Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T15:36:09.367Z Has data issue: false hasContentIssue false

6 - Immunologic mechanisms and treatment of myelodysplastic syndromes

Published online by Cambridge University Press:  22 August 2009

A. John Barrett
Affiliation:
National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
Elaine Sloand
Affiliation:
National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
Neal S. Young
Affiliation:
National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
Peter L. Greenberg
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

Background

The concept that an immune-mediated response directed against hematopoietic cells can cause failure of the bone marrow leading to pancytopenia arose from early experiences with the use of bone marrow transplants to treat severe aplastic anemia (SAA). In 1976 Mathé et al. in Paris reported a curious case in which a patient transplanted for SAA from a human leukocyte antigen (HLA)-identical sibling donor subsequently achieved full hematologic recovery without any vestige of donor marrow engraftment. Subsequently Jeannet et al. reported sustained autologous hematological recovery in 3 SAA patients receiving antithymocyte globulin (ATG) and a one-haplotype mismatched marrow transplant. At the time the stimulus to autologous hematological recovery was thought to be conferred by the transiently engrafting donor marrow itself, and experiments by Speck & Kissling using mismatched grafts and ATG in aplastic rabbits seemed to support this view. However, Ascensão et al. in 1976 made the critical observation that in vitro exposure of aplastic anemia patients' bone marrow to ATG caused a dramatic recovery in granulocyte colony formation, while marrow cells from the patients cocultured with normal marrow suppressed colony formation. Such observations pointed to an immune-mediated mechanism in SAA and stimulated Gluckman et al. to treat SAA patients with ATG alone: of 17 patients, 8 had a prompt and sustained hematological recovery. Subsequent extensive laboratory studies and widespread clinical experience have clearly established that the majority of patients with SAA have immune-mediated T-cell-mediated marrow suppression which can be reversed in a high proportion of cases by immunosuppressive treatment with ATG (reviewed by Young et al.).

Type
Chapter
Information
Myelodysplastic Syndromes
Clinical and Biological Advances
, pp. 147 - 172
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mathe, G. and Schwarzenberg, L. (1976). Treatment of bone marrow aplasia by bone marrow graft after conditioning with antilymphocyte globulin. Long term results. Exp. Hematol., 4, 256–64Google ScholarPubMed
Jeannet, M., Speck, B., Rubinstein, A.et al. (1976). Autologous marrow reconstitutions in severe aplastic anaemia after ALG pretreatment and HL-A semi-incompatible bone marrow cell transfusion. Acta Haematol., 55, 129–39CrossRefGoogle ScholarPubMed
Speck, B. and Kissling, M. (1973). Studies on bone marrow transplantation in experimental P-induced aplastic anemia after conditioning with antilymphocyte serum. Acta Haematol., 50, 193–9CrossRefGoogle Scholar
Ascensao, J., Pahwa, R., Kagan, W.et al. (1976). Aplastic anaemia: evidence for an immunological mechanism. Lancet., 1, 669–71CrossRefGoogle ScholarPubMed
Gluckman, E., Devergie, A., Faille, A.et al. (1979). Antilymphocyte globulin treatment in severe aplastic anemia – comparison with bone marrow transplantation. Report of 60 cases. Haematol. Blood Transfus., 24, 171–9Google ScholarPubMed
Young, N., Griffith, P., Brittain, E.et al. (1988). A multicenter trial of antithymocyte globulin in aplastic anemia and related diseases. Blood, 72, 1861–9Google ScholarPubMed
Biesma, D. H., Tweel, J. G., and Verdonck, L. F. (1997). Immunosuppressive therapy for hypoplastic myelodysplastic syndrome. Cancer, 79, 1548–513.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Tichelli, A., Gratwohl, A., Wuersch, A., Nissen, C., and Speck, B. (1988). Antilymphocyte globulin for myelodysplastic syndrome. Br. J. Haematol., 68, 139–40CrossRefGoogle ScholarPubMed
Molldrem, J. J., Caples, M., Mavroudis, D.et al. (1997). Antithymocyte globulin for patients with myelodysplastic syndrome. Br. J. Haematol., 99, 699–705CrossRefGoogle ScholarPubMed
Molldrem, J. J., Leifer, E., Bahceci, E.et al. (2002). Antithymocyte globulin for treatment of the bone marrow failure associated with myelodysplastic syndromes. Ann. Intern. Med., 137, 156–63CrossRefGoogle ScholarPubMed
Jonasova, A., Neuwirtova, R., Cermak, J.et al. (1998). Cyclosporin A therapy in hypoplastic MDS patients and certain refractory anaemias without hypoplastic bone marrow. Br. J. Haematol., 100, 304–9CrossRefGoogle ScholarPubMed
Killick, S. B., Mufti, G., Cavenagh, J. D.et al. (2003). A pilot study of antithymocyte globulin (ATG) in the treatment of patients with ‘low-risk’ myelodysplasia. Br. J. Haematol., 120, 679–84CrossRefGoogle ScholarPubMed
Yazji, S., Giles, F. J., Tsimberidou, A. M.et al. (2003). Antithymocyte globulin (ATG)-based therapy in patients with myelodysplastic syndromes. Leukemia, 17, 2101–6CrossRefGoogle ScholarPubMed
Grigg, A. P. and O'Flaherty, E. (2001). Cyclosporin A for the treatment of pure red cell aplasia associated with myelodysplasia. Leuk. Lymphoma, 42, 1339–42CrossRefGoogle ScholarPubMed
Billstrom, R., Johansson, H., Johansson, B., and Mitelman, F. (1995). Immune-mediated complications in patients with myelodysplastic syndromes – clinical and cytogenetic features. Eur. J. Haematol., 55, 42–8CrossRefGoogle ScholarPubMed
Shimamoto, T. and Ohyashiki, K. (2003). Immunosuppressive treatments for myelodysplastic syndromes. Leuk. Lymphoma, 44, 593–604CrossRefGoogle ScholarPubMed
Hamblin, T. J. (1987). Myelodysplasia. Br. J. Hosp. Med., 38, 558–61Google ScholarPubMed
Barrett, J., Saunthararajah, Y., and Molldrem, J. (2000). Myelodysplastic syndrome and aplastic anemia: distinct entities or diseases linked by a common pathophysiology?Semin. Hematol., 37, 15–29CrossRefGoogle ScholarPubMed
Maciejewski, J. P., Rivera, C., Kook, H., Dunn, D., and Young, N. S. (2001). Relationship between bone marrow failure syndromes and the presence of glycophosphatidyl inositol-anchored protein-deficient clones. Br. J. Haematol., 115, 1015–22CrossRefGoogle ScholarPubMed
Saunthararajah, Y., Nakamura, R., Nam, J. M.et al. (2002). HLA-DR15 (DR2) is overrepresented in myelodysplastic syndrome and aplastic anemia and predicts a response to immunosuppression in myelodysplastic syndrome. Blood, 100, 1570–4Google ScholarPubMed
Tuzuner, N., Cox, C., Rowe, J. M., and Bennett, J. M. (1994). Bone marrow cellularity in myeloid stem cell disorders: impact of age correction. Leuk. Res., 18, 559–64CrossRefGoogle ScholarPubMed
Dan, K., An, E., Futaki, M.et al. (1993). Megakaryocyte, erythroid and granulocyte-macrophage colony formation in myelodysplastic syndromes. Acta Haematol., 89, 113–18CrossRefGoogle ScholarPubMed
Maciejewski, J. P., Kim, S., Sloand, E., Selleri, C., and Young, N. S. (2000). Sustained long-term hematologic recovery despite a marked quantitative defect in the stem cell compartment of patients with aplastic anemia after immunosuppressive therapy. Am. J. Hematol., 65, 123–313.0.CO;2-M>CrossRefGoogle ScholarPubMed
Maciejewski, J. P., Risitano, A., Sloand, E. M., Nunez, O., and Young, N. S. (2002). Distinct clinical outcomes for cytogenetic abnormalities evolving from aplastic anemia. Blood, 99, 3129–35CrossRefGoogle ScholarPubMed
Cherry, A. M., Brockman, S. R., Paternoster, S. F.et al. (2003). Comparison of interphase FISH and metaphase cytogenetics to study myelodysplastic syndrome: an Eastern Cooperative Oncology Group (ECOG) study. Leuk. Res., 27, 1085–90CrossRefGoogle ScholarPubMed
Fenaux, P. (2001). Chromosome and molecular abnormalities in myelodysplastic syndromes. Int. J. Hematol., 73, 429–37CrossRefGoogle ScholarPubMed
Cheson, B. D., Bennett, J. M., Kantarjian, H.et al. (2001). Myelodysplastic syndromes standardized response criteria: further definition. Blood, 98, 1985CrossRefGoogle ScholarPubMed
Rosenfeld, S., Follmann, D., Nunez, O., and Young, N. S. (2003). Antithymocyte globulin and cyclosporine for severe aplastic anemia: association between hematologic response and long-term outcome. J.A.M.A., 289, 1130–5CrossRefGoogle ScholarPubMed
Shimamoto, T., Iguchi, T., Ando, K.et al. (2001). Successful treatment with cyclosporin A for myelodysplastic syndrome with erythroid hypoplasia associated with T-cell receptor gene rearrangements. Br. J. Haematol., 114, 358–61CrossRefGoogle ScholarPubMed
Young, N. S. (1992). The problem of clonality in aplastic anemia: Dr Dameshek's riddle, restated. Blood, 79, 1385–92Google ScholarPubMed
Young, N. S. and Maciejewski, J. P. (2000). Genetic and environmental effects in paroxysmal nocturnal hemoglobinuria: this little PIG-A goes “why? why? why?”J. Clin. Invest., 106, 637–41CrossRefGoogle Scholar
Dunn, D. E., Tanawattanacharoen, P., Boccuni, P.et al. (1999). Paroxysmal nocturnal hemoglobinuria cells in patients with bone marrow failure syndromes. Ann. Intern. Med., 131, 401–8CrossRefGoogle ScholarPubMed
Chen, G., Kirby, M., Zeng, W., Young, N. S., and Maciejewski, J. P. (2002). Superior growth of glycophosphatidy linositol-anchored protein-deficient progenitor cells in vitro is due to the higher apoptotic rate of progenitors with normal phenotype in vivo (abstract). Exp. Hematol., 30, 774–82CrossRefGoogle Scholar
Chen, R., Nagarajan, S., Prince, G. M.et al. (2000). Impaired growth and elevated FAS receptor expression in PIGA(+) stem cells in primary paroxysmal nocturnal hemoglobinuria. J. Clin. Invest., 106, 689–96CrossRefGoogle ScholarPubMed
Rosenfeld, S., Follmann, D., Nunez, O., and Young, N. S. (2003). Antithymocyte globulin and cyclosporine for severe aplastic anemia: association between hematologic response and long-term outcome. J.A.M.A., 289, 1130–5CrossRefGoogle ScholarPubMed
Gabor, E. P., Mishalani, S., and Lee, S. (1996). Rapid response to cyclosporine therapy and sustained remission in large granular lymphocyte leukemia. Blood, 87, 1199–200Google ScholarPubMed
Wallis, W. J., Loughran, T. P. Jr., Kadin, M. E., Clark, E. A., and Starkebaum, G. A. (1985). Polyarthritis and neutropenia associated with circulating large granular lymphocytes. Ann. Intern. Med., 103, 357–62CrossRefGoogle ScholarPubMed
Bassan, R., Pronesti, M., Buzzetti, M.et al. (1989). Autoimmunity and B-cell dysfunction in chronic proliferative disorders of large granular lymphocytes/natural killer cells. Cancer, 63, 90–53.0.CO;2-F>CrossRefGoogle ScholarPubMed
Akashi, K., Shibuya, T., Taniguchi, S.et al. (1999). Multiple autoimmune haemopoietic disorders and insidious clonal proliferation of large granular lymphocytes. Br. J. Haematol., 107, 670–3CrossRefGoogle ScholarPubMed
Saunthararajah, Y., Molldrem, J. L., Rivera, M.et al. (2001). Coincident myelodysplastic syndrome and T-cell large granular lymphocytic disease: clinical and pathophysiological features. Br. J. Haematol., 112, 195–200CrossRefGoogle ScholarPubMed
Battiwalla, M., Melenhorst, J., Saunthararajah, Y.et al. (2003). HLA-DR4 predicts haematological response to cyclosporine in T-large granular lymphocyte lymphoproliferative disorders. Br. J. Haematol., 123, 449–53CrossRefGoogle ScholarPubMed
Baumann, I., Scheid, C., Koref, M. S.et al. (2002). Autologous lymphocytes inhibit hemopoiesis in long-term culture in patients with myelodysplastic syndrome. Exp. Hematol., 30, 1405–11CrossRefGoogle ScholarPubMed
Molldrem, J. J., Jiang, Y. Z., Stetler-Stevenson, M.et al. (1998). Haematological response of patients with myelodysplastic syndrome to antithymocyte globulin is associated with a loss of lymphocyte-mediated inhibition of CFU-GM and alterations in T-cell receptor Vbeta profiles. Br. J. Haematol., 102, 1314–22CrossRefGoogle ScholarPubMed
Greil, R., Anether, G., Johrer, K., and Tinhofer, I. (2003). Tuning the rheostat of the myelopoietic system via Fas and TRAIL. Crit. Rev. Immunol., 23, 301–22CrossRefGoogle ScholarPubMed
Plasilova, M., Zivny, J., Jelinek, J.et al. (2002). TRAIL (Apo2L) suppresses growth of primary human leukemia and myelodysplasia progenitors. Leukemia, 16, 67–73CrossRefGoogle ScholarPubMed
Koike, M., Ishiyama, T., Tomoyasu, S., and Tsuruoka, N. (1995). Spontaneous cytokine overproduction by peripheral blood mononuclear cells from patients with myelodysplastic syndromes and aplastic anemia. Leuk. Res., 19, 639–44CrossRefGoogle ScholarPubMed
Kitagawa, M., Saito, I., Kuwata, T.et al. (1997). Overexpression of tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma by bone marrow cells from patients with myelodysplastic syndromes. Leukemia, 11, 2049–54CrossRefGoogle ScholarPubMed
Gersuk, G. M., Beckham, C., Loken, M. R.et al. (1998). A role for tumour necrosis factor-alpha, Fas and Fas-ligand in marrow failure associated with myelodysplastic syndrome. Br. J. Haematol., 103, 176–88CrossRefGoogle ScholarPubMed
Seaman, M. S., Peyerl, F. W., Jackson, S. S.et al. (2004). Subsets of memory cytotoxic T lymphocytes elicited by vaccination influence the efficiency of secondary expansion in vivo. J. Virol., 78, 206–15CrossRefGoogle ScholarPubMed
Lima, M., Teixeira, M. A., Queiros, M. L.et al. (2003). Immunophenotype and TCR-Vbeta repertoire of peripheral blood T-cells in acute infectious mononucleosis. Blood Cells Mol. Dis., 30, 1–12CrossRefGoogle ScholarPubMed
Epperson, D. E., Nakamura, R., Saunthararajah, Y.et al. (2001). Oligoclonal T cell expansion in myelodysplastic syndrome: evidence for an autoimmune process. Leuk. Res., 25, 1075–83CrossRefGoogle ScholarPubMed
Melenhorst, J. J., Eniafe, R., Follmann, D.et al. (2002). Molecular and flow cytometric characterization of the CD4 and CD8 T-cell repertoire in patients with myelodysplastic syndrome. Br. J. Haematol., 119, 97–105CrossRefGoogle ScholarPubMed
Plasilova, M., Risitano, A., and Maciejewski, J. P. (2003). Application of the molecular analysis of the T-cell receptor repertoire in the study of immune-mediated hematologic diseases. Hematology, 8, 173–81CrossRefGoogle Scholar
Melenhorst, J. J., Eniafe, R., Follmann, D.et al. (2003). T-cell large granular lymphocyte leukemia is characterized by massive TCRBV-restricted clonal CD8 expansion and a generalized overexpression of the effector cell marker CD57. Hematol. J., 4, 18–25CrossRefGoogle Scholar
Sloand, E. M., Kim, S., Fuhrer, M.et al. (2002). Fas-mediated apoptosis is important in regulating cell replication and death in trisomy 8 hematopoietic cells but not in cells with other cytogenetic abnormalities. Blood, 100, 4427–32CrossRefGoogle Scholar
Oka, Y., Tsuboi, A., Murakami, M.et al. (2003). Wilms tumor gene peptide-based immunotherapy for patients with overt leukemia from myelodysplastic syndrome (MDS) or MDS with myelofibrosis. Int. J. Hematol., 78, 56–61CrossRefGoogle ScholarPubMed
Cilloni, D., Gottardi, E., Messa, F.et al. (2003). Significant correlation between the degree of WT1 expression and the International Prognostic Scoring System Score in patients with myelodysplastic syndromes. J. Clin. Oncol., 21, 1988–95CrossRefGoogle ScholarPubMed
Elisseeva, O. A., Oka, Y., Tsuboi, A.et al. (2002). Humoral immune responses against Wilms tumor gene WT1 product in patients with hematopoietic malignancies. Blood, 99, 3272–9CrossRefGoogle ScholarPubMed
Hosoya, N., Miyagawa, K., Mitani, K., Yazaki, Y., and Hirai, H. (1998). Mutation analysis of the WT1 gene in myelodysplastic syndromes. Jpn J. Cancer Res., 89, 821–4CrossRefGoogle ScholarPubMed
Rosenfeld, C., Cheever, M. A., and Gaiger, A. (2003). WT1 in acute leukemia, chronic myelogenous leukemia and myelodysplastic syndrome: therapeutic potential of WT1 targeted therapies. Leukemia, 17, 1301–12CrossRefGoogle ScholarPubMed
Tamaki, H., Ogawa, H., Ohyashiki, K.et al. (1999). The Wilms' tumor gene WT1 is a good marker for diagnosis of disease progression of myelodysplastic syndromes. Leukemia, 13, 393–9CrossRefGoogle ScholarPubMed
Klasa, R. J., List, A. F., and Cheson, B. D. (2001). Rational approaches to design of therapeutics targeting molecular markers. Hematology (Am. Soc. Hematol. Educ. Program), 443–62Google ScholarPubMed
Kochenderfer, J. N. and Molldrem, J. J. (2001). Leukemia vaccines. Curr. Oncol. Rep., 3, 193–200CrossRefGoogle ScholarPubMed
Virtaneva, K., Wright, F. A., Tanner, S. M.et al. (2001). Expression profiling reveals fundamental biological differences in acute myeloid leukemia with isolated trisomy 8 and normal cytogenetics. Proc. Natl Acad. Sci. U.S.A., 98, 1124–9CrossRefGoogle ScholarPubMed
Sloand, E. M., Mainwaring, L., Fuhrer, M.et al. (2005). Preferential suppression of trisomy 8 versus normal hematopoietic cell growth by autologous lymphocytes in patients with trisomy 8 versus normal hematopoietic cell growth by authologous lymphocytes in patients with trisomy 8 myelodysplastic syndrome. Blood, 106, 841–51Google Scholar
Catalano, L., Selleri, C., Califano, C.et al. (2000). Prolonged response to cyclosporin-A in hypoplastic refractory anemia and correlation with in vitro studies. Haematologica, 85, 133–8Google ScholarPubMed
Atoyebi, W., Bywater, L., Rawlings, L., Brunskill, S., and Littlewood, T. J. (2002). Treatment of myelodysplasia with oral cyclosporin. Clin. Lab. Haematol., 24, 211–14CrossRefGoogle ScholarPubMed
Shimamoto, T., Tohyama, K., Okamoto, T.et al. (2003). Cyclosporin A therapy for patients with myelodysplastic syndrome: multicenter pilot studies in Japan. Leuk. Res., 27, 783–8CrossRefGoogle ScholarPubMed
Aivado, M., Rong, A., Stadler, M.et al. (2002). Favourable response to antithymocyte or antilymphocyte globulin in low-risk myelodysplastic syndrome patients with a ‘non-clonal’ pattern of X-chromosome inactivation in bone marrow cells. Eur. J. Haematol., 68, 210–16CrossRefGoogle ScholarPubMed
Steensma, D. P., Dispenzieri, A., Moore, S. B., Schroeder, G., and Tefferi, A. (2003). Antithymocyte globulin has limited efficacy and substantial toxicity in unselected anemic patients with myelodysplastic syndrome. Blood, 101, 2156–8CrossRefGoogle ScholarPubMed
Geary, C. G., Harrison, C. J., Philpott, N. J.et al. (1999). Abnormal cytogenetic clones in patients with aplastic anaemia: response to immunosuppressive therapy. Br. J. Haematol., 104, 271–4CrossRefGoogle ScholarPubMed
Yamada, T., Tsurumi, H., Kasahara, S.et al. (2003). Immunosuppressive therapy for myelodysplastic syndrome: efficacy of methylprednisolone pulse therapy with or without cyclosporin A. J. Cancer Res. Clin. Oncol., 129, 485–91CrossRefGoogle ScholarPubMed
Miyata, A., Yasuda, Y., Fujii, S., and Kikuchi, T.[Outcome of immunosuppressive therapy for myelodysplastic syndromes: results of 12 cases from a single institution.]Rinsho Ketsueki, 43, 911–17
Saunthararajah, Y., Nakamura, R., Wesley, R., Wang, Q. J., and Barrett, A. J. (2003). A simple method to predict response to immunosuppressive therapy in patients with myelodysplastic syndrome. Blood, 102, 3025–7CrossRefGoogle ScholarPubMed
Stadler, M., Germing, U., Kliche, K. O.et al. (2004). A prospective, randomised, Phase II study of horse antithymocyte globulin vs rabbit antithymocyte globulin as immune-modulating therapy in patients with low-risk myelodysplastic syndromes. Leukemia, 18, 460–5CrossRefGoogle ScholarPubMed
Cheson, B. D., Bennett, J. M., Kantarjian, H.et al. (2000). Report of an international working group to standardize response criteria for myelodysplastic syndromes. Blood, 96, 3671–4.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×