal fluid hydrodynamics. Neuroscience 2017;354:6987. https://doi.org/10.1016/j.neuroscience.2017.04.025.Google Scholar
Piechotta, K, Garbarini, N, England, R, Delpire, E. Characterization of the interaction of the stress kinase SPAK with the Na+–K+–2Cl cotransporter in the nervous system: evidence for a scaffolding role of the kinase. J Biol Chem 2003;278(52):52848–56. https://doi.org/10.1074/jbc.M309436200.Google Scholar
Piechotta, K, Lu, J, Delpire, E. Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline–alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). J Biol Chem 2002;277(52):50812–9. https://doi.org/10.1074/jbc.M208108200.Google Scholar
Pindrik, J, Jallo, GI, Ahn, ES. Complications and subsequent removal of retained shunt hardware after endoscopic third ventriculostomy: case series. J Neurosurg Pediatr 2013;11(6):722–6. https://doi.org/10.3171/2013.3.PEDS12489.Google Scholar
Polek, TC, Talpaz, M, Spivak-Kroizman, T. The TNF receptor, RELT, binds SPAK and uses it to mediate p38 and JNK activation. Biochem Biophys Res Commun 2006;343(1):125–34. https://doi.org/10.1016/j.bbrc.2006.02.125.Google Scholar
Praetorius, J, Damkier, HH. Transport across the choroid plexus epithelium. Am J Physiol Cell Physiol 2017;312(6):C673–86. https://doi.org/10.1152/ajpcell.00041.2017.Google Scholar
Pressler, RM, Boylan, GB, Marlow, N, et al. Bumetanide for the treatment of seizures in newborn babies with hypoxic ischaemic encephalopathy (NEMO): an open-label, dose finding, and feasibility phase 1/2 trial. Lancet Neurol 2015;14(5):469–77. https://doi.org/10.1016/S1474-4422(14)70303-5.Google Scholar
Pyrgos, V, Seitz, AE, Steiner, CA, Prevots, DR, Williamson, PR. Epidemiology of cryptococcal meningitis in the US: 1997–2009. PLoS One 2013;8(2):e56269. https://doi.org/10.1371/journal.pone.0056269.Google Scholar
Rajshekhar, V. Management of hydrocephalus in patients with tuberculous meningitis. Neurol India 2009;57(4):368–74. https://doi.org/10.4103/0028-3886.55572.Google Scholar
Reddy, GK, Bollam, P, Caldito, G. Long-term outcomes of ventriculoperitoneal shunt surgery in patients with hydrocephalus. World Neurosurg 2014;81(2):404–10. https://doi.org/10.1016/j.wneu.2013.01.096.Google Scholar
Rekate, HL. A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol 2009;16(1):915. https://doi.org/10.1016/j.spen.2009.01.002.Google Scholar
Rice, TW, Wheeler, AP, Bernard, GR, et al. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit Care Med 2010;38(8):1685–94. https://doi.org/10.1097/CCM.0b013e3181e7c5c9.Google Scholar
Rivest, S. Molecular insights on the cerebral innate immune system. Brain Behav Immun 2003;17(1):13–9. https://doi.org/10.1016/s0889-1591(02)00055-7.Google Scholar
Robinson, S, Conteh, FS, Oppong, AY, et al. Extended combined neonatal treatment with erythropoietin plus melatonin prevents posthemorrhagic hydrocephalus of prematurity in rats. Front Cell Neurosci 2018;12:322. https://doi.org/10.3389/fncel.2018.00322.Google Scholar
Sacks, FM, Svetkey, LP, Vollmer, WM, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med 2001;344(1):310. https://doi.org/10.1056/NEJM200101043440101.Google Scholar
Schiefenhövel, F, Immig, K, Prodinger, C, Bechmann, I. Indications for cellular migration from the central nervous system to its draining lymph nodes in CD11c-GFP+ bone-marrow chimeras following EAE. Exp Brain Res 2017;235(7):2151–66. https://doi.org/10.1007/s00221-017-4956-x.Google Scholar
Schiff, SJ, Ranjeva, SL, Sauer, TD, Warf, BC. Rainfall drives hydrocephalus in East Africa. J Neurosurg Pediatr 2012;10(3):161–7. https://doi.org/10.3171/2012.5.PEDS11557.Google Scholar
Seki, E, Tsutsui, H, Tsuji, NM, et al. Critical roles of myeloid differentiation factor 88-dependent proinflammatory cytokine release in early phase clearance of Listeria monocytogenes in mice. J Immunol 2002;169(7):3863–8. https://doi.org/10.4049/jimmunol.169.7.3863.Google Scholar
Sellner, J, Tauber, MG, Leib, SL. Pathogenesis and pathophysiology of bacterial CNS infections. Handb Clin Neurol 2010;96:116. https://doi.org/10.1016/S0072-9752(09)96001-8.Google Scholar
Shang, X, Li, Y, Liu, A, et al. Dietary pattern and its association with the prevalence of obesity and related cardiometabolic risk factors among Chinese children. PLoS One 2012;7(8):e43183. https://doi.org/10.1371/journal.pone.0043183.Google Scholar
Shekarabi, M, Zhang, J, Khanna, AR, Ellison, DH, Delpire, E, Kahle, KT. WNK kinase signaling in ion homeostasis and human disease. Cell Metab 2017;25(2):285–99. https://doi.org/10.1016/j.cmet.2017.01.007.Google Scholar
Simard, PF, Tosun, C, Melnichenko, L, Ivanova, S, Gerzanich, V, Simard, JM. Inflammation of the choroid plexus and ependymal layer of the ventricle following intraventricular hemorrhage. Transl Stroke Res 2011;2(2):227–31. https://doi.org/10.1007/s12975-011-0070-8.Google Scholar
Skipor, J, Szczepkowska, A, Kowalewska, M, Herman, AP, Lisiewski, P. Profile of toll-like receptor mRNA expression in the choroid plexus in adult ewes. Acta Vet Hung 2015;63(1):6978. https://doi.org/10.1556/AVet.2014.027.Google Scholar
Stagno, V, Navarrete, EA, Mirone, G, Esposito, F. Management of hydrocephalus around the world. World Neurosurg 2013;79(2 Suppl):S23.e1720. https://doi.org/10.1016/j.wneu.2012.02.004.Google Scholar
Steffensen, AB, Oernbo, EK, Stoica, A, et al. Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nature Commun 2018;9(1):2167. https://doi.org/10.1038/s41467-018-04677-9.Google Scholar
Strahle, J, Garton, HJ, Maher, CO, Muraszko, KM, Keep, RF, Xi, G. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Transl Stroke Res 2012;3(Suppl 1):2538. https://doi.org/10.1007/s12975-012-0182-9.Google Scholar
Sveinsdottir, S, Gram, M, Cinthio, M, Sveinsdottir, K, Morgelin, M, Ley, D. Altered expression of aquaporin 1 and 5 in the choroid plexus following preterm intraventricular hemorrhage. Dev Neurosci 2014;36(6):542–51. https://doi.org/10.1159/000366058.Google Scholar
Thastrup, JO, Rafiqi, FH, Vitari, AC, et al. SPAK/OSR1 regulate NKCC1 and WNK activity: analysis of WNK isoform interactions and activation by T-loop trans-autophosphorylation. Biochem J 2012;441(1):325–37. https://doi.org/10.1042/BJ20111879.Google Scholar
Thiagarajah, JR, Donowitz, M, Verkman, AS. Secretory diarrhoea: mechanisms and emerging therapies. Nat Rev Gastroenterol Hepatol 2015;12(8):446–57. https://doi.org/10.1038/nrgastro.2015.111.Google Scholar
Thigpen, MC, Whitney, CG, Messonnier, NE, et al. Bacterial meningitis in the United States, 1998–2007. New Engl J Med 2011;364(21):2016–25. https://doi.org/10.1056/NEJMoa1005384.Google Scholar
Tsan, MF, Gao, B. Endogenous ligands of Toll-like receptors. J Leukocyte Biol 2004;76(3):514–9. https://doi.org/10.1189/jlb.0304127.Google Scholar
Tsitouras, V, Sgouros, S. Infantile posthemorrhagic hydrocephalus. Child Nervous Syst 2011;27(10):1595–608. https://doi.org/10.1007/s00381-011-1521-y.Google Scholar
van der Linden, V, de Lima Petribu, NC, Pessoa, A, et al. Association of severe hydrocephalus with congenital Zika syndrome. JAMA Neurol 2019;76(2):203–10. http://doi.org/10.1001/jamaneurol.2018.3553.Google Scholar
van Furth, AM, Roord, JJ, van Furth, R. Roles of proinflammatory and anti-inflammatory cytokines in pathophysiology of bacterial meningitis and effect of adjunctive therapy. Infect Immun 1996;64(12):4883–90. https://doi.org/10.1128/iai.64.12.4883-4890.1996.Google Scholar
Wang, YC, Zhou, Y, Fang, H, et al. Toll-like receptor 2/4 heterodimer mediates inflammatory injury in intracerebral hemorrhage. Ann Neurol 2014;75(6):876–89. https://doi.org/10.1002/ana.24159.Google Scholar
Warf, BC. Hydrocephalus in Uganda: the predominance of infectious origin and primary management with endoscopic third ventriculostomy. J Neurosurg 2005a;102(1 Suppl):115. https://doi.org/10.3171/ped.2005.102.1.0001.Google Scholar
Warf, BC. Comparison of endoscopic third ventriculostomy alone and combined with choroid plexus cauterization in infants younger than 1 year of age: a prospective study in 550 African children. J Neurosurg 2005b;103(6 Suppl):475–81. https://doi.org/10.3171/ped.2005.103.6.0475.Google Scholar
Warf, BC, East African Neurosurgical Research Collaboration.Pediatric hydrocephalus in East Africa: prevalence, causes, treatments, and strategies for the future. World Neurosurg 2010;73(4):296300. https://doi.org/10.1016/j.wneu.2010.02.009.Google Scholar
Warf, BC, Campbell, JW, Riddle, E. Initial experience with combined endoscopic third ventriculostomy and choroid plexus cauterization for post-hemorrhagic hydrocephalus of prematurity: the importance of prepontine cistern status and the predictive value of FIESTA MRI imaging. Childs Nerv Syst 2011;27(7):1063–71. https://doi.org/10.1007/s00381-011-1475-0.Google Scholar
White, CS, Lawrence, CB, Brough, D, Rivers-Auty, J. Inflammasomes as therapeutic targets for Alzheimer’s disease. Brain Pathol 2017;27(2):223–34. https://doi.org/10.1111/bpa.12478.Google Scholar
Whitelaw, A. Intraventricular haemorrhage and posthaemorrhagic hydrocephalus: pathogenesis, prevention and future interventions. Semin Neonatol 2001;6(2):135–46. https://doi.org/10.1053/siny.2001.0047.Google Scholar
Wilson, R, Alton, E, Rutman, A, et al. Upper respiratory tract viral infection and mucociliary clearance. Eur J Respir Dis 1987;70(5):272–9.Google Scholar
Yan, Y, Dalmasso, G, Nguyen, HT, et al. Nuclear factor-kappaB is a critical mediator of Ste20-like proline-/alanine-rich kinase regulation in intestinal inflammation. Am J Pathol 2008;173(4):1013–28. https://doi.org/10.2353/ajpath.2008.080339.Google Scholar
Yan, Y, Merlin, D. Ste20-related proline/alanine-rich kinase: a novel regulator of intestinal inflammation. World J Gastroenterol 2008;14(40):6115–21. https://doi.org/10.3748/wjg.14.6115.Google Scholar
Yan, Y, Nguyen, H, Dalmasso, G, Sitaraman, SV, Merlin, D. Cloning and characterization of a new intestinal inflammation-associated colonic epithelial Ste20-related protein kinase isoform. Biochim Biophys Acta 2007;1769(2):106–16. https://doi.org/10.1016/j.bbaexp.2007.01.003.Google Scholar
Yang, B, Zhou, Z, Li, X, Niu, J. The effect of lysophosphatidic acid on Toll-like receptor 4 expression and the nuclear factor-κB signaling pathway in THP-1 cells. Mol Cell Biochem 2016;422(1–2):41–9. https://doi.org/10.1007/s11010-016-2804-0.Google Scholar

References

Burden, SJ, Sargent, PB, McMahan, UJ. Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve. J Cell Biol 1979;82(2):412–25. https://doi.org/10.1083/jcb.82.2.412Google Scholar
Burnett, MG, Zager, EL. Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus 2004;16(5):E1. https://doi.org/10.3171/foc.2004.16.5.2Google Scholar
Caillaud, M, Richard, L, Vallat, JM, Desmouliere, A, Billet, F. Peripheral nerve regeneration and intraneural revascularization. Neural Regen Res 2019;14(1):2433. https://doi.org/10.4103/1673-5374.243699Google Scholar
Dodd, J, Jessell, TM. Axon guidance and the patterning of neuronal projections in vertebrates. Science 1988;242(4879):692–9. https://doi.org/10.1126/science.3055291Google Scholar
Gundersen, RW, Barrett, JN. Characterization of the turning response of dorsal root neurites toward nerve growth factor. J Cell Biol 1980;87(3 Pt 1):546–54. https://doi.org/10.1083/jcb.87.3.546Google Scholar
Jack, AS, Hurd, C, Forero, J, et al. Cortical electrical stimulation in female rats with a cervical spinal cord injury to promote axonal outgrowth. J Neurosci Res 2018;96(5):852–62. https://doi.org/10.1002/jnr.24209Google Scholar
Kurosinski, P, Gotz, J. Glial cells under physiologic and pathologic conditions. Arch Neurol 2002;59(10):1524–8. https://doi.org/10.1001/archneur.59.10.1524Google Scholar
Mackinnon, S, Dellon, A. Surgery of the Peripheral Nerve. New York: Thieme, 1988.Google Scholar
Mizisin, AP, Weerasuriya, A. Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult. Acta Neuropathol 2011;121(3):291312. https://doi.org/10.1007/s00401-010-0783-xGoogle Scholar
Pestronk, A, Drachman, DB. Motor nerve sprouting and acetylcholine receptors. Science 1978;199(4334):1223–5. https://doi.org/10.1126/science.204007Google Scholar
Pham, K, Gupta, R. Understanding the mechanisms of entrapment neuropathies. Neurosurg Focus 2009;26(2):E7. https://doi.org/10.3171/FOC.2009.26.2.E7Google Scholar
Seddon, H. Three types of nerve injury. Brain 1943;66:237.Google Scholar
Sunderland, S. A classification of peripheral nerve injuries producing loss of function. Brain 1951;74(4):491516. https://doi.org/10.1093/brain/74.4.491Google Scholar
Tassler, PL, Dellon, AL, Canoun, C. Identification of elastic fibres in the peripheral nerve. J Hand Surg Br 1994;19(1):4854. https://doi.org/10.1016/0266-7681(94)90049-3Google Scholar
Topp, KS, Boyd, BS. Structure and biomechanics of peripheral nerves: nerve responses to physical stresses and implications for physical therapist practice. Phys Ther 2006;86(1):92109. https://doi.org/10.1093/ptj/86.1.92Google Scholar
Vallat, JM, Tazir, M, Calvo, J, Funalot, B. [Hereditary peripheral neuropathies]. Presse Med 2009;38(9):1325–34. https://doi.org/10.1016/j.lpm.2009.01.014Google Scholar
Weerasuriya, A, Mizisin, AP. The blood–nerve barrier: structure and functional significance. Methods Mol Biol 2011;686:149–73. https://doi.org/10.1007/978-1-60761-938-3_6Google Scholar

References

Alant, JD, Kemp, SW, Khu, KJ, Kumar, R, Webb, AA, Midha, R. Traumatic neuroma in continuity injury model in rodents. J Neurotrauma 2012;29(8):1691–703. https://doi.org/10.1089/neu.2011.1857.Google Scholar
Alant, JD, Senjaya, F, Ivanovic, A, Forden, J, Shakhbazau, A, Midha, R. The impact of motor axon misdirection and attrition on behavioral deficit following experimental nerve injuries. PLoS One 2013;8(11):e82546. https://doi.org/10.1371/journal.pone.0082546.Google Scholar
Alles, SRA, Smith, PA. Etiology and pharmacology of neuropathic pain. Pharmacol Rev 2018;70(2):315–47. https://doi.org/10.1124/pr.117.014399.Google Scholar
Al-Majed, AA, Brushart, TM, Gordon, T. Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J Neurosci 2000a;12(12):4381–90.Google Scholar
Al-Majed, AA, Neumann, CM, Brushart, TM, Gordon, T. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci 2000b;20(7):2602–08.Google Scholar
Banks, GP, Winfree, CJ. Evolving techniques and indications in peripheral nerve stimulation for pain. Neurosurg Clin N Am 2019;30(2):265–73. https://doi.org/10.1016/j.nec.2018.12.011.Google Scholar
Battiston, B, Raimondo, S, Tos, P, et al. Chapter 11: Tissue engineering of peripheral nerves. Int Rev Neurobiol 2009;87:227–49. https://doi.org/10.1016/S0074-7742(09)87011-6.Google Scholar
Beer, GM, Steurer, J, Meyer, VE. Standardizing nerve crushes with a non-serrated clamp. J Reconstr Microsurg 2001;17(7):531534. https://doi.org/10.1055/s-2001-17755.Google Scholar
Berger, A, Millesi, H. Nerve grafting. Clin Orthop Relat Res 1978;(133):4955.Google Scholar
Blom, CL, Martensson, LB, Dahlin, LB. Nerve injury-induced c-Jun activation in Schwann cells is JNK independent. Biomed Res Int 2014;2014:392971. https://doi.org/10.1155/2014/392971.Google Scholar
Bouhassira, D. Neuropathic pain: definition, assessment and epidemiology. Rev Neurol (Paris) 2019;175(1–2):1625. https://doi.org/10.1016/j.neurol.2018.09.016.Google Scholar
Brooks, DN, Weber, RV, Chao, JD, et al. Processed nerve allografts for peripheral nerve reconstruction: a multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery 2012;32(1):114. https://doi.org/10.1002/micr.20975.Google Scholar
Brossier, NM, Carroll, SL. Genetically engineered mouse models shed new light on the pathogenesis of neurofibromatosis type I-related neoplasms of the peripheral nervous system. Brain Res Bull 2012;88(1):5871. https://doi.org/10.1016/j.brainresbull.2011.08.005.Google Scholar
Bruck, W. The role of macrophages in Wallerian degeneration. Brain Pathol 1997;7(2):741–52. https://doi.org/10.1111/j.1750-3639.1997.tb01060.x.Google Scholar
Brushart, TM, Hoffman, PN, Royall, RM, Murinson, BB, Witzel, C, Gordon, T. Electrical stimulation promotes motoneuron regeneration without increasing its speed or conditioning the neuron. J Neurosci 2002;22(15):6631–8. https://doi.org/10.1523/JNEUROSCI.22-15-06631.2002.Google Scholar
Caillaud, M, Richard, L, Vallat, JM, Desmouliere, A, Billet, F. Peripheral nerve regeneration and intraneural revascularization. Neural Regen Res 2019;14(1):2433. https://doi.org/10.4103/1673-5374.243699.Google Scholar
Chang, KY, Ho, ST, Yu, HS. Vibration induced neurophysiological and electron microscopical changes in rat peripheral nerves. Occup Environ Med 1994;51(2):130–5. https://doi.org/10.1136/oem.51.2.130.Google Scholar
Chao, T, Pham, K, Steward, O, Gupta, R. Chronic nerve compression injury induces a phenotypic switch of neurons within the dorsal root ganglia. J Comp Neurol 2008;506(2):180–93. https://doi.org/10.1002/cne.21537.Google Scholar
Chen, LE, Seaber, AV, Urbaniak, JR. The influence of magnitude and duration of crush load on functional recovery of the peripheral nerve. J Reconstr Microsurg 1993;9(4):299306; discussion 306–07. https://doi.org/10.1055/s-2007-1006671.Google Scholar
Chick, G, Alnot, JY, Silbermann-Hoffman, O. [Benign solitary tumors of the peripheral nerves]. Rev Chir Orthop Reparatrice Appar Mot 2000;86(8):825–34.Google Scholar
Clark, BD, Al-Shatti, TA, Barr, AE, Amin, M, Barbe, MF. Performance of a high-repetition, high-force task induces carpal tunnel syndrome in rats. J Orthop Sports Phys Ther 2004;34(5):244–53. https://doi.org/10.2519/jospt.2004.34.5.244.Google Scholar
Clark, BD, Barr, AE, Safadi, FF, et al. Median nerve trauma in a rat model of work-related musculoskeletal disorder. J Neurotrauma 2003;20(7):681–95. https://doi.org/10.1089/089771503322144590.Google Scholar
Dahlin, LB, Archer, DR, McLean, WG. Axonal transport and morphological changes following nerve compression. An experimental study in the rabbit vagus nerve. J Hand Surg Br 1993;18(1):106–10. https://doi.org/10.1016/0266-7681(93)90206-u.Google Scholar
Dahlin, LB, Kanje, M. Conditioning effect induced by chronic nerve compression. An experimental study of the sciatic and tibial nerves of rats. Scand J Plast Reconstr Surg Hand Surg 1992;26(1):3741. https://doi.org/10.3109/02844319209035181.Google Scholar
Dahlin, LB, Nordborg, C, Lundborg, G. Morphologic changes in nerve cell bodies induced by experimental graded nerve compression. Exp Neurol 1987;95(3):611–21. https://doi.org/10.1016/0014-4886(87)90303-7.Google Scholar
Dahlin, LB, Thambert, C. Acute nerve compression at low pressures has a conditioning lesion effect on rat sciatic nerves. Acta Orthop Scand 1993;64(4):479–81. https://doi.org/10.3109/17453679308993673.Google Scholar
Deogaonkar, M, Slavin, KV. Peripheral nerve/field stimulation for neuropathic pain. Neurosurg Clin N Am 2014;25(1):110. https://doi.org/10.1016/j.nec.2013.10.001.Google Scholar
Desai, KI. Primary benign brachial plexus tumors: an experience of 115 operated cases. Neurosurgery 2012;70(1):220–33; discussion 233. https://doi.org/10.1227/NEU.0b013e31822d276a.Google Scholar
Dombi, E, Baldwin, A, Marcus, LJ, et al. Activity of selumetinib in neurofibromatosis type 1-related plexiform neurofibromas. N Engl J Med 2016;375(26):2550–60. https://doi.org/10.1056/NEJMoa1605943.Google Scholar
Dong, R, Liu, Y, Yang, Y, Wang, H, Xu, Y, Zhang, Z. MSC-derived exosomes-based therapy for peripheral nerve injury: a novel therapeutic strategy. Biomed Res Int 2019;2019:6458237. https://doi.org/10.1155/2019/6458237.Google Scholar
Driscoll, PJ, Glasby, MA, Lawson, GM. An in vivo study of peripheral nerves in continuity: biomechanical and physiological responses to elongation. J Orthop Res 2002;20(2):370–5. https://doi.org/10.1016/S0736-0266(01)00104-8.Google Scholar
Dumanian, GA, Potter, BK, Mioton, LM, et al. Targeted muscle reinnervation treats neuroma and phantom pain in major limb amputees: a randomized clinical trial. Ann Surg 2019;270(2):238–46. https://doi.org/10.1097/SLA.0000000000003088.Google Scholar
Dyck, PJ, Lais, AC, Giannini, C, Engelstad, JK. Structural alterations of nerve during cuff compression. Proc Natl Acad Sci U S A 1990;87(24):9828–32. https://doi.org/10.1073/pnas.87.24.9828.Google Scholar
Evans, DG, Baser, ME, McGaughran, J, Sharif, S, Howard, E, Moran, A. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet 2002;39(5):311–4. https://doi.org/10.1136/jmg.39.5.311.Google Scholar
Felix, SP, Pereira Lopes, FR, Marques, SA, Martinez, AM. Comparison between suture and fibrin glue on repair by direct coaptation or tubulization of injured mouse sciatic nerve. Microsurgery 2013;33(6):468–77. https://doi.org/10.1002/micr.22109.Google Scholar
Gelberman, RH, Szabo, RM, Williamson, RV, Dimick, MP. Sensibility testing in peripheral-nerve compression syndromes. An experimental study in humans. J Bone Joint Surg Am 1983a;65(5):632–8.Google Scholar
Gelberman, RH, Szabo, RM, Williamson, RV, Hargens, AR, Yaru, NC, Minteer-Convery, MA. Tissue pressure threshold for peripheral nerve viability. Clin Orthop Relat Res 1983b(178):285–91.Google Scholar
Geuna, S. The sciatic nerve injury model in pre-clinical research. J Neurosci Methods 2015;243:3946. https://doi.org/10.1016/j.jneumeth.2015.01.021.Google Scholar
Geuna, S, Raimondo, S, Ronchi, G, et al. Chapter 3: Histology of the peripheral nerve and changes occurring during nerve regeneration. Int Rev Neurobiol 2009;87:2746. https://doi.org/10.1016/S0074-7742(09)87003-7.Google Scholar
Gordon, T, Borschel, GH. The use of the rat as a model for studying peripheral nerve regeneration and sprouting after complete and partial nerve injuries. Exp Neurol 2017;287(Pt 3):331–47. https://doi.org/10.1016/j.expneurol.2016.01.014.Google Scholar
Gordon, T, Brushart, TM, Chan, KM. Augmenting nerve regeneration with electrical stimulation. Neurol Res 2008;30(10):1012–22. https://doi.org/10.1179/174313208X362488.Google Scholar
Gottfried, ON, Viskochil, DH, Couldwell, WT. Neurofibromatosis Type 1 and tumorigenesis: molecular mechanisms and therapeutic implications. Neurosurg Focus 2010;28(1):E8. https://doi.org/10.3171/2009.11.FOCUS09221.Google Scholar
Gray, M, Palispis, W, Popovich, PG, van Rooijen, N, Gupta, R. Macrophage depletion alters the blood–nerve barrier without affecting Schwann cell function after neural injury. J Neurosci Res 2007;85(4):766–77. https://doi.org/10.1002/jnr.21166.Google Scholar
Gregory, NS, Harris, AL, Robinson, CR, Dougherty, PM, Fuchs, PN, Sluka, KA. An overview of animal models of pain: disease models and outcome measures. J Pain 2013;14(11):1255–69. https://doi.org/10.1016/j.jpain.2013.06.008.Google Scholar
Gross, A, Bishop, R, Widemann, BC. Selumetinib in plexiform neurofibromas. N Engl J Med 2017;376(12):1195. https://doi.org/10.1056/NEJMc1701029.Google Scholar
Gross, AM, Dombi, E, Widemann, BC. Current status of MEK inhibitors in the treatment of plexiform neurofibromas. Childs Nerv Syst 2020a;36(10):2443–52. https://doi.org/10.1007/s00381-020-04731-2.Google Scholar
Gross, AM, Wolters, PL, Dombi, E, et al. Selumetinib in children with inoperable plexiform neurofibromas. N Engl J Med 2020b;382(15):1430–42. https://doi.org/10.1056/NEJMoa1912735.Google Scholar
Gupta, R, Channual, JC. Spatiotemporal pattern of macrophage recruitment after chronic nerve compression injury. J Neurotrauma 2006;23(2):216–26. https://doi.org/10.1089/neu.2006.23.216.Google Scholar
Gupta, R, Rowshan, K, Chao, T, Mozaffar, T, Steward, O. Chronic nerve compression induces local demyelination and remyelination in a rat model of carpal tunnel syndrome. Exp Neurol 2004;187(2):500–08. https://doi.org/10.1016/j.expneurol.2004.02.009.Google Scholar
Gupta, R, Steward, O. Chronic nerve compression induces concurrent apoptosis and proliferation of Schwann cells. J Comp Neurol 2003;461(2):174–86. https://doi.org/10.1002/cne.10692.Google Scholar
Gupta, R, Truong, L, Bear, D, Chafik, D, Modafferi, E, Hung, CT. Shear stress alters the expression of myelin-associated glycoprotein (MAG) and myelin basic protein (MBP) in Schwann cells. J Orthop Res 2005;23(5):1232–9. https://doi.org/10.1016/j.orthres.2004.12.010.Google Scholar
Haastert-Talini, K, Geuna, S, Dahlin, LB, et al. Chitosan tubes of varying degrees of acetylation for bridging peripheral nerve defects. Biomaterials 2013;34(38):9886–904. https://doi.org/10.1016/j.biomaterials.2013.08.074.Google Scholar
Hashmonai, M, Cameron, AE, Licht, PB, Hensman, C, Schick, CH. Thoracic sympathectomy: a review of current indications. Surg Endosc 2016;30(4):1255–69. https://doi.org/10.1007/s00464-015-4353-0.Google Scholar
Jack, A, Ramey, WL, Dettori, JR, et al. Factors associated with C5 palsy following cervical spine surgery: a systematic review. Global Spine J 2019;9(8):881–94. https://doi.org/10.1177/2192568219874771.Google Scholar
Jack, AS, Chapman, JR, Mummaneni, PV, Gerard, CS, Jacques, L. Radiological data of brachial plexus avulsion injury associated spinal cord herniation (BPAI-SCH) and comparison to anterior thoracic spinal cord herniation (ATSCH). Data Brief 2020a;29:105333. https://doi.org/10.1016/j.dib.2020.105333.Google Scholar
Jack, AS, Chapman, JR, Mummaneni, PV, Jacques, LG, Gerard, CS. Late cervical spinal cord herniation resulting from post-traumatic brachial plexus avulsion injury. World Neurosurg 2020b;137:17. https://doi.org/10.1016/j.wneu.2020.01.129.Google Scholar
Jack, AS, Osburn, BR, Tymchak, ZA, et al. Foraminal ligaments tether upper cervical nerve roots: a potential cause of postoperative C5 palsy. J Brachial Plex Peripher Nerve Inj 2020c;15(1):e9e15. https://doi.org/10.1055/s-0040-1712982.Google Scholar
Jacobson, RD, Virag, I, Skene, JH. A protein associated with axon growth, GAP-43, is widely distributed and developmentally regulated in rat CNS. J Neurosci 1986;6(6):1843–55.Google Scholar
Johansson, F, Dahlin, LB. The multiple silicone tube device, “tubes within a tube,” for multiplication in nerve reconstruction. Biomed Res Int 2014;2014:689127. https://doi.org/10.1155/2014/689127.Google Scholar
Karsidag, S, Akcal, A, Sahin, S, Karsidag, S, Kabukcuoglu, F, Ugurlu, K. Neurophysiological and morphological responses to treatment with acetyl-l-carnitine in a sciatic nerve injury model: preliminary data. J Hand Surg Eur 2012;37(6):529–36. https://doi.org/10.1177/1753193411426969.Google Scholar
Keir, PJ, Rempel, DM. Pathomechanics of peripheral nerve loading. Evidence in carpal tunnel syndrome. J Hand Ther 2005;18(2):259–69. https://doi.org/10.1197/j.jht.2005.02.001.Google Scholar
Kim, DH, Friedman, AH, Kitagawa, RS, Kiline, DG. Management of peripheral nerve tumors In Filler, AG, Kline, DG, Zager, EL (Eds.), Youmans Neurological Surgery. 6th ed. Philadelphia, PA: Elsevier Saunders, 2011; p. 3264.Google Scholar
Kingery, WS, Lu, JD, Roffers, JA, Kell, DR. The resolution of neuropathic hyperalgesia following motor and sensory functional recovery in sciatic axonotmetic mononeuropathies. Pain 1994;58(2):157–68. https://doi.org/10.1016/0304-3959(94)90196-1.Google Scholar
Kolberg, M, Holand, M, Agesen, TH, et al. Survival meta-analyses for >1800 malignant peripheral nerve sheath tumor patients with and without neurofibromatosis type 1. Neuro Oncol 2013;15(2):135–47. https://doi.org/10.1093/neuonc/nos287.Google Scholar
Koopmeiners, AS, Mueller, S, Kramer, J, Hogan, QH. Effect of electrical field stimulation on dorsal root ganglion neuronal function. Neuromodulation 2013;16(4):304–11; discussion 310–01. https://doi.org/10.1111/ner.12028.Google Scholar
Kovalsky, Y, Amir, R, Devor, M. Simulation in sensory neurons reveals a key role for delayed Na+ current in subthreshold oscillations and ectopic discharge: implications for neuropathic pain. J Neurophysiol 2009;102(3):1430–42. https://doi.org/10.1152/jn.00005.2009.Google Scholar
Kramis, RC, Roberts, WJ, Gillette, RG. Post-sympathectomy neuralgia: hypotheses on peripheral and central neuronal mechanisms. Pain 1996;64(1):19. https://doi.org/10.1016/0304-3959(95)00060-7.Google Scholar
Kuiken, TA, Barlow, AK, Hargrove, L, Dumanian, GA. Targeted muscle reinnervation for the upper and lower extremity. Tech Orthop 2017;32(2):109–16. https://doi.org/10.1097/BTO.0000000000000194.Google Scholar
Kwan, MK, Wall, EJ, Massie, J, Garfin, SR. Strain, stress and stretch of peripheral nerve. Rabbit experiments in vitro and in vivo. Acta Orthop Scand 1992;63(3):267–72. https://doi.org/10.3109/17453679209154780.Google Scholar
Laycock-van Spyk, S, Thomas, N, Cooper, DN, Upadhyaya, M. Neurofibromatosis type 1-associated tumours: their somatic mutational spectrum and pathogenesis. Hum Genomics 2011;5(6):623–90. https://doi.org/10.1186/1479-7364-5-6-623.Google Scholar
Li, XY, Wan, Y, Tang, SJ, Guan, Y, Wei, F, Ma, D. Maladaptive plasticity and neuropathic pain. Neural Plast 2016;2016:4842159. https://doi.org/10.1155/2016/4842159.Google Scholar
Longo, JF, Weber, SM, Turner-Ivey, BP, Carroll, SL. Recent advances in the diagnosis and pathogenesis of neurofibromatosis type 1 (NF1)-associated peripheral nervous system neoplasms. Adv Anat Pathol 2018;25(5):353–68. https://doi.org/10.1097/PAP.0000000000000197.Google Scholar
Ludwin, SK, Maitland, M. Long-term remyelination fails to reconstitute normal thickness of central myelin sheaths. J Neurol Sci 1984;64(2):193–8. https://doi.org/10.1016/0022-510x(84)90037-6.Google Scholar
Lundborg, G, Dahlin, LB, Hansson, HA, Kanje, M, Necking, LE. Vibration exposure and peripheral nerve fiber damage. J Hand Surg Am 1990;15(2):346–51. https://doi.org/10.1016/0363-5023(90)90121-7.Google Scholar
Lundborg, G, Gelberman, RH, Minteer-Convery, M, Lee, YF, Hargens, AR. Median nerve compression in the carpal tunnel–functional response to experimentally induced controlled pressure. J Hand Surg Am 1982;7(3):252–9. https://doi.org/10.1016/s0363-5023(82)80175-5.Google Scholar
Lundborg, G, Myers, R, Powell, H. Nerve compression injury and increased endoneurial fluid pressure: a “miniature compartment syndrome”. J Neurol Neurosurg Psychiatry 1983;46(12):1119–24. https://doi.org/10.1136/jnnp.46.12.1119.Google Scholar
Lundborg, G, Rydevik, B. Effects of stretching the tibial nerve of the rabbit. A preliminary study of the intraneural circulation and the barrier function of the perineurium. J Bone Joint Surg Br 1973;55(2):390401.Google Scholar
Mackinnon, S, Dellon, A. Surgery of the Peripheral Nerve. New York: Thieme, 1988.Google Scholar
Mackinnon, SE, Dellon, AL, Hudson, AR, Hunter, DA. Chronic human nerve compression – a histological assessment. Neuropathol Appl Neurobiol 1986;12(6):547–65. https://doi.org/10.1111/j.1365-2990.1986.tb00159.x.Google Scholar
Madison, RD, Archibald, SJ, Brushart, TM. Reinnervation accuracy of the rat femoral nerve by motor and sensory neurons. J Neurosci 1996;16(18):5698–703.Google Scholar
Mahan, MA. Nerve stretching: a history of tension. J Neurosurg 2019;132(1):252–9. https://doi.org/10.3171/2018.8.JNS173181.Google Scholar
Martyn, CN, Hughes, RA. Epidemiology of peripheral neuropathy. J Neurol Neurosurg Psychiatry 1997;62(4):310–8. https://doi.org/10.1136/jnnp.62.4.310.Google Scholar
McCaughan, JA, Holloway, SM, Davidson, R, Lam, WW. Further evidence of the increased risk for malignant peripheral nerve sheath tumour from a Scottish cohort of patients with neurofibromatosis type 1. J Med Genet 2007;44(7):463–6. https://doi.org/10.1136/jmg.2006.048140.Google Scholar
Melzack, R. From the gate to the neuromatrix. Pain 1999;(Suppl 6):S121–6. https://doi.org/10.1016/s0304-3959(99)00145-1.Google Scholar
Melzack, R, Wall, PD. Pain mechanisms: a new theory. Science 1965;150:971–9. https://doi.org/10.1126/science.150.3699.971.Google Scholar
Mendell, LM. Constructing and deconstructing the gate theory of pain. Pain 2014;155(2):210–6. https://doi.org/10.1016/j.pain.2013.12.010.Google Scholar
Menorca, RM, Fussell, TS, Elfar, JC. Nerve physiology: mechanisms of injury and recovery. Hand Clin 2013;29(3):317–30. https://doi.org/10.1016/j.hcl.2013.04.002.Google Scholar
Miettinen, MM, Antonescu, CR, Fletcher, CDM, et al. Histopathologic evaluation of atypical neurofibromatous tumors and their transformation into malignant peripheral nerve sheath tumor in patients with neurofibromatosis 1 – a consensus overview. Hum Pathol 2017;67:110. https://doi.org/10.1016/j.humpath.2017.05.010.Google Scholar
Moimas, S, Novati, F, Ronchi, G, et al. Effect of vascular endothelial growth factor gene therapy on post-traumatic peripheral nerve regeneration and denervation-related muscle atrophy. Gene Ther 2013;20(10):1014–21. https://doi.org/10.1038/gt.2013.26.Google Scholar
Molliver, DC, Wright, DE, Leitner, ML, et al. IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron 1997;19(4):849–61. https://doi.org/10.1016/s0896-6273(00)80966-6.Google Scholar
Nodari, A, Previtali, SC, Dati, G, et al. Alpha6beta4 integrin and dystroglycan cooperate to stabilize the myelin sheath. J Neurosci 2008;28(26):6714–9. https://doi.org/10.1523/JNEUROSCI.0326-08.2008.Google Scholar
O’Brien, JP, Mackinnon, SE, MacLean, AR, Hudson, AR, Dellon, AL, Hunter, DA. A model of chronic nerve compression in the rat. Ann Plast Surg 1987;19(5):430–5. https://doi.org/10.1097/00000637-198711000-00008.Google Scholar
Ochoa, J, Fowler, TJ, Gilliatt, RW. Anatomical changes in peripheral nerves compressed by a pneumatic tourniquet. J Anat 1972;113(Pt 3):433–55.Google Scholar
Papalia, I, Tos, P, Stagno d’Alcontres, F, Battiston, B, Geuna, S. On the use of the grasping test in the rat median nerve model: a re-appraisal of its efficacy for quantitative assessment of motor function recovery. J Neurosci Methods 2003;127(1):43–7. https://doi.org/10.1016/s0165-0270(03)00098-0.Google Scholar
Pasmant, E, Sabbagh, A, Spurlock, G, et al. NF1 microdeletions in neurofibromatosis type 1: from genotype to phenotype. Hum Mutat 2010;31(6):E1506–18. https://doi.org/10.1002/humu.21271.Google Scholar
Penas, C, Navarro, X. Epigenetic modifications associated to neuroinflammation and neuropathic pain after neural trauma. Front Cell Neurosci 2018;12:158. https://doi.org/10.3389/fncel.2018.00158.Google Scholar
Pham, K, Gupta, R. Understanding the mechanisms of entrapment neuropathies. Neurosurg Focus 2009;26(2):E7. https://doi.org/10.3171/FOC.2009.26.2.E7.Google Scholar
Poppler, LH, Parikh, RP, Bichanich, MJ, et al. Surgical interventions for the treatment of painful neuroma: a comparative meta-analysis. Pain 2018;159(2):214–23. https://doi.org/10.1097/j.pain.0000000000001101.Google Scholar
Previtali, SC, Feltri, ML, Archelos, JJ, Quattrini, A, Wrabetz, L, Hartung, H. Role of integrins in the peripheral nervous system. Prog Neurobiol 2001;64(1):3549. https://doi.org/10.1016/s0301-0082(00)00045-9.Google Scholar
Prudner, BC, Ball, T, Rathore, R, Hirbe, AC. Diagnosis and management of malignant peripheral nerve sheath tumors: current practice and future perspectives. Neurooncol Adv 2020;2(Suppl 1):i40i49. https://doi.org/10.1093/noajnl/vdz047.Google Scholar
Que, J, Cao, Q, Sui, T, Du, S, Kong, D, Cao, X. Effect of FK506 in reducing scar formation by inducing fibroblast apoptosis after sciatic nerve injury in rats. Cell Death Dis 2013;4:e526. https://doi.org/10.1038/cddis.2013.56.Google Scholar
Ray, WZ, Mahan, MA, Guo, D, Guo, D, Kliot, M. An update on addressing important peripheral nerve problems: challenges and potential solutions. Acta Neurochir (Wien) 2017;159(9):1765–73. https://doi.org/10.1007/s00701-017-3203-3.Google Scholar
Reid, AJ, de Luca, AC, Faroni, A, et al. Long term peripheral nerve regeneration using a novel PCL nerve conduit. Neurosci Lett 2013;544:125–30. https://doi.org/10.1016/j.neulet.2013.04.001.Google Scholar
Rosen, HR, Ammer, K, Mohr, W, Bock, P, Kornek, GV, Firbas, W. Chemically-induced chronic nerve compression in rabbits – a new experimental model for the carpal tunnel syndrome. Langenbecks Arch Chir 1992;377(4):216–21. https://doi.org/10.1007/BF00210276.Google Scholar
Rydevik, B, Lundborg, G. Permeability of intraneural microvessels and perineurium following acute, graded experimental nerve compression. Scand J Plast Reconstr Surg 1977;11(3):179–87. https://doi.org/10.3109/02844317709025516.Google Scholar
Rydevik, B, Lundborg, G, Bagge, U. Effects of graded compression on intraneural blood blow. An in vivo study on rabbit tibial nerve. J Hand Surg Am 1981;6(1):312. https://doi.org/10.1016/s0363-5023(81)80003-2.Google Scholar
Salzer, JL, Bunge, RP. Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury. J Cell Biol 1980;84(3):739–52. https://doi.org/10.1083/jcb.84.3.739.Google Scholar
Savastano, LE, Laurito, SR, Fitt, MR, Rasmussen, JA, Gonzalez Polo, V, Patterson, SI. Sciatic nerve injury: a simple and subtle model for investigating many aspects of nervous system damage and recovery. J Neurosci Methods 2014;227:166–80. https://doi.org/10.1016/j.jneumeth.2014.01.020.Google Scholar
Scholz, J, Finnerup, NB, Attal, N, et al. The IASP classification of chronic pain for ICD-11: chronic neuropathic pain.Pain 2019;160(1):53–9. https://doi.org/10.1097/j.pain.0000000000001365.Google Scholar
Schwartz, MA, DeSimone, DW. Cell adhesion receptors in mechanotransduction. Curr Opin Cell Biol 2008;20(5):551–6. https://doi.org/10.1016/j.ceb.2008.05.005.Google Scholar
Sdrulla, AD, Guan, Y, Raja, SN. Spinal cord stimulation: clinical efficacy and potential mechanisms. Pain Pract 2018;18(8):1048–67. https://doi.org/10.1111/papr.12692.Google Scholar
Siemionow, M, Brzezicki, G. Chapter 8: Current techniques and concepts in peripheral nerve repair. Int Rev Neurobiol 2009;87:141–72. https://doi.org/10.1016/S0074-7742(09)87008-6.Google Scholar
Sommer, C, Leinders, M, Uceyler, N. Inflammation in the pathophysiology of neuropathic pain. Pain 2018;159(3):595602. https://doi.org/10.1097/j.pain.0000000000001122.Google Scholar
Sommerich, CM, Lavender, SA, Buford, JA, Banks, JJ, Korkmaz, SV, Pease, WS. Towards development of a nonhuman primate model of carpal tunnel syndrome: performance of a voluntary, repetitive pinching task induces median mononeuropathy in Macaca fascicularis. J Orthop Res 2007;25(6):713–24. https://doi.org/10.1002/jor.20363.Google Scholar
Spinner, RJ, Kline, DG. Surgery for peripheral nerve and brachial plexus injuries or other nerve lesions. Muscle Nerve 2000;23(5):680–95. https://doi.org/10.1002/(sici)1097-4598(200005)23:5<680::aid-mus4>3.0.co;2-h.Google Scholar
Staedtke, V, Bai, RY, Blakeley, JO. Cancer of the peripheral nerve in neurofibromatosis type 1. Neurotherapeutics 2017;14(2):298306. https://doi.org/10.1007/s13311-017-0518-y.Google Scholar
Stone, JJ, Spinner, RJ. Go for the gold: a “plane” and simple technique for resecting benign peripheral nerve sheath tumors. Oper Neurosurg (Hagerstown) 2020;18(1):60–8. https://doi.org/10.1093/ons/opz034.Google Scholar
Stossel, M, Wildhagen, VM, Helmecke, O, et al. Comparative evaluation of chitosan nerve guides with regular or increased bendability for acute and delayed peripheral nerve repair: a comprehensive comparison with autologous nerve grafts and muscle-in-vein grafts. Anat Rec (Hoboken) 2018;301(10):1697–713. https://doi.org/10.1002/ar.23847.Google Scholar
Swieboda, P, Filip, R, Prystupa, A, Drozd, M. Assessment of pain: types, mechanism and treatment. Ann Agric Environ Med 2013;Spec no. 1:27.Google Scholar
Szabo, RM, Sharkey, NA. Response of peripheral nerve to cyclic compression in a laboratory rat model. J Orthop Res 1993;11(6):828–33. https://doi.org/10.1002/jor.1100110608.Google Scholar
Taskinen, HS, Roytta, M. The dynamics of macrophage recruitment after nerve transection. Acta Neuropathol 1997;93(3):252–9. https://doi.org/10.1007/s004010050611.Google Scholar
Teixeira, MJ, da Paz, MG, Bina, MT, et al. Neuropathic pain after brachial plexus avulsion–central and peripheral mechanisms. BMC Neurol 2015;15:73. https://doi.org/10.1186/s12883-015-0329-x.Google Scholar
Tibbs, GR, Posson, DJ, Goldstein, PA. Voltage-gated ion channels in the PNS: novel therapies for neuropathic pain? Trends Pharmacol Sci 2016;37(7):522–42. https://doi.org/10.1016/j.tips.2016.05.002.Google Scholar
Tos, P, Battiston, B, Ciclamini, D, Geuna, S, Artiaco, S. Primary repair of crush nerve injuries by means of biological tubulization with muscle-vein-combined grafts. Microsurgery 2012;32(5):358–63. https://doi.org/10.1002/micr.21957.Google Scholar
Tos, P, Ronchi, G, Nicolino, S, et al. Employment of the mouse median nerve model for the experimental assessment of peripheral nerve regeneration. J Neurosci Methods 2008;169(1):119–27. https://doi.org/10.1016/j.jneumeth.2007.11.030.Google Scholar
Tricaud, N, Perrin-Tricaud, C, Bruses, JL, Rutishauser, U. Adherens junctions in myelinating Schwann cells stabilize Schmidt–Lanterman incisures via recruitment of p120 catenin to E-cadherin. J Neurosci 2005;25(13):3259–69. https://doi.org/10.1523/JNEUROSCI.5168-04.2005.Google Scholar
Tsuda, M. Microglia in the spinal cord and neuropathic pain. J Diabetes Investig 2016;7(1):1726. https://doi.org/10.1111/jdi.12379.Google Scholar
Varejao, AS, Melo-Pinto, P, Meek, MF, Filipe, VM, Bulas-Cruz, J. Methods for the experimental functional assessment of rat sciatic nerve regeneration. Neurol Res 2004;26(2):186–94. https://doi.org/10.1179/016164104225013833.Google Scholar
Vuka, I, Vucic, K, Repic, T, Ferhatovic Hamzic, L, Sapunar, D, Puljak, L. Electrical stimulation of dorsal root ganglion in the context of pain: a systematic review of in vitro and in vivo animal model studies. Neuromodulation 2018;21(3):213–24. https://doi.org/10.1111/ner.12722.Google Scholar
Wall, EJ, Massie, JB, Kwan, MK, Rydevik, BL, Myers, RR, Garfin, SR. Experimental stretch neuropathy. Changes in nerve conduction under tension. J Bone Joint Surg Br 1992;74(1):126–9.Google Scholar
Watanabe, M, Yamaga, M, Kato, T, Ide, J, Kitamura, T, Takagi, K. The implication of repeated versus continuous strain on nerve function in a rat forelimb model. J Hand Surg Am 2001;26(4):663–9. https://doi.org/10.1053/jhsu.2001.24142.Google Scholar
Whitlock, EL, Tuffaha, SH, Luciano, JP, et al. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve 2009;39(6):787–99. https://doi.org/10.1002/mus.21220.Google Scholar
Yamaguchi, T, Osamura, N, Zhao, C, Zobitz, ME, An, KN, Amadio, PC. The mechanical properties of the rabbit carpal tunnel subsynovial connective tissue. J Biomech 2008;41(16):3519–22. https://doi.org/10.1016/j.jbiomech.2007.06.004.Google Scholar

References

Abosch, A, Cosgrove, GR. Biological basis for the surgical treatment of depression. Neurosurg Focus 2008;25(1):E2. https://doi.org/10.3171/FOC/2008/25/7/E2.Google Scholar
Bari, A, DiCesare, J, Babayan, D, Runcie, M, Sparks, H, Wilson, B. Neuromodulation for substance addiction in human subjects: a review. Neurosci Biobehav Rev 2018;95:3343.Google Scholar
Becker, AJ. Review: Animal models of acquired epilepsy: insights into mechanisms of human epileptogenesis. Neuropathol Appl Neurobiol 2018;44(1):112–29. https://doi.org/10.1111/nan.12451.Google Scholar
Blauwendraat, C, Nalls, MA, Singleton, AB. The genetic architecture of Parkinson’s disease. Lancet Neurol 2020;19(2):170–8.Google Scholar
Breakefield, XO, Blood, AJ, Li, Y, Hallett, M, Hanson, PI, Standaert, DG. The pathophysiological basis of dystonias. Nat Rev Neurosci 2008;9(3):222–34.Google Scholar
Brown, P, Eusebio, A. Paradoxes of functional neurosurgery: clues from basal ganglia recordings. Mov Disord 2008;23(1):1220; quiz 158.Google Scholar
Casillas-Espinosa, PM, Powell, KL, O’Brien, TJ. Regulators of synaptic transmission: roles in the pathogenesis and treatment of epilepsy. Epilepsia 2012;53(Suppl 9):4158.Google Scholar
Clark, LN, Louis, ED. Challenges in essential tremor genetics. Rev Neurol 2015;171(6–7):466–74. https://doi.org/10.1016/j.neurol.2015.02.015.Google Scholar
Dauer, W, Przedborski, S. Parkinson’s disease: mechanisms and models. Neuron 2003;39(6):889909. https://doi.org/10.1016/s0896-6273(03)00568-3.Google Scholar
de Lau, LML, Breteler, MMB. Epidemiology of Parkinson’s disease. Lancet Neurol 2006;5(6):525–35. https://doi.org/10.1016/S1474-4422(06)70471-9.Google Scholar
Deisseroth, K. Optogenetics. Nat Methods 2011;8(1):26–9. https://doi.org/10.1038/nmeth.f.324.Google Scholar
Deuschl, G, Raethjen, J, Hellriegel, H, Elble, R. Treatment of patients with essential tremor. Lancet Neurol 2011;10(2):148–61. https://doi.org/10.1016/S1474-4422(10)70322-7.Google Scholar
Epi4K Consortium, Epilepsy Phenome/Genome Project, AS, Allen, et al. De novo mutations in epileptic encephalopathies. Nature 2013;501(7466):217–21. https://doi.org/10.1038/nature12439Google Scholar
Forno, LS, DeLanney, LE, Irwin, I, Langston, JW. Similarities and differences between MPTP-induced parkinsonsim and Parkinson’s disease. Neuropathologic considerations. Adv Neurol 1993;60:600–08.Google Scholar
Frizon, LA, Yamamoto, EA, Nagel, SJ, Simonson, MT, Hogue, O, Machado, AG. Deep brain stimulation for pain in the modern era: a systematic review. Neurosurgery 2020;86(2):191202. https://doi.org/10.1093/neuros/nyy552.Google Scholar
Galvan, A, Wichmann, T. Pathophysiology of parkinsonism. Clin Neurophysiol 2008;119(7):1459–74. https://doi.org/10.1016/j.clinph.2008.03.017.Google Scholar
Gradinaru, V, Mogri, M, Thompson, KR, Henderson, JM, Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 2009;324(5925):354–9. https://doi.org/10.1126/science.1167093.Google Scholar
Green, AL, Wang, S, Stein, JF, et al. Neural signatures in patients with neuropathic pain. Neurology 2009;72(6):569–71. https://doi.org/10.1212/01.wnl.0000342122.25498.8b.Google Scholar
Gregory, NS, Harris, AL, Robinson, CR, Dougherty, PM, Fuchs, PN, Sluka, KA. An overview of animal models of pain: disease models and outcome measures. J Pain 2013;14(11):1255–69. https://doi.org/10.1016/j.jpain.2013.06.008.Google Scholar
Grone, BP, Baraban, SC. Animal models in epilepsy research: legacies and new directions. Nat Neurosci 2015;18(3):339–43. https://doi.org/10.1038/nn.3934.Google Scholar
Handforth, A. Harmaline tremor: underlying mechanisms in a potential animal model of essential tremor. Tremor Other Hyperkinet Mov 2012;2:02-92-769-1. https://doi.org/10.7916/D8TD9W2P.Google Scholar
Herrington, TM, Cheng, JJ, Eskandar, EN. Mechanisms of deep brain stimulation. J Neurophysiol 2016;115(1):1938. https://doi.org/10.1152/jn.00281.2015.Google Scholar
Hochberg, LR, Bacher, D, Jarosiewicz, B, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 2012;485(7398):372–5. https://doi.org/10.1038/nature11076.Google Scholar
Hua, SE, Lenz, FA. Posture-related oscillations in human cerebellar thalamus in essential tremor are enabled by voluntary motor circuits. J Neurophysiol 2005;93(1):117–27. https://doi.org/10.1152/jn.00527.2004.Google Scholar
Krahl, SE, Clark, KB. Vagus nerve stimulation for epilepsy: a review of central mechanisms. Surg Neurol Int 2012;3(Suppl 4):S255–9. https://doi.org/10.4103/2152-7806.103015.Google Scholar
Kralic, JE, Criswell, HE, Osterman, JL, et al. Genetic essential tremor in γ-aminobutyric acidA receptor α1 subunit knockout mice. J Clin Invest 2005;115(3):774–9. https://doi.org/10.1172/JCI23625.Google Scholar
Kumar, K, Toth, C, Nath, RK. Deep brain stimulation for intractable pain: a 15-year experience. Neurosurgery 1997;40(4):736–46; discussion 746–7. https://doi.org/10.1097/00006123-199704000-00015.Google Scholar
Kupsch, A, Kuehn, A, Klaffke, S, et al. Deep brain stimulation in dystonia. J Neurol 2003;250(Suppl 1):I4752. https://doi.org/10.1007/s00415-003-1110-2.Google Scholar
Li, MCH, Cook, MJ. Deep brain stimulation for drug-resistant epilepsy. Epilepsia 2018;59(2):273–90. https://doi.org/10.1111/epi.13964.Google Scholar
Louis, ED, Bares, M, Benito-Leon, J, et al. Essential tremor-plus: a controversial new concept. Lancet Neurol 2020;19(3):266–70. https://doi.org/10.1016/S1474-4422(19)30398-9.Google Scholar
Louis, ED, Lenka, A. The olivary hypothesis of essential tremor: time to lay this model to rest? Tremor Other Hyperkinet Mov 2017;7:473. https://doi.org/10.7916/D8FF40RX.Google Scholar
Louis, ED, Vonsattel, JPG, Honig, LS, Ross, GW, Lyons, KE, Pahwa, R. Neuropathologic findings in essential tremor. Neurology 2006;66(11):1756–9. https://doi.org/10.1212/01.wnl.0000218162.80315.b9.Google Scholar
Magrinelli, F, Picelli, A, Tocco, P, et al. Pathophysiology of motor dysfunction in parkinson’s disease as the rationale for drug treatment and rehabilitation. Parkinsons Dis 2016;2016:9832839. https://doi.org/10.1155/2016/9832839.Google Scholar
Mankin, EA, Fried, I. Modulation of human memory by deep brain stimulation of the entorhinal–hippocampal circuitry. Neuron 2020;106(2):218–35. https://doi.org/10.1016/j.neuron.2020.02.024.Google Scholar
Meredith, GE, Rademacher, DJ. MPTP mouse models of Parkinson’s disease: an update. J Parkinsons Dis 2011;1(1):1933. https://doi.org/10.3233/JPD-2011-11023.Google Scholar
Mogil, JS. Animal models of pain: progress and challenges. Nat Rev Neurosci 2009;10(4):283–94. https://doi.org/10.1038/nrn2606.Google Scholar
Nestler, EJ. Is there a common molecular pathway for addiction? Nat Neurosci 2005;8(11):1445–9. https://doi.org/10.1038/nn1578.Google Scholar
Nestler, EJ, Hyman, SE. Animal models of neuropsychiatric disorders. Nat Neurosci 2010;13(10):1161–9. https://doi.org/10.1038/nn.2647.Google Scholar
Oikawa, H, Sasaki, M, Tamakawa, Y, Kamei, A. The circuit of Papez in mesial temporal sclerosis: MRI. Neuroradiology 2001;43(3):205–10. https://doi.org/10.1038/nn.2647.Google Scholar
Oleas, J, Yokoi, F, DeAndrade, MP, Pisani, A, Li, Y. Engineering animal models of dystonia. Mov Disord 2013;28(7):9901000. https://doi.org/10.1002/mds.25583.Google Scholar
Pan, M-K, Ni, C-L, Wu, Y-C, Li, Y-S, Kuo, S-H. Animal models of tremor: relevance to human tremor disorders. Tremor Other Hyperkinet Mov 2018;8:587. https://doi.org/10.7916/D89S37MV.Google Scholar
Pang, R, Lansdell, BJ, Fairhall, AL. Dimensionality reduction in neuroscience. Curr Biol 2016;26(14):R656–60. https://doi.org/10.1016/j.cub.2016.05.029.Google Scholar
Penfield, W, Perot, P. The brain’s record of auditory and visual experience. A final summary and discussion. Brain 1963;86:595696. https://dooi.org/10.1093/brain/86.4.595.Google Scholar
Pepper, J, Zrinzo, L, Hariz, M. Anterior capsulotomy for obsessive-compulsive disorder: a review of old and new literature. J Neurosurg 2019;110. Online ahead of print. https://doi.org/10.3171/2019.4.JNS19275Google Scholar
Posner, JB, Saper, CB, Schiff, N, Plum, F. Plum and Posner’s Diagnosis of Stupor and Coma, 4th ed. Oxford University Press, 2007.Google Scholar
Rasche, D, Rinaldi, PC, Young, RF, Tronnier, VM. Deep brain stimulation for the treatment of various chronic pain syndromes. Neurosurg Focus 2006;21(6):E8. https://doi.org/10.3171/foc.2006.21.6.10.Google Scholar
Schweitzer, JS, Song, B, Herrington, TM, et al. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. N Engl J Med 2020;382(20):1926–32. https://doi.org/10.1056/NEJMoa1915872.Google Scholar
Shah, SA, Schiff, ND. Central thalamic deep brain stimulation for cognitive neuromodulation – a review of proposed mechanisms and investigational studies. Eur J Neurosci 2010;32(7):1135–44. https://doi.org/10.1111/j.1460-9568.2010.07420.x.Google Scholar
Shenoy, KV, Sahani, M, Churchland, MM. Cortical control of arm movements: a dynamical systems perspective. Annu Rev Neurosci 2013;36:337–59. https://doi.org/10.1146/annurev-neuro-062111-150509.Google Scholar
Tanabe, LM, Kim, CE, Alagem, N, Dauer, WT. Primary dystonia: molecules and mechanisms. Nat Rev Neurol 2009;5(11):598609. https://doi.org/10.1038/nrneurol.2009.160.Google Scholar
Wang, TR, Moosa, S, Dallapiazza, RF, Elias, WJ, Lynch, WJ. Deep brain stimulation for the treatment of drug addiction. Neurosurg Focus 2018;45(2):E11. https://doi.org/10.3171/2018.5.FOCUS18163.Google Scholar
Wilson, BK, Hess, EJ. Animal models for dystonia. Mov Disord 2013;28(7):982–9. https://doi.org/10.1002/mds.25526.Google Scholar
Wong, M, Roper, SN. Genetic animal models of malformations of cortical development and epilepsy. J Neurosci Methods 2016;260:7382. https://doi.org/10.1016/j.jneumeth.2015.04.007.Google Scholar

References

Alexandrov, AV, Demchuk, AM, Burgin, WS, Robinson, DJ, Grotta, JC. Ultrasound‐enhanced thrombolysis for acute ischemic stroke: phase I. Findings of the CLOTBUST trial. J Neuroimaging 2004a;14:113–17.Google Scholar
Alexandrov, AV, Köhrmann, M, Soinne, L, et al. Safety and efficacy of sonothrombolysis for acute ischaemic stroke: a multicentre, double-blind, phase 3, randomised controlled trial. Lancet Neurol 2019;18:338–47. www.sciencedirect.com/science/article/pii/S1474442219300262.Google Scholar
Alexandrov, AV, Molina, CA, Grotta, JC, et al. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med 2004b;351:2170–8.Google Scholar
Allen, SP, Prada, F, Xu, Z, et al. A preclinical study of diffusion-weighted MRI contrast as an early indicator of thermal ablation. Magn Reson Med 2021;85(4):2145–59. https://doi.org/10.1002/mrm.28537.Google Scholar
Attal, N. Chronic neuropathic pain: mechanisms and treatment. Clin J Pain 2000;16:S118–30.Google Scholar
Auboire, L, Sennoga, CA, Hyvelin, J-M, et al. Microbubbles combined with ultrasound therapy in ischemic stroke: a systematic review of in-vivo preclinical studies. PLoS One 2018;13:e0191788.Google Scholar
Bilmin, K, Kujawska, T, Grieb, P. Sonodynamic therapy for gliomas. perspectives and prospects of selective sonosensitization of glioma cells. Cells 2019;8(11):1428. https://doi.org/10.3390/cells8111428.Google Scholar
Bond, AE, Shah, BB, Huss, DS, et al. Safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory, tremor-dominant Parkinson disease: a randomized clinical trial. JAMA Neurol 2017;74:1412–8. https://doi.org/10.1001/jamaneurol.2017.3098.Google Scholar
Boutet, A, Gwun, D, Gramer, R, et al. The relevance of skull density ratio in selecting candidates for transcranial MR-guided focused ultrasound. J Neurosurg 2019;132(6):1785–91. https://doi.org/10.3171/2019.2.JNS182571.Google Scholar
Bunevicius, A, McDannold, NJ, Golby, AJ: Focused ultrasound strategies for brain tumor therapy. Oper Neurosurg 2020;19:918. https://doi.org/10.1093/ons/opz374.Google Scholar
Canney, MS, Chavrier, F, Tsysar, S, Chapelon, J-Y, Lafon, C, Carpentier, A. A multi-element interstitial ultrasound applicator for the thermal therapy of brain tumors. J Acoust Soc Am 2013;134:1647–55.Google Scholar
Chang, JW, Park, CK, Lipsman, N, et al. A prospective trial of magnetic resonance-guided focused ultrasound thalamotomy for essential tremor: results at the 2-year follow-up. Ann Neurol 2018;83:107–14.Google Scholar
Chapman, M, Park, A, Schwartz, M, Tarshis, J. Anesthesia considerations of magnetic resonance imaging-guided focused ultrasound thalamotomy for essential tremor: a case series. Can J Anaesth 2020;67:877–84.Google Scholar
Chen, K-T, Wei, K-C, Liu, H-L. Theranostic strategy of focused ultrasound induced blood–brain barrier opening for CNS disease treatment. Front Pharmacol 2019;10:86. https://doi.org/10.3389/fphar.2019.00086.Google Scholar
Chen, P-Y, Hsieh, H-Y, Huang, C-Y, Lin, C-Y, Wei, K-C, Liu, H-L. Focused ultrasound-induced blood–brain barrier opening to enhance interleukin-12 delivery for brain tumor immunotherapy: a preclinical feasibility study. J Transl Med 2015a;13:93.Google Scholar
Chen, P-Y, Wei, K-C, Liu, H-L. Neural immune modulation and immunotherapy assisted by focused ultrasound induced blood–brain barrier opening. Hum Vaccin Immunother 2015b;11:2682–7.Google Scholar
Chen, Z, Xue, T, Huang, H, et al. Efficacy and safety of sonothombolysis versus non-sonothombolysis in patients with acute ischemic stroke: a meta-analysis of randomized controlled trials. PLoS One 2019;14:e0210516. https://doi.org/10.1371/journal.pone.0210516.Google Scholar
Christian, E, Yu, C, Apuzzo, MLJ. Focused ultrasound: relevant history and prospects for the addition of mechanical energy to the neurosurgical armamentarium. World Neurosurg 2014;82:354–65.Google Scholar
Cohen-Inbar, O, Xu, Z, Sheehan, JP. Focused ultrasound-aided immunomodulation in glioblastoma multiforme: a therapeutic concept. J Ther Ultrasound 2016;4:2.Google Scholar
Colloca, L, Ludman, T, Bouhassira, D, et al. Neuropathic pain. Nat Rev Dis Prim 2017;3:17002.Google Scholar
Coluccia, D, Fandino, J, Schwyzer, L, et al. First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound. J Ther Ultrasound 2014;2:17. https://doi.org/10.1186/2050-5736-2-17.Google Scholar
Curley, CT, Sheybani, ND, Bullock, TN, Price, RJ. Focused ultrasound immunotherapy for central nervous system pathologies: challenges and opportunities. Theranostics 2017;7:3608–23. www.thno.org/v07p3608.htm.Google Scholar
D’Souza, AL, Tseng, JR, Pauly, KB, et al. A strategy for blood biomarker amplification and localization using ultrasound. Proc Natl Acad Sci U S A 2009;106:17152–7.Google Scholar
D’Souza, M, Chen, KS, Rosenberg, J, et al. Impact of skull density ratio on efficacy and safety of magnetic resonance-guided focused ultrasound treatment of essential tremor. J Neurosurg 2019;132(5):1392–7. https://doi.org/10.3171/2019.2.JNS183517.Google Scholar
Dalecki, D. Mechanical bioeffects of ultrasound. Annu Rev Biomed Eng 2004;6:229–48.Google Scholar
Dang, TTH, Rowell, D, Connelly, LB/ Cost-effectiveness of deep brain stimulation with movement disorders: a systematic review. Mov Disord Clin Pract 2019;6:348–58.Google Scholar
Darrow, DP. Focused ultrasound for neuromodulation. Neurotherapeutics 2019;16:8899.Google Scholar
Davidson, B, Hamani, C, Rabin, JS, et al. Magnetic resonance-guided focused ultrasound capsulotomy for refractory obsessive compulsive disorder and major depressive disorder: clinical and imaging results from two phase I trials. Mol Psychiatry 2020;25:1946–57. https://doi.org/10.1038/s41380-020-0737-1.Google Scholar
Deffieux, T, Younan, Y, Wattiez, N, Tanter, M, Pouget, P, Aubry, J-F. Low-intensity focused ultrasound modulates monkey visuomotor behavior. Curr Biol 2013;23:2430–3. https://doi.org/10.1016/j.cub.2013.10.029.Google Scholar
DeLong, MR, Wichmann, T. Basal ganglia circuits as targets for neuromodulation in Parkinson disease. JAMA Neurol 2015;72:1354–60.Google Scholar
Deng, J, Huang, Q, Wang, F, et al. The role of caveolin-1 in blood–brain barrier disruption induced by focused ultrasound combined with microbubbles. J Mol Neurosci 2012;46:677–87. https://doi.org/10.1007/s12031-011-9629-9.Google Scholar
Dixon, AJ, Li, J, Rickel, J-MR, Klibanov, AL, Zuo, Z, Hossack, JA. Efficacy of sonothrombolysis using microbubbles produced by a catheter-based microfluidic device in a rat model of ischemic stroke. Ann Biomed Eng 2019;47:1012–22.Google Scholar
Dobrakowski, PP, Machowska-Majchrzak, AK, Labuz-Roszak, B, Majchrzak, KG, Kluczewska, E, Pierzchała, KB. MR-guided focused ultrasound: a new generation treatment of Parkinson’s disease, essential tremor and neuropathic pain. Interv Neuroradiol 2014;20:275–82. https://doi.org/10.15274/INR-2014-10033.Google Scholar
Donnan, GA, Fisher, M, Macleod, M, Davis, SM. Stroke. Lancet 2008;371:1612–23.Google Scholar
Dwedar, AZ, Ashour, S, Haroun, M, et al. Sonothrombolysis in acute middle cerebral artery stroke. Neurol India 2014;62:62–5. https://doi.org/10.4103/0028-3886.128308.Google Scholar
Ebani, EJ, Kaplitt, MG, Wang, Y, Nguyen, TD, Askin, G, Chazen, JL. Improved targeting of the globus pallidus interna using quantitative susceptibility mapping prior to MR-guided focused ultrasound ablation in Parkinson’s disease. Clin Imaging 2020;68:94–8.Google Scholar
Eggers, J, König, IR, Koch, B, Händler, G, Seidel, G. Sonothrombolysis with transcranial color-coded sonography and recombinant tissue-type plasminogen activator in acute middle cerebral artery main stem occlusion: results from a randomized study. Stroke 2008;39:1470–5.Google Scholar
Eggers, J, Seidel, G, Koch, B, König, IR. Sonothrombolysis in acute ischemic stroke for patients ineligible for rt-PA. Neurology 2005;64:1052–4.Google Scholar
Elias, WJ, Huss, D, Voss, T, et al. A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med 2013;369:640–8.Google Scholar
Elias, WJ, Lipsman, N, Ondo, WG, et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med 2016;375:730–9. https://doi.org/10.1056/NEJMoa1600159.Google Scholar
Fan, C-H, Lin, C-Y, Liu, H-L, Yeh, C-K. Ultrasound targeted CNS gene delivery for Parkinson’s disease treatment. J Control Release 2017;261:246–62.Google Scholar
Fiani, B, Lissak, IA, Soula, M, et al. The emerging role of magnetic resonance imaging-guided focused ultrasound in functional neurosurgery. Cureus 2020;12:e9820. https://doi.org/10.7759/cureus.9820.Google Scholar
Finley, DS, Pouliot, F, Shuch, B, et al. Ultrasound-based combination therapy: potential in urologic cancer. Expert Rev Anticancer Ther 2011;11:107–13.Google Scholar
Foffani, G, Trigo-Damas, I, Pineda-Pardo, JA, et al. Focused ultrasound in Parkinson’s disease: a twofold path toward disease modification. Mov Disord 2019;34:1262–73.Google Scholar
Fomenko, A, Neudorfer, C, Dallapiazza, RF, Kalia, SK, Lozano, AM. Low-intensity ultrasound neuromodulation: an overview of mechanisms and emerging human applications. Brain Stimul 2018;11:1209–17. www.sciencedirect.com/science/article/pii/S1935861X18302961.Google Scholar
Franzini, A, Moosa, S, Prada, F, Elias, WJ. Ultrasound ablation in neurosurgery: current clinical applications and future perspectives. Neurosurgery 2020;87:110.Google Scholar
Franzini, A, Moosa, S, Servello, D, et al. Ablative brain surgery: an overview. Int J Hyperthermia 2019;36:6480. www.ncbi.nlm.nih.gov/pubmed/31537157.Google Scholar
Frenkel, V, Kimmel, E, Iger, Y. Ultrasound-facilitated transport of silver chloride (AgCl) particles in fish skin. J Control Release 2000;68:251–61.Google Scholar
Frenkel, V, Etherington, A, Greene, M, et al. Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure. Acad Radiol 2006;13:469–79. https://doi.org/10.1016/j.acra.2005.08.024.Google Scholar
Frenkel, V, Gurka, R, Liberzon, A, Shavit, U, Kimmel, E. Preliminary investigations of ultrasound induced acoustic streaming using particle image velocimetry. Ultrasonics 2001;39:153–6. https://doi.org/10.1016/s0041-624x(00)00064-0.Google Scholar
Fry, WJ, Barnard, JW, Fry, EJ, Krumins, RF, Brennan, JF. Ultrasonic lesions in the mammalian central nervous system. Science 1955;122:517–8.Google Scholar
Fry, WJ, Meyers, R. Ultrasonic method of modifying brain structures. Confin Neurol 1962;22:315–27.Google Scholar
Fusco, P, De Sanctis, F, Di Carlo, S, et al. Dexmedetomidine sedation in magnetic resonance-guided focused ultrasound thalamotomy: a case series of 3 patients. A&A Pract 2019;12:406–08.Google Scholar
Gagliardo, C, Cannella, R, Quarrella, C, et al. Intraoperative imaging findings in transcranial MR imaging-guided focused ultrasound treatment at 1.5T may accurately detect typical lesional findings correlated with sonication parameters. Eur Radiol 2020;30:5059–70.Google Scholar
Gallay, MN, Moser, D, Federau, C, Jeanmonod, D. Anatomical and technical reappraisal of the pallidothalamic tractotomy with the incisionless transcranial MR-guided focused ultrasound. A technical note. Front Surg 2019a;6:2.Google Scholar
Gallay, MN, Moser, D, Federau, C, Jeanmonod, D. Radiological and thermal dose correlations in pallidothalamic tractotomy with MRgFUS. Front Surg 2019b;6:28.Google Scholar
Gallay, MN, Moser, D, Jeanmonod, D. Safety and accuracy of incisionless transcranial MR-guided focused ultrasound functional neurosurgery: single-center experience with 253 targets in 180 treatments. J Neurosurg 2018;110. Online ahead of publication. https://thejns.org/view/journals/j-neurosurg/aop/article-10.3171-2017.12.JNS172054.xml.Google Scholar
Gallay, MN, Moser, D, Rossi, F, et al. Incisionless transcranial MR-guided focused ultrasound in essential tremor: cerebellothalamic tractotomy. J Ther Ultrasound 2016;4:5.Google Scholar
Gallay, MN, Moser, D, Rossi, F, et al. MRgFUS Pallidothalamic tractotomy for chronic therapy-resistant Parkinson’s disease in 51 consecutive patients: single center experience. Front Surg 2019c;6:76.Google Scholar
Gerhardson, T, Sukovich, JR, Chaudhary, N, et al. Histotripsy clot liquefaction in a porcine intracerebral hemorrhage model. Neurosurgery 2020;86:429–36. https://doi.org/10.1093/neuros/nyz089.Google Scholar
Gerhardson, T, Sukovich, JR, Pandey, AS, Hall, TL, Cain, CA, Xu, Z. Effect of frequency and focal spacing on transcranial histotripsy clot liquefaction, using electronic focal steering. Ultrasound Med Biol 2017;43:2302–17.Google Scholar
Gersten, JW, Kawashima, E. Recent advances in fundamental aspects of ultrasound and muscle. Br J Phys Med 1955;18:106–09.Google Scholar
Giordano, M, Caccavella, VM, Zaed, I, et al. Comparison between deep brain stimulation and magnetic resonance-guided focused ultrasound in the treatment of essential tremor: a systematic review and pooled analysis of functional outcomes. J Neurol Neurosurg Psychiatry 2020;91(12):1270–8. https://doi.org/10.1136/jnnp-2020-323216.Google Scholar
Guthkelch, AN, Carter, LP, Cassady, JR, et al. Treatment of malignant brain tumors with focused ultrasound hyperthermia and radiation: results of a phase I trial. J Neurooncol 1991;10:271–84.Google Scholar
Hancock, HA, Smith, LH, Cuesta, J, et al. Investigations into pulsed high-intensity focused ultrasound-enhanced delivery: preliminary evidence for a novel mechanism. Ultrasound Med Biol 2009;35:1722–36.Google Scholar
Harnof, S, Zibly, Z, Hananel, A, et al. Potential of magnetic resonance-guided focused ultrasound for intracranial hemorrhage: an in vivo feasibility study. J Stroke Cerebrovasc Dis 2014;23:1585–91. www.sciencedirect.com/science/article/pii/S1052305713005612.Google Scholar
Heimburger, RF. Ultrasound augmentation of central nervous system tumor therapy. Indiana Med 1985;78:469–76.Google Scholar
Hersh, DS, Kim, AJ, Winkles, JA, Eisenberg, HM, Woodworth, GF, Frenkel, V. Emerging applications of therapeutic ultrasound in neuro-oncology: moving beyond tumor ablation. Neurosurgery 2016;79:643–54. https://doi.org/10.1227/NEU.0000000000001399.Google Scholar
Hu, Z, Yang, XY, Liu, Y, et al. Release of endogenous danger signals from HIFU-treated tumor cells and their stimulatory effects on APCs. Biochem Biophys Res Commun 2005;335:124–31. https://doi.org/10.1016/j.bbrc.2005.07.071.Google Scholar
Hu, Z, Yang, XY, Liu, Y, et al. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model. J Transl Med 2007;5:34. https://doi.org/10.1186/1479-5876-5-34.Google Scholar
Hynynen, K. Demonstration of enhanced temperature elevation due to nonlinear propagation of focussed ultrasound in dog’s thigh in vivo. Ultrasound Med Biol 1987;13:8591. https://doi.org/10.1016/0301-5629(87)90078-0.Google Scholar
Hynynen, K, Clement, G. Clinical applications of focused ultrasound – the brain. Int J Hyperthermia 2007;23:193202. https://doi.org/10.1080/02656730701200094.Google Scholar
Hynynen, K, Darkazanli, A, Unger, E, Schenck, JF. MRI-guided noninvasive ultrasound surgery. Med Phys 1993;20:107–15. https://doi.org/10.1118/1.597093.Google Scholar
Hynynen, K, Jolesz, FA. Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound Med Biol 1998;24:275–83. https://doi.org/10.1016/s0301-5629(97)00269-x.Google Scholar
Idbaih, A, Canney, M, Belin, L, et al. Safety and feasibility of repeated and transient blood–brain barrier disruption by pulsed ultrasound in patients with recurrent glioblastoma. Clin Cancer Res 2019;25:3793–801. https://doi.org/10.1158/1078-0432.CCR-18-3643.Google Scholar
Ilyas, A, Chen, C-J, Ding, D, et al. Magnetic resonance-guided, high-intensity focused ultrasound sonolysis: potential applications for stroke. Neurosurg Focus 2018;44:E12.Google Scholar
Ito, H, Yamamoto, K, Fukutake, S, Odo, T, Kamei, T. Two-year follow-up results of magnetic resonance imaging-guided focused ultrasound unilateral thalamotomy for medication-refractory essential tremor. Intern Med 2020;59:2481–3.Google Scholar
Jagannathan, J, Sanghvi, NT, Crum, LA, et al. High-intensity focused ultrasound surgery of the brain: part 1 – a historical perspective with modern applications. Neurosurgery 2009;64:201.Google Scholar
James, JA, Dalton, GA, Bullen, MA, Freundlich, HF, Hopkins, JC. The ultrasonic treatment of Meniere’s disease. J Laryngol Otol 1960;74:730–57.Google Scholar
Jeanmonod, D, Werner, B, Morel, A, et al. Transcranial magnetic resonance imaging–guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain. Neurosurg Focus 2012;32(1):E1. https://doi.org/10.3171/2011.10.FOCUS11248.Google Scholar
Jones, RM, Kamps, S, Huang, Y, et al. Accumulated thermal dose in MRI-guided focused ultrasound for essential tremor: repeated sonications with low focal temperatures. J Neurosurg 2019;132(6):1802–9. https://doi.org/10.3171/2019.2.JNS182995.Google Scholar
Jung, HH, Chang, WS, Rachmilevitch, I, Tlusty, T, Zadicario, E, Chang, JW. Different magnetic resonance imaging patterns after transcranial magnetic resonance-guided focused ultrasound of the ventral intermediate nucleus of the thalamus and anterior limb of the internal capsule in patients with essential tremor or obsessive-com. J Neurosurg 2015b;122:162–8. https://doi.org/10.3171/2014.8.JNS132603.Google Scholar
Jung, HH, Kim, SJ, Roh, D, et al. Bilateral thermal capsulotomy with MR-guided focused ultrasound for patients with treatment-refractory obsessive-compulsive disorder: a proof-of-concept study. Mol Psychiatry 2015a;20:1205–11. https://doi.org/10.1038/mp.2014.154.Google Scholar
Jung, NY, Chang, JW. Magnetic resonance-guided focused ultrasound in neurosurgery: taking lessons from the past to inform the future. J Korean Med Sci 2018;33:e279. https://doi.org/10.3346/jkms.2018.33.e279.Google Scholar
Jung, NY, Park, CK, Kim, M, Lee, PH, Sohn, YH, Chang, JW. The efficacy and limits of magnetic resonance-guided focused ultrasound pallidotomy for Parkinson’s disease: a Phase I clinical trial. J Neurosurg 2018; https://doi.org/10.3171/2018.2.JNS172514. Online ahead of print.Google Scholar
Kampinga, HH. Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int J Hyperthermia 2006;22:191–6. https://doi.org/10.1080/02656730500532028.Google Scholar
Kapadia, AN, Elias, GJB, Boutet, A, et al. Multimodal MRI for MRgFUS in essential tremor: post-treatment radiological markers of clinical outcome. J Neurol Neurosurg Psychiatry 2020;91:921–7. https://doi.org/10.1136/jnnp-2020-322745.Google Scholar
Katz, M, Luciano, MS, Carlson, K, et al. Differential effects of deep brain stimulation target on motor subtypes in Parkinson’s disease. Ann Neurol 2015;77:710–9. https://doi.org/10.1002/ana.24374.Google Scholar
Katzir, S. Who knew piezoelectricity? Rutherford and Langevin on submarine detection and the invention of sonar. Notes Rec R Soc 2012;66:141–57. https://doi.org/10.1098/rsnr.2011.0049.Google Scholar
Keil, VC, Borger, V, Purrer, V, et al. MRI follow-up after magnetic resonance-guided focused ultrasound for non-invasive thalamotomy: the neuroradiologist’s perspective. Neuroradiology 2020;62:1111–22. https://doi.org/10.1007/s00234-020-02433-9.Google Scholar
Khokhlova, VA, Bailey, MR, Reed, JA, Cunitz, BW, Kaczkowski, PJ, Crum, LA. Effects of nonlinear propagation, cavitation, and boiling in lesion formation by high intensity focused ultrasound in a gel phantom. J Acoust Soc Am 2006;119:1834–48. https://doi.org/10.1121/1.2161440.Google Scholar
Kim, M, Jung, NY, Park, CK, Chang, WS, Jung, HH, Chang, JW. Comparative evaluation of magnetic resonance-guided focused ultrasound surgery for essential tremor. Stereotact Funct Neurosurg 2017;95:279–86. https://doi.org/10.1159/000478866.Google Scholar
Kim, SJ, Roh, D, Jung, HH, Chang, WS, Kim, C-H, Chang, JW. A study of novel bilateral thermal capsulotomy with focused ultrasound for treatment-refractory obsessive-compulsive disorder: 2-year follow-up. J Psychiatry Neurosci 2018;43:170188. https://doi.org/10.1503/jpn.170188.Google Scholar
Kovacs, ZI, Kim, S, Jikaria, N, et al. Disrupting the blood–brain barrier by focused ultrasound induces sterile inflammation. Proc Natl Acad Sci U S A, 2017;114:E7584.Google Scholar
Krasovitski, B, Frenkel, V, Shoham, S, Kimmel, E. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc Natl Acad Sci U S A 2011;108:3258–63.Google Scholar
Kuliha, M, Roubec, M, Jonszta, T, et al. Safety and efficacy of endovascular sonolysis using the EkoSonic endovascular system in patients with acute stroke. Am J Neuroradiol 2013;34:1401–06. www.ajnr.org/content/34/7/1401.abstract.Google Scholar
Lamsam, L, Johnson, E, Connolly, ID, Wintermark, M, Hayden Gephart, M. A review of potential applications of MR-guided focused ultrasound for targeting brain tumor therapy. Neurosurg Focus 2018;44:E10.Google Scholar
Lehman, VT, Lee, KH, Klassen, BT, et al. MRI and tractography techniques to localize the ventral intermediate nucleus and dentatorubrothalamic tract for deep brain stimulation and MR-guided focused ultrasound: a narrative review and update. Neurosurg Focus 2020;49:E8.Google Scholar
Lepock, JR. Measurement of protein stability and protein denaturation in cells using differential scanning calorimetry. Methods 2005;35:117–25.Google Scholar
Lin, C-Y, Hsieh, H-Y, Chen, C-M, et al. Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood–brain barrier opening in Parkinson’s disease mouse model. J Control Release 2016;235:7281. https://doi.org/10.1016/j.jconrel.2016.05.052.Google Scholar
Lionetti, V, Fittipaldi, A, Agostini, S, Giacca, M, Recchia, FA, Picano, E. Enhanced caveolae-mediated endocytosis by diagnostic ultrasound in vitro. Ultrasound Med Biol 2009;35:136–43. https://doi.org/10.1016/j.ultrasmedbio.2008.07.011.Google Scholar
Lipsman, N, Schwartz, ML, Huang, Y, et al. MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol 2013;12:462–8.Google Scholar
Long, L, Cai, X, Guo, R, et al. Treatment of Parkinson’s disease in rats by Nrf2 transfection using MRI-guided focused ultrasound delivery of nanomicrobubbles. Biochem Biophys Res Commun 2017;482:7580.Google Scholar
Louis, ED. Treatment of medically refractory essential tremor. N Engl J Med 2016;375:792–3. https://doi.org/10.1056/NEJMe1606517.Google Scholar
Louis, ED, Ottman, R. How many people in the USA have essential tremor? Deriving a population estimate based on epidemiological data.Tremor Other Hyperkinet Mov (N Y) 2014;4:259.Google Scholar
Lu, P, Zhu, X-Q, Xu, Z-L, Zhou, Q, Zhang, J, Wu, F. Increased infiltration of activated tumor-infiltrating lymphocytes after high intensity focused ultrasound ablation of human breast cancer. Surgery 2009;145:286–93.Google Scholar
Lynn, JG, Zwemer, RL, Chick, AJ, Miller, AE. A new method for the generation and use of focused ultrasound in experimental biology. J Gen Physiol 1942;26:179–93. https://doi.org/10.1085/jgp.26.2.179.Google Scholar
Magara, A, Bühler, R, Moser, D, Kowalski, M, Pourtehrani, P, Jeanmonod, D. First experience with MR-guided focused ultrasound in the treatment of Parkinson’s disease. J Ther Ultrasound 2014;2:11.Google Scholar
Mainprize, T, Lipsman, N, Huang, Y, et al. Blood–brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: a clinical safety and feasibility study. Sci Rep 2019;9:321. https://doi.org/10.1038/s41598-018-36340-0.Google Scholar
Martin, E, Jeanmonod, D, Morel, A, Zadicario, E, Werner, B. High-intensity focused ultrasound for noninvasive functional neurosurgery. Ann Neurol 2009;66:858–61.Google Scholar
Martínez-Fernández, R, Pineda-Pardo, JA. Magnetic resonance-guided focused ultrasound for movement disorders: clinical and neuroimaging advances. Curr Opin Neurol 2020;33:488–97.Google Scholar
Martínez-Fernández, R, Rodríguez-Rojas, R, Del Álamo, M, et al. Focused ultrasound subthalamotomy in patients with asymmetric Parkinson’s disease: a pilot study. Lancet Neurol 2018;17:5463.Google Scholar
Mauri, G, Nicosia, L, Xu, Z, et al. Focused ultrasound: tumour ablation and its potential to enhance immunological therapy to cancer. Br J Radiol 2018;91:20170641.Google Scholar
McDannold, N, Clement, GT, Black, P, Jolesz, F, Hynynen, K. Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery 2010;66:323–32; discussion 332. https://doi.org/10.1227/01.NEU.0000360379.95800.2F.Google Scholar
McDannold, NJ, Vykhodtseva, NI, Hynynen, K. Microbubble contrast agent with focused ultrasound to create brain lesions at low power levels: MR imaging and histologic study in rabbits. Radiology 2006;241:95106.Google Scholar
McDannold, NJ, White, PJ, Cosgrove, GR. MRI-based thermal dosimetry based on single-slice imaging during focused ultrasound thalamotomy. Phys Med Biol: 2020a;65(23):235018. https://doi.org/10.1088/1361-6560/abb7c4.Google Scholar
McDannold, N, White, PJ, Cosgrove, GR. Using phase data from MR temperature imaging to visualize anatomy during MRI guided focused ultrasound neurosurgery. IEEE Trans Med Imaging 2020b;39(12):3821–30. https://doi.org/10.1109/TMI.2020.3005631.Google Scholar
Medel, R, Monteith, SJ, Elias, WJ, et al. Magnetic resonance-guided focused ultrasound surgery: Part 2: a review of current and future applications. Neurosurgery 2012;71:755–63.Google Scholar
Meng, Y, Pople, CB, Kalia, SK, et al. Cost-effectiveness analysis of MR-guided focused ultrasound thalamotomy for tremor-dominant Parkinson’s disease. J Neurosurg 2020. https://doi.org/10.3171/2020.5.JNS20692. Online ahead of print.Google Scholar
Meng, Y, Suppiah, S, Surendrakumar, S, Bigioni, L, Lipsman, N. Low-intensity MR-guided focused ultrasound mediated disruption of the blood–brain barrier for intracranial metastatic diseases. Front Oncol 2018;8:338. www.frontiersin.org/article/10.3389/fonc.2018.00338.Google Scholar
Metman, LV, Slavin, KV. Advances in functional neurosurgery for Parkinson’s disease. Mov Disord 2015;30:1461–70.Google Scholar
Miller, TR, Guo, S, Melhem, ER, et al. Predicting final lesion characteristics during MR-guided focused ultrasound pallidotomy for treatment of Parkinson’s disease. J Neurosurg 2020;134(3):1083–90. https://doi.org/10.3171/2020.2.JNS192590.Google Scholar
Molina, CA, Barreto, AD, Tsivgoulis, G, et al. Transcranial ultrasound in clinical sonothrombolysis (TUCSON) trial. Ann Neurol 2009;66:2838.Google Scholar
Molina, CA, Ribo, M, Rubiera, M, et al. Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke 2006;37:425–9.Google Scholar
Monteith, SJ, Harnof, S, Medel, R, et al. Minimally invasive treatment of intracerebral hemorrhage with magnetic resonance-guided focused ultrasound. J Neurosurg 2013a;118:1035–45.Google Scholar
Monteith, SJ, Kassell, NF, Goren, O, Harnof, S. Transcranial MR-guided focused ultrasound sonothrombolysis in the treatment of intracerebral hemorrhage. Neurosurg Focus 2013b;34:E14.Google Scholar
Moosa, S, Martínez-Fernández, R, Elias, WJ, Del Alamo, M, Eisenberg, HM, Fishman, PS. The role of high-intensity focused ultrasound as a symptomatic treatment for Parkinson’s disease. Mov Disord 2019;34:1243–51. https://doi.org/10.1002/mds.27779.Google Scholar
N’Djin, WA, Burtnyk, M, Lipsman, N, et al. Active MR-temperature feedback control of dynamic interstitial ultrasound therapy in brain: in vivo experiments and modeling in native and coagulated tissues. Med Phys 2014;41:93301.Google Scholar
Nacu, A, Kvistad, CE, Naess, H, et al. NOR-SASS (Norwegian Sonothrombolysis in Acute Stroke Study): randomized controlled contrast-enhanced sonothrombolysis in an unselected acute ischemic stroke population. Stroke 2017;48:335–41.Google Scholar
Nyborg, WL: Biological effects of ultrasound: development of safety guidelines. Part II: general review. Ultrasound Med Biol 2001;27:301–33.Google Scholar
O’Brien, WD. Ultrasound – biophysics mechanisms. Prog Biophys Mol Biol 2007;93:212–55. https://pubmed.ncbi.nlm.nih.gov/16934858.Google Scholar
O’Neill, BE, Vo, H, Angstadt, M, Li, KPC, Quinn, T, Frenkel, V. Pulsed high intensity focused ultrasound mediated nanoparticle delivery: mechanisms and efficacy in murine muscle. Ultrasound Med Biol 2009;35:416–24.Google Scholar
Pacia, CP, Zhu, L, Yang, Y, et al. Feasibility and safety of focused ultrasound-enabled liquid biopsy in the brain of a porcine model. Sci Rep 2020;10:7449. https://doi.org/10.1038/s41598-020-64440-3.Google Scholar
Paff, M, Boutet, A, Neudorfer, C, et al. Magnetic resonance-guided focused ultrasound thalamotomy to treat essential tremor in nonagenarians. Stereotact Funct Neurosurg 2020;98:182–6. https://doi.org/10.1159/000506817.Google Scholar
Park, J, Jung, S, Jung, T, Lee, M. Focused ultrasound surgery for the treatment of recurrent anaplastic astrocytoma: a preliminary report. AIP Conf Proc 2006;829:238–40. https://aip.scitation.org/doi/abs/10.1063/1.2205473.Google Scholar
Park, SH, Kim, MJ, Jung, HH, et al. Safety and feasibility of multiple blood–brain barrier disruptions for the treatment of glioblastoma in patients undergoing standard adjuvant chemotherapy. J Neurosurg 2020. https://thejns.org/view/journals/j-neurosurg/aop/article-10.3171-2019.10.JNS192206/article-10.3171-2019.10.JNS192206.xml. Online ahead of print.Google Scholar
Pouliopoulos, AN, Wu, S-Y, Burgess, MT, Karakatsani, ME, Kamimura, HAS, Konofagou, EE. A clinical system for non-invasive blood–brain barrier opening using a neuronavigation-guided single-element focused ultrasound transducer. Ultrasound Med Biol 2020;46:7389.Google Scholar
Prada, F, Franzini, A, Moosa, S, et al. In vitro and in vivo characterization of a cranial window prosthesis for diagnostic and therapeutic cerebral ultrasound. J Neurosurg 2020a. https://doi.org/10.3171/2019.10.JNS191674. Online ahead of print.Google Scholar
Prada, F, Kalani, MYS, Yagmurlu, K, et al. Applications of focused ultrasound in cerebrovascular diseases and brain tumors. Neurotherapeutics 2019;16:6787. https://doi.org/10.1007/s13311-018-00683-3.Google Scholar
Prada, F, Sheybani, N, Franzini, A, et al. Fluorescein-mediated sonodynamic therapy in a rat glioma model. J Neurooncol 2020b;148:445–54. https://doi.org/10.1007/s11060-020-03536-2.Google Scholar
Ram, Z, Cohen, ZR, Harnof, S, et al. Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy. Neurosurgery 2006;59:946–9.Google Scholar
Ranjan, M, Boutet, A, Bhatia, S, et al. Neuromodulation beyond neurostimulation for epilepsy: scope for focused ultrasound. Expert Rev Neurother 2019a;19:937–43.Google Scholar
Ranjan, M, Elias, GJB, Boutet, A, et al. Tractography-based targeting of the ventral intermediate nucleus: accuracy and clinical utility in MRgFUS thalamotomy. J Neurosurg 2019b. https://doi.org/10.3171/2019.6.JNS19612. Online ahead of print.Google Scholar
Ricci, S, Dinia, L, Del Sette, M, et al. Sonothrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev 2012;10:CD008348.Google Scholar
Rodriguez-Rojas, R, Pineda-Pardo, JA, Martinez-Fernandez, R, et al. Functional impact of subthalamotomy by magnetic resonance-guided focused ultrasound in Parkinson’s disease: a hybrid PET/MR study of resting-state brain metabolism. Eur J Nucl Med Mol Imaging 2020;47:425–36. https://doi.org/10.1007/s00259-019-04497-z.Google Scholar
Rubiera, M, Ribo, M, Delgado-Mederos, R, et al. Do bubble characteristics affect recanalization in stroke patients treated with microbubble-enhanced sonothrombolysis? Ultrasound Med Biol 2008;34:1573–77.Google Scholar
Shah, BR, Lehman, VT, Kaufmann, TJ, et al. Advanced MRI techniques for transcranial high intensity focused ultrasound targeting. Brain 2020;143:2664–72.Google Scholar
Sharma, VD, Patel, M, Miocinovic, S. Surgical treatment of Parkinson’s disease: devices and lesion approaches. Neurotherapeutics 2020;17(4):1525–38. https://doi.org/10.1007/s13311-020-00939-x.Google Scholar
Sheehan, K, Sheehan, D, Sulaiman, M, et al. Investigation of the tumoricidal effects of sonodynamic therapy in malignant glioblastoma brain tumors. J Neurooncol 2020;148:916.Google Scholar
Sheikov, N, McDannold, N, Sharma, S, Hynynen, K. Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol 2008;34:1093–104. https://doi.org/10.1016/j.ultrasmedbio.2007.12.015.Google Scholar
Sheikov, N, McDannold, N, Vykhodtseva, N, Jolesz, F, Hynynen, K. Cellular mechanisms of the blood–brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 2004;30:979–89. https://doi.org/10.1016/j.ultrasmedbio.2004.04.010.Google Scholar
Sheybani, ND, Price, RJ. Perspectives on recent progress in focused ultrasound immunotherapy. Theranostics 2019;9:7749–58. https://doi.org/10.7150/thno.37131.Google Scholar
Sinai, A, Nassar, M, Eran, A, et al. Magnetic resonance-guided focused ultrasound thalamotomy for essential tremor: a 5-year single-center experience. J Neurosurg 2019. https://doi.org/10.3171/2019.3.JNS19466. Online ahead of print.Google Scholar
Skoloudik, D, Bar, M, Skoda, O, et al. Efficacy of sonothrombotripsy versus sonothrombolysis in recanalization of intracranial arteries. Eur J Neurol 2006;13:180.Google Scholar
Smith, AN, Fisher, GW, Macleod, IB, Preshaw, RM, Stavney, LS, Gordon, D. The effect of ultrasound on the gastric mucosa and its secretion of acid. Br J Surg 1966;53:720–5.Google Scholar
Sokka, SD, King, R, Hynynen, K. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh. Phys Med Biol 2003;48:223–41.Google Scholar
Song, CW, Park, HJ, Lee, CK, Griffin, R. Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. Int J Hyperthermia 2005;21:761–7.Google Scholar
Su, JH, Choi, EY, Tourdias, T, et al. Improved VIM targeting for focused ultrasound ablation treatment of essential tremor: a probabilistic and patient-specific approach. Hum Brain Mapp 2020;41:4769–88.Google Scholar
Suehiro, S, Ohnishi, T, Yamashita, D, et al. Enhancement of antitumor activity by using 5-ALA-mediated sonodynamic therapy to induce apoptosis in malignant gliomas: significance of high-intensity focused ultrasound on 5-ALA-SDT in a mouse glioma model. J Neurosurg 2018;129:1416–28. https://doi.org/10.3171/2017.6.JNS162398.Google Scholar
Tran, BC, Seo, Jongbum, Hall, TL, Fowlkes, JB, Cain, CA. Effects of contrast agent infusion rates on thresholds for tissue damage produced by single exposures of high-intensity ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 2005;52:1121–30. https://doi.org/10.1109/tuffc.2005.1503998.Google Scholar
Tsivgoulis, G, Alexandrov, AV. Ultrasound-enhanced thrombolysis in acute ischemic stroke: potential, failures, and safety. Neurotherapeutics 2007;4:420–7. https://doi.org/0.1016/j.nurt.2007.05.012.Google Scholar
Tyler, WJ, Tufail, Y, Finsterwald, M, Tauchmann, ML, Olson, EJ, Majestic, C. Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One 2008;3:e3511. https://doi.org/10.1371/journal.pone.0003511.Google Scholar
Vimeux, FC, De Zwart, JA, Palussiére, J, et al. Real-time control of focused ultrasound heating based on rapid MR thermometry. Invest Radiol 1999;34:190–3. https://doi.org/10.1097/00004424-199903000-00006.Google Scholar
Wahab, RA, Choi, M, Liu, Y, Krauthamer, V, Zderic, V, Myers, MR. Mechanical bioeffects of pulsed high intensity focused ultrasound on a simple neural model. Med Phys 2012;39:4274–83. https://doi.org/10.1118/1.4729712.Google Scholar
Walters, H, Shah, BB. Focused ultrasound and other lesioning therapies in movement disorders. Curr Neurol Neurosci Rep 2019;19:66. https://doi.org/10.1007/s11910-019-0975-2.Google Scholar
Wang, TR, Bond, AE, Dallapiazza, RF, et al. Transcranial magnetic resonance imaging-guided focused ultrasound thalamotomy for tremor: technical note. Neurosurg Focus 2018;44:E3.Google Scholar
Weidman, EK, Kaplitt, MG, Strybing, K, Chazen, JL. Repeat magnetic resonance imaging-guided focused ultrasound thalamotomy for recurrent essential tremor: case report and review of MRI findings. J Neurosurg 2019. https://doi.org/10.3171/2018.10.JNS181721. Online ahead of print.Google Scholar
Weintraub, D, Elias, WJ: The emerging role of transcranial magnetic resonance imaging-guided focused ultrasound in functional neurosurgery. Mov Disord 2017;32:20–7.Google Scholar
White, PJ, Zhang, Y-Z, Power, C, Vykhodtseva, N, McDannold, N. Observed effects of whole-brain radiation therapy on focused ultrasound blood–brain barrier disruption. Ultrasound Med Biol 2020;46:19982006. www.sciencedirect.com/science/article/pii/S030156292030185X.Google Scholar
Wu, S-K, Santos, MA, Marcus, SL, Hynynen, K. MR-guided focused ultrasound facilitates sonodynamic therapy with 5-aminolevulinic acid in a rat glioma model. Sci Rep 2019;9:10465. https://doi.org/10.1038/s41598-019-46832-2.Google Scholar
Xu, Y, He, Q, Wang, M, et al. Safety and efficacy of magnetic resonance imaging-guided focused ultrasound neurosurgery for Parkinson’s disease: a systematic review. Neurosurg Rev 20219;44(1):115–27. https://doi.org/10.1007/s10143-019-01216-y.Google Scholar
Younan, Y, Deffieux, T, Larrat, B, Fink, M, Tanter, M, Aubry, J-F. Influence of the pressure field distribution in transcranial ultrasonic neurostimulation. Med Phys 2013;40:82902.Google Scholar
Yu, T, Li, SL, Zhao, JZ, Mason, TJ. Ultrasound: a chemotherapy sensitizer. Technol Cancer Res Treat 2006;5:5160.Google Scholar
Yu, T, Wang, G, Hu, K, Ma, P, Bai, J, Wang, Z. A microbubble agent improves the therapeutic efficiency of high intensity focused ultrasound: a rabbit kidney study. Urol Res 2004;32:14–9.Google Scholar
Zafar, A, Quadri, SA, Farooqui, M, et al. MRI-guided high-intensity focused ultrasound as an emerging therapy for stroke: a review. J Neuroimaging 2019;29:513. https://doi.org/10.1111/jon.12568.Google Scholar
Zaki Ghali, MG, Srinivasan, VM, Kan, P. Focused ultrasonography-mediated blood–brain barrier disruption in the enhancement of delivery of brain tumor therapies. World Neurosurg 2019;131:6575. https://doi.org/10.1016/j.wneu.2019.07.096.Google Scholar
Zhu, L, Nazeri, A, Pacia, CP, Yue, Y, Chen, H. Focused ultrasound for safe and effective release of brain tumor biomarkers into the peripheral circulation. PLoS One 2020;15:e0234182. https://doi.org/10.1371/journal.pone.0234182.Google Scholar

References

Allen, LM, Hasso, AN, Handwerker, J, Farid, H. Sequence-specific MR imaging findings that are useful in dating ischemic stroke. Radiographics 2012;32(5):1285–97; discussion 1297–9. https://doi.org/10.1148/rg.325115760.Google Scholar
Becker, D, Scherer, M, Neher, P, et al. Going beyond diffusion tensor imaging tractography in eloquent glioma surgery – high-resolution fiber tractography: Q-ball or constrained spherical deconvolution? World Neurosurg 2020;134:e596609. https://doi.org/10.1016/j.wneu.2019.10.138.Google Scholar
Bergmann, Ø, Henriques, R, Westin, C-F, Pasternak, O. Fast and accurate initialization of the free-water imaging model parameters from multi-shell diffusion MRI. NMR Biomed 2020;33(3):e4219. https://doi.org/10.1002/nbm.4219.Google Scholar
Birn, RM, Diamond, JB, Smith, MA, Bandettini, PA. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 2006;31(4):1536–48. https://doi.org/10.1016/j.neuroimage.2006.02.048.Google Scholar
Birn, RM, Smith, MA, Jones, TB, Bandettini, PA. The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. Neuroimage 2008;40(2):644–54. https://doi.org/10.1016/j.neuroimage.2007.11.059.Google Scholar
Boerwinkle, VL, Mohanty, D, Foldes, ST, et al. Correlating resting-state functional magnetic resonance imaging connectivity by independent component analysis-based epileptogenic zones with intracranial electroencephalogram localized seizure onset zones and surgical outcomes in prospective pediatric intractable epilepsy study. Brain Connect 2017;7(7):424–42. https://doi.org/10.1089/brain.2016.0479.Google Scholar
Böttger, J, Margulies, DS, Horn, P, et al. A software tool for interactive exploration of intrinsic functional connectivity opens new perspectives for brain surgery. Acta Neurochir (Wien) 2011;153(8):1561–72. https://doi.org/10.1007/s00701-011-0985-6.Google Scholar
Calabrese, E, Badea, A, Coe, CL, Lubach, GR, Styner, MA, Johnson, GA. Investigating the tradeoffs between spatial resolution and diffusion sampling for brain mapping with diffusion tractography: time well spent? Hum Brain Mapp 2014;35(11):5667–85. https://doi.org/10.1002/hbm.22578.Google Scholar
Calamante, F, Tournier, J-D, Jackson, GD, Connelly, A. Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping. Neuroimage 2010;53(4):1233–43. https://doi.org/10.1016/j.neuroimage.2010.07.024.Google Scholar
Catalino, MP, Yao, S, Green, DL, Laws, ER, Golby, AJ, Tie, Y. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging. Neurosurg Focus 2020;48(2):E9. https://doi.org/10.3171/2019.11.FOCUS19773.Google Scholar
Chang, C, Cunningham, JP, Glover, GH. Influence of heart rate on the BOLD signal: the cardiac response function. Neuroimage 2009;44(3):857–69. https://doi.org/10.1016/j.neuroimage.2008.09.029.Google Scholar
Ciantis, AD, Barba, C, Tassi, L, et al. 7T MRI in focal epilepsy with unrevealing conventional field strength imaging. Epilepsia 2016;57(3):445–54. https://doi.org/10.1111/epi.13313.Google Scholar
Currie, S, Hoggard, N, Craven, IJ, Hadjivassiliou, M, Wilkinson, ID. Understanding MRI: basic MR physics for physicians. Postgrad Med J 2013;89(1050):209–23. https://doi.org/10.1136/postgradmedj-2012-131342.Google Scholar
Damoiseaux, JS, Rombouts S a., RB, Barkhof, F, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 2006;103(37):13848–53. https://doi.org/10.1073/pnas.0601417103.Google Scholar
de Haan, B, Karnath, H-O. ‘Whose atlas I use, his song I sing?’ – The impact of anatomical atlases on fiber tract contributions to cognitive deficits after stroke. Neuroimage 2017;163:301–09. https://doi.org/10.1016/j.neuroimage.2017.09.051.Google Scholar
Duyn, JH. The future of ultra-high field MRI and fMRI for study of the human brain. Neuroimage 2012;62(2):1241–8. https://doi.org/10.1016/j.neuroimage.2011.10.065.Google Scholar
Duyn, JH, Koretsky, AP. Novel frontiers in MRI of the brain. Curr Opin Neurol 2011;24(4):386–93. https://doi.org/10.1097/WCO.0b013e328348972a.Google Scholar
Duyn, JH, van Gelderen, P, Li, T-Q, de Zwart, JA, Koretsky, AP, Fukunaga, M. High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci U S A 2007;104(28):11796–801. https://doi.org/10.1073/pnas.0610821104.Google Scholar
Emir, UE, Larkin, SJ, Pennington, N de, et al. Noninvasive quantification of 2-hydroxyglutarate in human gliomas with IDH1 and IDH2 mutations. Cancer Res 2016;76(1):43–9. https://doi.org/10.1158/0008-5472.CAN-15-0934.Google Scholar
Essayed, WI, Zhang, F, Unadkat, P, Cosgrove, GR, Golby, AJ, O’Donnell, LJ. White matter tractography for neurosurgical planning: a topography-based review of the current state of the art. Neuroimage Clin 2017;15:659–72. https://doi.org/10.1016/j.nicl.2017.06.011.Google Scholar
Figley, TD, Mortazavi Moghadam, B, Bhullar, N, Kornelsen, J, Courtney, SM, Figley, CR. Probabilistic white matter atlases of human auditory, basal ganglia, language, precuneus, sensorimotor, visual and visuospatial networks. Front Hum Neurosci 2017;11. https://doi.org/10.3389/fnhum.2017.00306.Google Scholar
Gering, DT, Nabavi, A, Kikinis, R, et al. An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Reson Imaging 2001;13(6):967–75. https://doi.org/10.1002/jmri.1139.Google Scholar
Godlewska, BR, Clare, S, Cowen, PJ, Emir, UE. Ultra-high-field magnetic resonance spectroscopy in psychiatry. Front Psychiatry. 2017;8:123. https://doi.org/10.3389/fpsyt.2017.00123.Google Scholar
Gravbrot, N, Saranathan, M, Pouratian, N, Kasoff, WS. Advanced imaging and direct targeting of the motor thalamus and dentato-rubro-thalamic tract for tremor: a systematic review. Stereotact Funct Neurosurg 2020;98(4):220–40. https://doi.org/10.1159/000507030.Google Scholar
Hagmann, P, Kurant, M, Gigandet, X, et al. Mapping human whole-brain structural networks with diffusion MRI. PLoS One 2007;2(7):e597. https://doi.org/10.1371/journal.pone.0000597.Google Scholar
Heverhagen, JT, Bourekas, E, Sammet, S, Knopp, MV, Schmalbrock, P. Time-of-flight magnetic resonance angiography at 7 Tesla. Invest Radiol 2008;43(8):568–73. https://doi.org/10.1097/RLI.0b013e31817e9b2c.Google Scholar
Hillman, EMC. Coupling mechanism and significance of the BOLD signal: a status report. Annu Rev Neurosci 2014;37:161–81. https://doi.org/10.1146/annurev-neuro-071013-014111.Google Scholar
Hjort, N, Christensen, S, Sølling, C, et al. Ischemic injury detected by diffusion imaging 11 minutes after stroke. Ann Neurol 2005;58(3):462–5. https://doi.org/10.1002/ana.20595.Google Scholar
Horowitz, AL. MRI Physics for Radiologists – A Visual Approach. Springer, 1994. www.springer.com/gp/book/9780387943725.Google Scholar
Howe, FA, Opstad, KS. 1H MR spectroscopy of brain tumours and masses. NMR Biomed 2003;16(3):123–31. https://doi.org/10.1002/nbm.822.Google Scholar
Huang, SY, Nummenmaa, A, Witzel, T, et al. The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter. Neuroimage. 2015;106:464–72. https://doi.org/10.1016/j.neuroimage.2014.12.008.Google Scholar
Hynynen, K, McDannold, N. MRI guided and monitored focused ultrasound thermal ablation methods: a review of progress. Int J Hyperthermia 2004;20(7):725–37. https://doi.org/10.1080/02656730410001716597.Google Scholar
Jahng, G-H, Li, K-L, Ostergaard, L, Calamante, F. Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques. Korean J Radiol 2014;15(5):554–77. https://doi.org/10.3348/kjr.2014.15.5.554.Google Scholar
Jolesz, FA. Intraoperative imaging in neurosurgery: where will the future take us? Acta Neurochir Suppl 2011;109:21–5. https://doi.org/10.1007/978-3-211-99651-5_4.Google Scholar
Jung, BA, Weigel, M. Spin echo magnetic resonance imaging. J Magn Reson Imaging 2013;37(4):805–17. https://doi.org/10.1002/jmri.24068.Google Scholar
Kang, C-K, Park, C-A, Kim, K-N, et al. Non-invasive visualization of basilar artery perforators with 7T MR angiography. J Magn Reson Imaging 2010;32(3):544–50. https://doi.org/10.1002/jmri.22250.Google Scholar
Kang, C-K, Park, C-A, Lee, H, et al. Hypertension correlates with lenticulostriate arteries visualized by 7T magnetic resonance angiography. Hypertension 2009;54(5):1050–6. https://doi.org/10.1161/HYPERTENSIONAHA.109.140350.Google Scholar
Kantarci, K, Petersen, RC, Boeve, BF, et al. 1H MR spectroscopy in common dementias. Neurology 2004;63(8):1393–8. https://doi.org/10.1212/01.wnl.0000141849.21256.ac.Google Scholar
Kuo, L-W, Chen, J-H, Wedeen, VJ, Tseng, W-YI. Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system. Neuroimage. 2008;41(1):718. https://doi.org/10.1016/j.neuroimage.2008.02.016.Google Scholar
Ladd, ME, Bachert, P, Meyerspeer, M, et al. Pros and cons of ultra-high-field MRI/MRS for human application. Prog Nucl Magn Reson Spectrosc 2018;109:150. https://doi.org/10.1016/j.pnmrs.2018.06.001.Google Scholar
Larson, PS, Starr, PA, Bates, G, Tansey, L, Richardson, RM, Martin, AJ. An optimized system for interventional MRI guided stereotactic surgery: preliminary evaluation of targeting accuracy. Neurosurgery. 2012;70(OPERATIVE):ons95–ons103. https://doi.org/10.1227/NEU.0b013e31822f4a91.Google Scholar
Law, M, Yang, S, Babb, JS, et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol 2004;25(5):746–55.Google Scholar
Lawrence, SJD, Formisano, E, Muckli, L, de Lange, FP. Laminar fMRI: applications for cognitive neuroscience. Neuroimage. 2019;197:785–91. https://doi.org/10.1016/j.neuroimage.2017.07.004Google Scholar
Le Bihan, D. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 2003;4(6):469–80. https://doi.org/10.1038/nrn1119.Google Scholar
Lee, MH, Smyser, CD, Shimony, JS. Resting-state fMRI: a review of methods and clinical applications. Am J Neuroradiol 2013;34(10):1866–72. https://doi.org/10.3174/ajnr.A3263.Google Scholar
Leuthardt, EC, Guzman, G, Bandt, SK, et al. Integration of resting state functional MRI into clinical practice – a large single institution experience. PLoS One 2018;13(6):e0198349. https://doi.org/10.1371/journal.pone.0198349.Google Scholar
Levy, R, Cox, RG, Hader, WJ, Myles, T, Sutherland, GR, Hamilton, MG. Application of intraoperative high-field magnetic resonance imaging in pediatric neurosurgery. J Neurosurg Pediatr 2009;4(5):467–74. https://doi.org/10.3171/2009.4.PEDS08464.Google Scholar
Madai, VI, Galinovic, I, Grittner, U, et al. DWI intensity values predict FLAIR lesions in acute ischemic stroke. PLoS One. 2014;9(3):e92295. https://doi.org/10.1371/journal.pone.0092295.Google Scholar
Mariappan, YK, Glaser, KJ, Ehman, RL. Magnetic resonance elastography: a review. Clin Anat 2010;23(5):497511. https://doi.org/10.1002/ca.21006.Google Scholar
Markl, M, Leupold, J. Gradient echo imaging. J Magn Reson Imaging 2012;35(6):1274–89. https://doi.org/10.1002/jmri.23638.Google Scholar
McDannold, N, White, PJ, Cosgrove, GR. Using phase data from MR temperature imaging to visualize anatomy during MRI guided focused ultrasound neurosurgery. IEEE Trans Med Imaging 2020;39(12):3821–30. https://doi.org/10.1109/TMI.2020.3005631Google Scholar
Morabito, R, Alafaci, C, Pergolizzi, S, et al. DCE and DSC perfusion MRI diagnostic accuracy in the follow-up of primary and metastatic intra-axial brain tumors treated by radiosurgery with cyberknife. Radiat Oncol 2019;14(1):65. https://doi.org/10.1186/s13014-019-1271-7.Google Scholar
Mori, S, Oishi, K, Faria, AV. White matter atlases based on diffusion tensor imaging. Curr Opin Neurol 2009;22(4):362–9. https://doi.org/10.1097/WCO.0b013e32832d954b.Google Scholar
Muthupillai, R, Ehman, RL. Magnetic resonance elastography. Nat Med 1996;2(5):601–03. https://doi.org/10.1038/nm0596-601.Google Scholar
Nagaraja, N, Forder, JR, Warach, S, Merino, JG. Reversible diffusion-weighted imaging lesions in acute ischemic stroke: a systematic review. Neurology 2020;94(13):571–87. https://doi.org/10.1212/WNL.0000000000009173.Google Scholar
Nir, Y, Mukamel, R, Dinstein, I, et al. Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nat Neurosci 2008;11(9):1100–08. https://doi.org/10.1038/nn.2177.Google Scholar
O’Donnell, LJ, Suter, Y, Rigolo, L, et al. Automated white matter fiber tract identification in patients with brain tumors. Neuroimage Clin 2016;13:138–53. https://doi.org/10.1016/j.nicl.2016.11.023.Google Scholar
Park, C-A, Kang, C-K, Kim, Y-B, Cho, Z-H. Advances in MR angiography with 7T MRI: from microvascular imaging to functional angiography. NeuroImage. 2018;168:269–78. https://doi.org/10.1016/j.neuroimage.2017.01.019.Google Scholar
Pasternak, O, Sochen, N, Gur, Y, Intrator, N, Assaf, Y. Free water elimination and mapping from diffusion MRI. Magn Reson Med 2009;62(3):717–30. https://doi.org/10.1002/mrm.22055.Google Scholar
Patz, S, Fovargue, D, Schregel, K, et al. Imaging localized neuronal activity at fast time scales through biomechanics. Sci Adv 2019;5(4):eaav3816. https://doi.org/10.1126/sciadv.aav3816.Google Scholar
Petrella, JR, Shah, LM, Harris, KM, et al. Preoperative functional MR imaging localization of language and motor areas: effect on therapeutic decision making in patients with potentially resectable brain tumors. Radiology 2006;240(3):793802. https://doi.org/10.1148/radiol.2403051153.Google Scholar
Pouratian, N, Zheng, Z, Bari, AA, Behnke, E, Elias, WJ, DeSalles, AAF. Multi-institutional evaluation of deep brain stimulation targeting using probabilistic connectivity-based thalamic segmentation. J Neurosurg 2011;115(5):9951004. https://doi.org/10.3171/2011.7.JNS11250.Google Scholar
Raichle, ME. Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc Natl Acad Sci 1998;95(3):765–72. https://doi.org/10.1073/pnas.95.3.765.Google Scholar
Roland, JL, Griffin, N, Hacker, CD, et al. Resting-state functional magnetic resonance imaging for surgical planning in pediatric patients: a preliminary experience. J Neurosurg Pediatr 2017;20(6):583–90. https://doi.org/10.3171/2017.6.PEDS1711.Google Scholar
Rosen, BR, Savoy, RL. fMRI at 20: has it changed the world? Neuroimage. 2012;62(2):1316–24. https://doi.org/10.1016/j.neuroimage.2012.03.004.Google Scholar
Salomir, R, Vimeux, FC, de Zwart, JA, Grenier, N, Moonen, CT. Hyperthermia by MR-guided focused ultrasound: accurate temperature control based on fast MRI and a physical model of local energy deposition and heat conduction. Magn Reson Med 2000;43(3):342–7. https://doi.org/10.1002/(sici)1522-2594(200003)43:3<342::aid-mrm4>3.0.co;2-6.Google Scholar
Shah, BR, Lehman, VT, Kaufmann, TJ, et al. Advanced MRI techniques for transcranial high intensity focused ultrasound targeting. Brain 2020;143(9):2664–72. https://doi.org/10.1093/brain/awaa107.Google Scholar
Shimony, JS, Zhang, D, Johnston, JM, Fox, MD, Roy, A, Leuthardt, EC. Resting-state spontaneous fluctuations in brain activity: a new paradigm for presurgical planning using fMRI. Acad Radiol 2009;16(5):578–83. https://doi.org/10.1016/j.acra.2009.02.001.Google Scholar
Shmuel, A, Yacoub, E, Pfeuffer, J, et al. Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 2002;36(6):1195–210. https://doi.org/10.1016/s0896-6273(02)01061-9.Google Scholar
Siemonsen, S, Mouridsen, K, Holst, B, et al. Quantitative T2 values predict time from symptom onset in acute stroke patients. Stroke 2009;40(5):1612–6. https://doi.org/10.1161/STROKEAHA.108.542548.Google Scholar
Silva, MA, See, AP, Essayed, WI, Golby, AJ, Tie, Y. Challenges and techniques for presurgical brain mapping with functional MRI. Neuroimage Clin 2017;17:794803. https://doi.org/10.1016/j.nicl.2017.12.008.Google Scholar
Starr, PA, Martin, AJ, Ostrem, JL, Talke, P, Levesque, N, Larson, PS. Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J Neurosurg 2010;112(3):479–90. https://doi.org/10.3171/2009.6.JNS081161.Google Scholar
Su, JH, Choi, EY, Tourdias, T, et al. Improved Vim targeting for focused ultrasound ablation treatment of essential tremor: a probabilistic and patient-specific approach. Hum Brain Mapp. 2020;41(17):4769–88. https://doi.org/10.1002/hbm.25157.Google Scholar
van den Heuvel, MP, Hulshoff Pol, HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 2010;20(8):519–34. https://doi.org/10.1016/j.euroneuro.2010.03.008.Google Scholar
van Osch, MJP, Webb, AG. Safety of ultra-high field MRI: what are the specific risks? Curr Radiol Rep 2014;2(8):61. https://doi.org/10.1007/s40134-014-0061-0.Google Scholar
Wedeen, VJ, Wang, RP, Schmahmann, JD, et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 2008;41(4):1267–77. https://doi.org/10.1016/j.neuroimage.2008.03.036.Google Scholar
Yacoub, E, Harel, N, Uğurbil, K. High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci 2008;105(30):10607–12. https://doi.org/10.1073/pnas.0804110105.Google Scholar
Zhang, F, Xie, G, Leung, L, et al. Creation of a novel trigeminal tractography atlas for automated trigeminal nerve identification. Neuroimage 2020;220:117063. https://doi.org/10.1016/j.neuroimage.2020.117063.Google Scholar
Zurawski, J, Tauhid, S, Chu, R, et al. 7T MRI cerebral leptomeningeal enhancement is common in relapsing-remitting multiple sclerosis and is associated with cortical and thalamic lesions. Mult Scler 2020;26(2):177–87. https://doi.org/10.1177/1352458519885106.Google Scholar

References

Abel, TJ, Rhone, AE, Nourski, KV, et al. Direct physiologic evidence of a heteromodal convergence region for proper naming in human left anterior temporal lobe. J Neurosci 2015;35:1513–20. https://doi.org/10.1523/JNEUROSCI.3387-14.2015.Google Scholar
Anderson, JM, Gilmore, R, Roper, S, et al. Conduction aphasia and the arcuate fasciculus: a reexamination of the Wernicke–Geschwind model. Brain Lang 1999;70:112. https://doi.org/10.1006/brln.1999.2135.Google Scholar
Baillet, S. Magnetoencephalography for brain electrophysiology and imaging. Nat Neurosci 2017;20:327–39. https://doi.org/10.1038/nn.4504.Google Scholar
Baldo, JV, Katseff, S, Dronkers, NF. Brain regions underlying repetition and auditory-verbal short-term memory deficits in aphasia: evidence from voxel-based lesion symptom mapping. Aphasiology 2012;26:338–54. https://doi.org/10.1080/02687038.2011.602391.Google Scholar
Bartolomei, F, Bosma, I, Klein, M, et al. How do brain tumors alter functional connectivity? A magnetoencephalography study. Ann Neurol 2006a;59:128–38. https://doi.org/10.1002/ana.20710.Google Scholar
Bartolomei, F, Bosma, I, Klein, M, et al. Disturbed functional connectivity in brain tumour patients: evaluation by graph analysis of synchronization matrices. Clin Neurophysiol 2006b;117:2039–49. https://doi.org/10.1016/j.clinph.2006.05.018.Google Scholar
Beaulieu, C. The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed 2002;15:435–55. https://doi.org/10.1002/nbm.782.Google Scholar
Beauvois, MF, Dérouesné, J. Phonological alexia: three dissociations. J Neurol Neurosurg Psychiatry 1979;42:1115–24. https://doi.org/10.1136/jnnp.42.12.1115.Google Scholar
Bello, L, Gallucci, M, Fava, M, et al. Intraoperative subcortical language tract mapping guides surgical removal of gliomas involving speech areas. Neurosurgery 2007;60:6780; discussion 80. https://doi.org/10.1227/01.NEU.0000249206.58601.DE.Google Scholar
Bello, L, Riva, M, Fava, E, et al. Tailoring neurophysiological strategies with clinical context enhances resection and safety and expands indications in gliomas involving motor pathways. Neuro Oncol 2014;16:1110–28. https://doi.org/10.1093/neuonc/not327Google Scholar
Benzagmout, M, Gatignol, P, Duffau, H. Resection of World Health Organization Grade II gliomas involving Broca’s area: methodological and functional considerations. Neurosurgery 2007;61:741–52; discussion 752. https://doi.org/10.1227/01.NEU.0000298902.69473.77.Google Scholar
Biswal, B, Zerrin Yetkin, F, Haughton, VM, Hyde, JS. Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI. Magn Reson Med 1995;34:537–41. https://doi.org/10.1002/mrm.1910340409.Google Scholar
Bosma, I, Douw, L, Bartolomei, F, et al. Synchronized brain activity and neurocognitive function in patients with low-grade glioma: a magnetoencephalography study. Neuro Oncol 2008a;10:734–44. https://doi.org/10.1215/15228517-2008-034Google Scholar
Bosma, I, Stam, CJ, Douw, L, et al. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study. J Neurooncol 2008b;88:7785. https://doi.org/10.1007/s11060-008-9535-3.Google Scholar
Buchsbaum, BR, Baldo, J, Okada, K, et al. Conduction aphasia, sensory-motor integration, and phonological short-term memory – an aggregate analysis of lesion and fMRI data. Brain Lang 2011;119:119–28. https://doi.org/10.1016/j.bandl.2010.12.001.Google Scholar
Cannestra, AF, Bookheimer, SY, Pouratian, N, et al. Temporal and topographical characterization of language cortices using intraoperative optical intrinsic signals. Neuroimage 2000;12:4154. https://doi.org/10.1006/nimg.2000.0597.Google Scholar
Cannestra, AF, Pouratian, N, Forage, J, Bookheimer, SY, Martin, NA, Toga, AW. Functional magnetic resonance imaging and optical imaging for dominant-hemisphere perisylvian arteriovenous malformations. Neurosurgery 2004;55:804–12; discussion 812. https://doi.org/10.1227/01.neu.0000137654.27826.71.Google Scholar
Catani, M, Jones, DK, ffytche, DH. Perisylvian language networks of the human brain. Ann Neurol 2005;57:816. https://doi.org/10.1002/ana.20319.Google Scholar
Choudhri, AF, Whitehead, MT, Klimo, P, Montgomery, BK, Boop, FA. Diffusion tensor imaging to guide surgical planning in intramedullary spinal cord tumors in children. Neuroradiology 2014;56:169–74. https://doi.org/10.1007/s00234-013-1316-9.Google Scholar
Cohen, L, Dehaene, S, Naccache, L, et al. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 2000;123:291307. https://doi.org/10.1093/brain/123.2.291.Google Scholar
Coltheart, M, Rastle, K, Perry, C, Langdon, R, Ziegler, J. DRC: a dual route cascaded model of visual word recognition and reading aloud. Psychol Rev 2001;108:204–56. https://doi.org/10.1037/0033-295x.108.1.204.Google Scholar
Cordes, D, Haughton, VM, Arfanakis, K, et al. Mapping functionally related regions of brain with functional connectivity MR imaging. Am J Neuroradiol 2000;21:1636–44.Google Scholar
Corina, DP, Loudermilk, BC, Detwiler, L, Martin, RF, Brinkley, JF, Ojemann, G. Analysis of naming errors during cortical stimulation mapping: implications for models of language representation. Brain Lang 2010;115:101–12. https://doi.org/10.1016/j.bandl.2010.04.001.Google Scholar
Damasio, AR, Damasio, H. The anatomic basis of pure alexia. Neurology 1983;33:1573. https://doi.org/10.1212/wnl.33.12.1573.Google Scholar
Damasio, H, Damasio, AR. The anatomical basis of conduction aphasia. Brain 1980;103:337–50. https://doi.org/10.1093/brain/103.2.337.Google Scholar
De Witt Hamer, PC, Robles, SG, Zwinderman, AH, Duffau, H, Berger, MS. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol 2012;30:2559–65. https://doi.org/10.1200/JCO.2011.38.4818.Google Scholar
Dehaene, S, Cohen, L. The unique role of the visual word form area in reading. Trends Cogn Sci 2011;15:254–62. https://doi.org/10.1016/j.tics.2011.04.003.Google Scholar
Dehaene, S, Le Clec’H, G, Poline, JB, Le Bihan, D, Cohen, L. The visual word form area: a prelexical representation of visual words in the fusiform gyrus. Neuroreport 2002;13:321–5. https://doi.org/10.1097/00001756-200203040-00015.Google Scholar
Dell, GS, Schwartz, MF, Nozari, N, Faseyitan, O, Branch Coslett, H. Voxel-based lesion-parameter mapping: identifying the neural correlates of a computational model of word production. Cognition 2013;128:380–96. https://doi.org/10.1016/j.cognition.2013.05.007.Google Scholar
Dierker, D, Roland, JL, Kamran, M, et al. Resting-state functional magnetic resonance imaging in presurgical functional mapping: sensorimotor localization. Neuroimaging Clin N Am 2017;27:621–33. https://doi.org/10.1016/j.nic.2017.06.011.Google Scholar
Doss, RC, Zhang, W, Risse, GL, Dickens, DL. Lateralizing language with magnetic source imaging: validation based on the Wada test. Epilepsia 2009;50:2242–8. https://doi.org/10.1111/j.1528-1167.2009.02242.x.Google Scholar
Duffau, H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol 2005;4:476–86. https://doi.org/10.1016/S1474-4422(05)70140-X.Google Scholar
Duffau, H. The anatomo-functional connectivity of language revisited: new insights provided by electrostimulation and tractography. Neuropsychologia 2008;46:927–34. https://doi.org/10.1016/j.neuropsychologia.2007.10.025.Google Scholar
Duffau, H. The dangers of magnetic resonance imaging diffusion tensor tractography in brain surgery. World Neurosurg 2014;81:56–8. https://doi.org/10.1016/j.wneu.2013.01.116.Google Scholar
Duffau, H, Capelle, L, Denvil, D, et al. Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg 2003;98:764–78. https://doi.org/10.3171/jns.2003.98.4.0764.Google Scholar
Duffau, H, Herbet, G, Moritz-Gasser, S. Toward a pluri-component, multimodal, and dynamic organization of the ventral semantic stream in humans: lessons from stimulation mapping in awake patients. Front Syst Neurosci 2013;7:44. https://doi.org/10.3389/fnsys.2013.00044Google Scholar
Duffau, H, Moritz-Gasser, S, Mandonnet, E. A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang 2014;131:110. https://doi.org/10.1016/j.bandl.2013.05.011.Google Scholar
Ellis, DG, White, ML, Hayasaka, S, Warren, DE, Wilson, TW, Aizenberg, MR. Accuracy analysis of fMRI and MEG activations determined by intraoperative mapping. Neurosurg Focus 2020;48:E13. https://doi.org/10.3171/2019.11.FOCUS19784.Google Scholar
Englot, DJ, Nagarajan, SS, Imber, BS, et al. Epileptogenic zone localization using magnetoencephalography predicts seizure freedom in epilepsy surgery. Epilepsia 2015;56:949–58. https://doi.org/10.1111/epi.13002.Google Scholar
Feigl, GC, Hiergeist, W, Fellner, C, et al. Magnetic resonance imaging diffusion tensor tractography: evaluation of anatomic accuracy of different fiber tracking software packages. World Neurosurg 2014;81:144–50. https://doi.org/10.1016/j.wneu.2013.01.004.Google Scholar
Fernández Coello, A, Moritz-Gasser, S, Martino, J, Martinoni, M, Matsuda, R, Duffau, H. Selection of intraoperative tasks for awake mapping based on relationships between tumor location and functional networks. J Neurosurg 2013;119:1380–94. https://doi.org/10.3171/2013.6.JNS122470.Google Scholar
Fiez, JA, Tranel, D, Seager-Frerichs, D, Damasio, H. Specific reading and phonological processing deficits are associated with damage to the left frontal operculum. Cortex 2006;42:624–43. https://doi.org/10.1016/s0010-9452(08)70399-x.Google Scholar
Forseth, KJ, Kadipasaoglu, CM, Conner, CR, Hickok, G, Knight, RT, Tandon, N. A lexical semantic hub for heteromodal naming in middle fusiform gyrus. Brain 2018;141:2112–26. https://doi.org/10.1093/brain/awy120.Google Scholar
Fox, MD, Snyder, AZ, Vincent, JL, Corbetta, M, Van Essen, DC, Raichle, ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005;102(27):9673–8. https://doi.org/10.1073/pnas.0504136102.Google Scholar
Fridriksson, J, Kjartansson, O, Morgan, PS, et al. Impaired speech repetition and left parietal lobe damage. J Neurosci 2010;30:11057–61. https://doi.org/10.1523/JNEUROSCI.1120-10.2010.Google Scholar
Funnell, E. Phonological processes in reading: new evidence from acquired dyslexia. Br J Psychol 1983;74:159–80. https://doi.org/10.1111/j.2044-8295.1983.tb01851.x.Google Scholar
Geschwind, N. Disconnexion syndromes in animals and man. I.Brain 1965;88:237–94. https://doi.org/10.1093/brain/88.2.237.Google Scholar
Gil-Robles, S, Carvallo, A, Jimenez, MM, et al. Double dissociation between visual recognition and picture naming: a study of the visual language connectivity using tractography and brain stimulation. Neurosurgery 2013;72:678–86. https://doi.org/10.1227/NEU.0b013e318282a361.Google Scholar
Gogos, AJ, Young, JS, Morshed, RA, et al. Triple motor mapping: transcranial, bipolar, and monopolar mapping for supratentorial glioma resection adjacent to motor pathways. J Neurosurg 2020;134(6):172837. https://doi.org/10.3171/2020.3.JNS193434.Google Scholar
Gonen, T, Grossman, R, Sitt, R, et al. Tumor location and IDH1 mutation may predict intraoperative seizures during awake craniotomy. J Neurosurg 2014;121:1133–8. https://doi.org/10.3171/2014.7.JNS132657.Google Scholar
Goodglass, H. Diagnosis of conduction aphasia. In Kohn, SE (Ed.), Conduction Aphasia. New York: Psychology Press, 1992, pp. 4960.Google Scholar
Graves, WW, Grabowski, TJ, Mehta, S, Gupta, P. The left posterior superior temporal gyrus participates specifically in accessing lexical phonology. J Cogn Neurosci 2008;20:1698–710. https://doi.org/10.1162/jocn.2008.20113.Google Scholar
Guggisberg, AG, Honma, SM, Findlay, AM, et al. Mapping functional connectivity in patients with brain lesions. Ann Neurol 2008;63:193203. https://doi.org/10.1002/ana.21224.Google Scholar
Håberg, A, Kvistad, KA, Unsgård, G, Haraldseth, O. Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with primary brain tumors: clinical application and outcome. Neurosurgery 2004;54:902–15. https://doi.org/10.1227/01.neu.0000114510.05922.f8.Google Scholar
Hamandi, K, Routley, BC, Koelewijn, L, Singh, KD. Non-invasive brain mapping in epilepsy: applications from magnetoencephalography. J Neurosci Methods 2016;260:283–91. https://doi.org/10.1016/j.jneumeth.2015.11.012.Google Scholar
Hamberger, MJ, Goodman, RR, Perrine, K, Tamny, T. Anatomic dissociation of auditory and visual naming in the lateral temporal cortex. Neurology 2001;56:5661. https://doi.org/10.1212/wnl.56.1.56.Google Scholar
Hamberger, MJ, Seidel, WT, Mckhann, GM, Perrine, K, Goodman, RR. Brain stimulation reveals critical auditory naming cortex. Brain 2005;128:2742–9. https://doi.org/10.1093/brain/awh621Google Scholar
Han, SJ, Morshed, RA, Troncon, I, et al. Subcortical stimulation mapping of descending motor pathways for perirolandic gliomas: assessment of morbidity and functional outcome in 702 cases. J Neurosurg 2018;131:201–08. https://doi.org/10.3171/2018.3.JNS172494.Google Scholar
Hari, R, Levänen, S, Raij, T. Timing of human cortical functions during cognition: role of MEG. Trends Cogn Sci 2000;4:455–62. https://doi.org/10.1016/s1364-6613(00)01549-7.Google Scholar
Hickok, G, Buchsbaum, B, Humphries, C, Muftuler, T. Auditory–motor interaction revealed by fMRI: speech, music, and working memory in area Spt. J Cogn Neurosci 2003;15:673–82. https://doi.org/10.1162/089892903322307393.Google Scholar
Hickok, G, Poeppel, D. Towards a functional neuroanatomy of speech perception. Trends Cogn Sci 2000;4:131–8. https://doi.org/ 10.1016/s1364-6613(00)01463-7.Google Scholar
Hickok, G, Poeppel, D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 2004;92:6799. https://doi.org/10.1016/j.cognition.2003.10.011.Google Scholar
Hirshorn, EA, Li, Y, Ward, MJ, Richardson, RM, Fiez, JA, Ghuman, AS. Decoding and disrupting left midfusiform gyrus activity during word reading. Proc Natl Acad Sci U S A 2016;113:8162–7. https://doi.org/10.1073/pnas.1604126113.Google Scholar
Jobard, G, Crivello, F, Tzourio-Mazoyer, N. Evaluation of the dual route theory of reading: a metanalysis of 35 neuroimaging studies. Neuroimage 2003;20:693712. https://doi.org/10.1016/S1053-8119(03)00343-4.Google Scholar
Keles, GE, Lundin, DA, Lamborn, KR, Chang, EF, Ojemann, G, Berger, MS. Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients. J Neurosurg 2004;100:369–75. https://doi.org/10.3171/jns.2004.100.3.0369.Google Scholar
Khanna, N, Altmeyer, W, Zhuo, J, Steven, A. Functional neuroimaging: fundamental principles and clinical applications. Neuroradiol J 2015;28:8796. https://doi.org/10.1177/1971400915576311.Google Scholar
Kinoshita, M, Yamada, K, Hashimoto, N, et al. Fiber-tracking does not accurately estimate size of fiber bundle in pathological condition: initial neurosurgical experience using neuronavigation and subcortical white matter stimulation. Neuroimage 2005;25:424–9. https://doi.org/10.1016/j.neuroimage.2004.07.076.Google Scholar
Kleiser, R, Staempfli, P, Valavanis, A, Boesiger, P, Kollias, S. Impact of fMRI-guided advanced DTI fiber tracking techniques on their clinical applications in patients with brain tumors. Neuroradiology 2010;52:3746. https://doi.org/10.1007/s00234-009-0539-2.Google Scholar
Leclercq, D, Duffau, H, Delmaire, C, et al. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J Neurosurg 2010;112:503–11. https://doi.org/10.3171/2009.8.JNS09558.Google Scholar
Lee, AT, Faltermeier, C, Morshed, RA, et al. The impact of high functional connectivity network hub resection on language task performance in adult low- and high-grade glioma. J Neurosurg 2020;134(3):1102–112. https://doi.org/10.3171/2020.1.JNS192267.Google Scholar
Leonard, MK, Cai, R, Babiak, MC, Ren, A, Chang, EF. The peri-Sylvian cortical network underlying single word repetition revealed by electrocortical stimulation and direct neural recordings. Brain Lang 2019;193:5872. https://doi.org/10.1016/j.bandl.2016.06.001.Google Scholar
Magill, ST, Han, SJ, Li, J, Berger, MS. Resection of primary motor cortex tumors: feasibility and surgical outcomes. J Neurosurg 2018;129:961–72. https://doi.org/10.3171/2017.5.JNS163045.Google Scholar
Makris, N, Kennedy, DN, McInerney, S, et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 2005;15:854–69. https://doi.org/10.1093/cercor/bhh186Google Scholar
Martino, J, De Witt Hamer, PC, Berger, MS, et al. Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct 2013;218:105–21. https://doi.org/10.1007/s00429-012-0386-5.Google Scholar
Martino, J, Honma, SM, Findlay, AM, et al. Resting functional connectivity in patients with brain tumors in eloquent areas. Ann Neurol 2011;69:521–32. https://doi.org/10.1002/ana.22167.Google Scholar
Mitchell, TJ, Hacker, CD, Breshears, JD, et al. A novel data-driven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging. Neurosurgery 2013;73:969–83. https://doi.org/10.1227/NEU.0000000000000141.Google Scholar
Moritz-Gasser, S, Duffau, H. The anatomo-functional connectivity of word repetition: insights provided by awake brain tumor surgery. Front Hum Neurosci 2013;7:405. https://doi.org/10.3389/fnhum.2013.00405.Google Scholar
Negwer, C, Beurskens, E, Sollmann, N, et al. Loss of subcortical language pathways correlates with surgery-related aphasia in patients with brain tumor: an investigation via repetitive navigated transcranial magnetic stimulation-based diffusion tensor imaging fiber tracking. World Neurosurg 2018;111:e806–18. https://doi.org/10.1016/j.wneu.2017.12.163.Google Scholar
Nossek, E, Matot, I, Shahar, T, et al. Intraoperative seizures during awake craniotomy: incidence and consequences: analysis of 477 patients. Neurosurgery 2013;73:135–40; discussion 140. https://doi.org/10.1227/01.neu.0000429847.91707.97.Google Scholar
Oelschlägel, M, Meyer, T, Morgenstern, U, et al. Mapping of language and motor function during awake neurosurgery with intraoperative optical imaging. Neurosurg Focus 2020;48:E3. https://doi.org/10.3171/2019.11.FOCUS19759.Google Scholar
Ojemann, G. Intraoperative investigations of the neurobiology of reading. In Euler, CV, Lundberg, I, Llinás, RR (Eds.), Basic Mechanisms in Cognition and Language with Special Reference to Phonological Problems in Dyslexia. Elsevier, 1998: p. 288.Google Scholar
Ojemann, G, Mateer, C. Human language cortex: localization of memory, syntax, and sequential motor-phoneme identification systems. Science 1979;205:1401–03. https://doi.org/10.1126/science.472757.Google Scholar
Ojemann, G, Ojemann, J, Lettich, E, Berger, M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 1989;71:316–26. https://doi.org/10.3171/jns.1989.71.3.0316.Google Scholar
Papanicolaou, AC, Simos, PG, Castillo, EM, et al. Magnetocephalography: a noninvasive alternative to the Wada procedure. J Neurosurg 2004;100:867–76. https://doi.org/10.3171/jns.2004.100.5.0867.Google Scholar
Parker, J, Prejawa, S, Hope, TM et al. Sensory-to-motor integration during auditory repetition: a combined fMRI and lesion study. Front Hum Neurosci 2014;8:24. https://doi.org/10.3389/fnhum.2014.00024.Google Scholar
Paulesu, E, Frith, CD, Frackowiak, RS. The neural correlates of the verbal component of working memory. Nature 1993;362:342–5. https://doi.org/10.1038/362342a0.Google Scholar
Penfield, W, Roberts, L. Speech and Brain Mechanisms. Princeton: Princeton University Press, 1959.Google Scholar
Pierpaoli, C, Jezzard, P, Basser, PJ, Barnett, A, Di Chiro, G. Diffusion tensor MR imaging of the human brain. Radiology 1996;201:637–48. https://doi.org/10.1148/radiology.201.3.8939209.Google Scholar
Plans, G, Fernández-Conejero, I, Rifà-Ros, X, Fernández-Coello, A, Rosselló, A, Gabarrós, A. Evaluation of the high-frequency monopolar stimulation technique for mapping and monitoring the corticospinal tract in patients with supratentorial gliomas. A proposal for intraoperative management based on neurophysiological data analysis in a series of 92 patients.Neurosurgery 2017;81:585–94. https://doi.org/10.1093/neuros/nyw087.Google Scholar
Plaza, M, Gatignol, P, Cohen, H, Berger, B, Duffau, H. A Discrete area within the left dorsolateral prefrontal cortex involved in visual–verbal incongruence judgment. Cerebr Cortex 2007;18:1253–9. https://doi.org/10.1093/cercor/bhm169.Google Scholar
Pouratian, N, Bookheimer, SY, O’Farrell, AM, et al. Optical imaging of bilingual cortical representations. Case report. J Neurosurg 2000;93:676–81. https://doi.org/10.3171/jns.2000.93.4.0676.Google Scholar
Prabhu, SS, Gasco, J, Tummala, S, Weinberg, JS, Rao, G. Intraoperative magnetic resonance imaging-guided tractography with integrated monopolar subcortical functional mapping for resection of brain tumors. Clinical article.J Neurosurg 2011;114:719–26. https://doi.org/10.3171/2010.9.JNS10481.Google Scholar
Quigg, M, Fountain, NB. Conduction aphasia elicited by stimulation of the left posterior superior temporal gyrus. J Neurol Neurosurg Psychiatry 1999;66:393–6. https://doi.org/10.1136/jnnp.66.3.393.Google Scholar
Quigg, M, Geldmacher, DS, Elias, WJ. Conduction aphasia as a function of the dominant posterior perisylvian cortex. Report of two cases. J Neurosurg 2006;104:845–8. https://doi.org/10.3171/jns.2006.104.5.845.Google Scholar
Rahman, M, Abbatematteo, J, De Leo, EK, et al. The effects of new or worsened postoperative neurological deficits on survival of patients with glioblastoma. J Neurosurg 2017;127:123–31. https://doi.org/10.3171/2016.7.JNS16396.Google Scholar
Rapcsak, SZ, Beeson, PM, Henry, ML, et al. Phonological dyslexia and dysgraphia: cognitive mechanisms and neural substrates. Cortex 2009;45:575–91. https://doi.org/10.1016/j.cortex.2008.04.006.Google Scholar
Rogalsky, C, Poppa, T, Chen, KH, et al. Speech repetition as a window on the neurobiology of auditory-motor integration for speech: a voxel-based lesion symptom mapping study. Neuropsychologia 2015;71:1827. https://doi.org/10.1016/j.neuropsychologia.2015.03.012.Google Scholar
Roland, JL, Hacker, CD, Snyder, AZ, et al. A comparison of resting state functional magnetic resonance imaging to invasive electrocortical stimulation for sensorimotor mapping in pediatric patients. NeuroImage Clin 2019;23:101850. https://doi.org/10.1016/j.nicl.2019.101850.Google Scholar
Roux, FE, Durand, JB, Djidjeli, I, Moyse, E, Giussani, C. Variability of intraoperative electrostimulation parameters in conscious individuals: language cortex. J Neurosurg 2017;126:1641–52. https://doi.org/10.3171/2016.4.JNS152434.Google Scholar
Roux, FE, Durand, JB, Jucla, M, Réhault, E, Reddy, M, Démonet, JF. Segregation of lexical and sub-lexical reading processes in the left perisylvian cortex. PLoS One 2012;7:e50665. https://doi.org/10.1371/journal.pone.0050665.Google Scholar
Roux, FE, Lubrano, V, Lauwers-Cances, V, Trémoulet, M, Mascott, CR, Démonet, JF. Intra-operative mapping of cortical areas involved in reading in mono- and bilingual patients. Brain 2004;127:1796–810. https://doi.org/10.1093/brain/awh204.Google Scholar
Sanai, N, Mirzadeh, Z, Berger, MS. Functional outcome after language mapping for glioma resection. N Engl J Med 2008;358:1827. https://doi.org/10.1056/NEJMoa067819.Google Scholar
Saur, D, Kreher, BW, Schnell, S, et al. Ventral and dorsal pathways for language. Proc Natl Acad Sci U S A 2008;105:18035–40. https://doi.org/10.1073/pnas.0805234105.Google Scholar
Schonberg, T, Pianka, P, Hendler, T, Pasternak, O, Assaf, Y. Characterization of displaced white matter by brain tumors using combined DTI and fMRI. Neuroimage 2006;30:1100–11. https://doi.org/10.1016/j.neuroimage.2005.11.015.Google Scholar
Sherbondy, AJ, Dougherty, RF, Napel, S, Wandell, BA. Identifying the human optic radiation using diffusion imaging and fiber tractography. J Vis 2008;8:12.11211. https://doi.org/10.1167/8.10.12.Google Scholar
Sierpowska, J, Gabarrós, A, Fernandez-Coello, A, et al. Words are not enough: nonword repetition as an indicator of arcuate fasciculus integrity during brain tumor resection. J Neurosurg 2017;126:435–45.Google Scholar
Smith, SM, Fox, PT, Miller, KL, et al. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci 2009;106:13040–5. https://doi.org/10.1073/pnas.0905267106.Google Scholar
Snodgrass, JG, Vanderwart, M. A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. J Exp Psychol Hum Learn 1980;6:174215. https://doi.org/10.1037//0278-7393.6.2.174.Google Scholar
Stieglitz, LH, Fichtner, J, Andres, R, et al. The silent loss of neuronavigation accuracy: a systematic retrospective analysis of factors influencing the mismatch of frameless stereotactic systems in cranial neurosurgery. Neurosurgery 2013;72:796807. https://doi.org/10.1227/NEU.0b013e318287072d.Google Scholar
Szelényi, A, Senft, C, Jardan, M, et al. Intra-operative subcortical electrical stimulation: a comparison of two methods. Clin Neurophysiol 2011;122:1470–5. https://doi.org/10.1016/j.clinph.2010.12.055.Google Scholar
Tarapore, PE, Martino, J, Guggisberg, AG, et al. Magnetoencephalographic imaging of resting-state functional connectivity predicts postsurgical neurological outcome in brain gliomas. Neurosurgery 2012a;71:1012–22. https://doi.org/10.1227/NEU.0b013e31826d2b78.Google Scholar
Tarapore, PE, Tate, MC, Findlay, AM et al. Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg 2012b;117:354–62. https://doi.org/10.3171/2012.5.JNS112124.Google Scholar
Toh, CH, Wei, KC, Ng, SH, Wan, YL, Lin, CP, Castillo, M. Differentiation of brain abscesses from necrotic glioblastomas and cystic metastatic brain tumors with diffusion tensor imaging. Am J Neuroradiol 2011;32:1646–51. https://doi.org/10.3174/ajnr.A2581.Google Scholar
Tovar-Spinoza, ZS, Ochi, A, Rutka, JT, Go, C, Otsubo, H. The role of magnetoencephalography in epilepsy surgery. Neurosurg Focus 2008;25:E16. https://doi.org/10.3171/FOC/2008/25/9/E16.Google Scholar
Volkow, ND, Rosen, B, Farde, L. Imaging the living human brain: magnetic resonance imaging and positron emission tomography. Proc Natl Acad Sci U S A 1997;94:2787–8. https://doi.org/10.1073/pnas.94.7.2787.Google Scholar
Wagner, K, Hader, C, Metternich, B, Buschmann, F, Schwarzwald, R, Schulze-Bonhage, A. Who needs a Wada test? Present clinical indications for amobarbital procedures. J Neurol Neurosurg Psychiatry 2012;83:503–09. https://doi.org/10.1136/jnnp-2011-300417.Google Scholar
Warrington, EK, Shallice, T. Word-form dyslexia. Brain 1980;103:99112. https://doi.org/10.1093/brain/103.1.99.Google Scholar
Young, JS, Morshed, RA, Mansoori, Z, Cha, S, Berger, MS. Disruption of frontal aslant tract is not associated with long-term postoperative language deficits. World Neurosurg 2020;133:192–5. https://doi.org/10.1016/j.wneu.2019.09.128.Google Scholar
Zeineh, MM, Holdsworth, S, Skare, S, Atlas, SW, Bammer, R. Ultra-high resolution diffusion tensor imaging of the microscopic pathways of the medial temporal lobe. Neuroimage 2012;62:2065–82. https://doi.org/10.1016/j.neuroimage.2012.05.065.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×