Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T11:51:14.303Z Has data issue: false hasContentIssue false

4 - Cytogenetic abnormalities in myelodysplastic syndromes

Published online by Cambridge University Press:  22 August 2009

Harold J. Olney
Affiliation:
Université de Montréal, Montreal, Quebec, Canada
Michelle M. Le Beau
Affiliation:
University of Chicago, Chicago, IL, USA
Peter L. Greenberg
Affiliation:
Stanford University School of Medicine, California
Get access
Type
Chapter
Information
Myelodysplastic Syndromes
Clinical and Biological Advances
, pp. 95 - 128
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennett, J. M., Catovsky, D., Daniel, M. T.et al. (1982). Proposals for the classification of the myelodysplastic syndromes. Br. J. Haematol., 51, 189–99CrossRefGoogle ScholarPubMed
Jaffe, E. S., Harris, N. L., Stein, G., and Vardiman, J. W. (ed.) (2001). World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyons, France: IARC Press
Vallespi, T., Imbert, M., Mecucci, C., Preudhomme, C., and Fenaux, P. (1998). Diagnosis, classification, and cytogenetics of myelodysplastic syndromes. Haematologica, 83, 258–75Google ScholarPubMed
Morel, P., Hebbar, M., Lai, J. L.et al. (1993). Cytogenetic analysis has strong independent prognostic value in de novo myelodysplastic syndromes and can be incorporated in a new scoring system: a report on 408 cases. Leukemia, 7, 1315–23Google Scholar
Jotterand, M. and Parlier, V. (1996). Diagnostic and prognostic significance of cytogenetics in adult primary myelodysplastic syndromes. Leuk. Lymphoma, 23, 253–66CrossRefGoogle ScholarPubMed
Toyama, K., Ohyashiki, K., Yoshida, Y.et al. (1993). Clinical implications of chromosomal abnormalities in 401 patients with myelodysplastic syndromes: a multicentric study in Japan. Leukemia, 7, 499–508Google ScholarPubMed
Sole, F., Espinet, B., Sanz, G. F.et al. (2000). Incidence, characterization and prognostic significance of chromosomal abnormalities in 640 patients with primary myelodysplastic syndromes. Grupo Cooperativo Español de Citogenética Hematológica. Br. J. Haematol., 108, 346–56CrossRefGoogle ScholarPubMed
Greenberg, P., Cox, C., Beau, M. M.et al. (1997). International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood, 89, 2079–88Google ScholarPubMed
Berghe, H. and Michaux, L. (1997). 5q−, twenty-five years later: a synopsis. Cancer Genet. Cytogenet., 94, 1–7CrossRefGoogle ScholarPubMed
Jary, L., Mossafa, H., Fourcade, C.et al. (1997). The 17p− syndrome: a distinct myelodysplastic syndrome entity?Leuk. Lymphoma, 25, 163–8CrossRefGoogle ScholarPubMed
Dewald, G. W., Pierre, R. V., and Phyliky, R. L. (1982). Three patients with structurally abnormal X chromosomes, each with Xq13 breakpoints and a history of idiopathic acquired sideroblastic anemia. Blood, 59, 100–5Google Scholar
Rowley, J. D. (1999). The role of chromosome translocations in leukemogenesis. Semin. Hematol., 36 (suppl. 7), 59–72Google ScholarPubMed
Smadja, N., Krulik, M., Hagemeijer, A.et al. (1989). Cytogenetic and molecular studies of the Philadelphia translocation t(9;22) observed in a patient with myelodysplastic syndrome. Leukemia, 3, 236–8Google Scholar
Sanz, G. F., Sanz, M. A., Vallespi, T.et al. (1989). Two regression models and a scoring system for predicting survival and planning treatment in myelodysplastic syndromes: a multivariate analysis of prognostic factors in 370 patients. Blood, 74, 395–408Google Scholar
Aul, C., Gattermann, N., Germing, U.et al. (1994). Risk assessment in primary myelodysplastic syndromes: validation of the Dusseldorf score. Leukemia, 8, 1906–13Google ScholarPubMed
Parlier, V., Melle, G., Beris, P.et al. (1995). Prediction of 18-month survival in patients with primary myelodysplastic syndrome. A regression model and scoring system based on the combination of chromosome findings and the Bournemouth score. Cancer Genet. Cytogenet., 81, 158–65CrossRefGoogle ScholarPubMed
Sanz, G. F., Sanz, M. A., and Greenberg, P. L. (1998). Prognostic factors and scoring systems in myelodysplastic syndromes. Haematologica, 83, 358–68Google ScholarPubMed
Nevill, T. J., Fung, H. C., Shepherd, J. D.et al. (1998). Cytogenetic abnormalities in primary myelodysplastic syndrome are highly predictive of outcome after allogeneic bone marrow transplantation. Blood, 92, 1910–17Google ScholarPubMed
Belli, C., Acevedo, S., Bengio, R.et al. (2002). Detection of risk groups in myelodysplastic syndromes. A multicenter study. Haematologica, 87, 9–16Google ScholarPubMed
Hamblin, T. J. and Oscier, D. G. (1987). The myelodysplastic syndromes – a practical guide. Hematol. Oncol., 5, 19–34CrossRefGoogle ScholarPubMed
Horiike, S., Taniwaki, M., Misawa, S., and Abe, T. (1988). Chromosome abnormalities and karyotypic evolution in 83 patients with myelodysplastic syndrome and predictive value for prognosis. Cancer, 62, 1129–383.0.CO;2-C>CrossRefGoogle ScholarPubMed
Geddes, A. A., Bowen, D. T., and Jacobs, A. (1990). Clonal karyotype abnormalities and clinical progress in the myelodysplastic syndrome. Br. J. Haematol., 76, 194–202CrossRefGoogle ScholarPubMed
Souza Fernandez, T., Ornellas, M. H., Otero de Carvalho, L., Tabak, D., and Abdelhay, E. (2000). Chromosomal alterations associated with evolution from myelodysplastic syndrome to acute myeloid leukemia. Leuk. Res., 24, 839–48CrossRefGoogle ScholarPubMed
Rebollo, A. and Martinez, A. C. (1999). RAS proteins: recent advances and new functions. Blood, 94, 2971–80Google ScholarPubMed
Neubauer, A., Dodge, R. K., George, S. L.et al. (1994). Prognostic importance of mutations in the ras proto-oncogenes in de novo acute myeloid leukemia. Blood, 83, 1603–11Google ScholarPubMed
Gallagher, A., Darley, R., and Padua, R. A. (1997). RAS and the myelodysplastic syndromes. Pathol. Biol. (Paris), 45, 561–8Google ScholarPubMed
Beaupre, D. M. and Kurzrock, R. (1999). RAS and leukemia: from basic mechanisms to gene-directed therapy. J. Clin. Oncol., 17, 1071–9CrossRefGoogle ScholarPubMed
Padua, R. A., Guinn, B. A., Al-Sabah, A. I.et al. (1998). RAS, FMS and p53 mutations and poor clinical outcome in myelodysplasias: a 10-year follow-up. Leukemia, 12, 887–92CrossRefGoogle ScholarPubMed
Souza Fernandez, T., Menezes de Souza, J., Macedo Silva, M. L., Tabak, D., and Abdelhay, E. (1998). Correlation of N-RAS point mutations with specific chromosomal abnormalities in primary myelodysplastic syndrome. Leuk. Res., 22, 125–34CrossRefGoogle ScholarPubMed
Tien, H. F., Wang, C. H., Chuang, S. M.et al. (1994). Cytogenetic studies, RAS mutation, and clinical characteristics in primary myelodysplastic syndrome. A study on 68 Chinese patients in Taiwan. Cancer Genet. Cytogenet., 74, 40–9CrossRefGoogle ScholarPubMed
Kurzrock, R., Kantarjian, H. M., Cortes, J. E.et al. (2003). Farnesyltransferase inhibitor R115777 in myelodysplastic syndrome: clinical and biologic activities in phase I setting. Blood, 102, 4527–34CrossRefGoogle Scholar
Apperley, J. F., Gardembas, M., Melo, J. V.et al. (2002). Response to imatinib mesylate in patients with chronic myeloproliferative disease with rearrangements of the platelet-derived growth factor receptor beta. N. Engl. J. Med., 347, 481–7CrossRefGoogle ScholarPubMed
Raza, A., Mundle, S., Iftikhar, A.et al. (1995). Simultaneous assessment of cell kinetics and programmed cell death in bone marrow biopsies of myelodysplastics reveals extensive apoptosis as the probable basis for ineffective hematopoiesis. Am. J. Hematol., 48, 143–54CrossRefGoogle ScholarPubMed
Parker, J. E., Mufti, G. J., Rassool, F.et al. (2000). The role of apoptosis, proliferation, and the BCL-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood, 96, 3932–8Google ScholarPubMed
Westwood, N. B. and Mufi, G. J. (2003). Apoptosis in the myelodysplastic syndromes. Curr. Hematol. Rep., 2, 186–92Google ScholarPubMed
Raza, S., Dar, S., Andric, T.et al. (1999). Biologic characteristics of 164 patients with myelodysplastic syndromes. Leuk. Lymphoma, 33, 281–7CrossRefGoogle Scholar
Allampallam, K., Shetty, V., Mundle, S.et al. (2002). Biological significance of proliferation, apoptosis, and monocyte/macrophage cells in bone marrow biopsies of 145 patients with myelodysplastic syndrome. Int. J. Hematol., 75, 289–97CrossRefGoogle ScholarPubMed
Yoshida, Y. and Mufti, G. J. (1999). Apoptosis and its significance in MDS: controversies revisited. Leuk. Res., 23, 777–85CrossRefGoogle ScholarPubMed
Raza, A., Mundle, S., Shetty, V.et al. (1996). Novel insights into the biology of myelodysplastic syndromes: excessive apoptosis and the role of cytokines. Int. J. Hematol., 63, 265–78CrossRefGoogle ScholarPubMed
Turk, B. E., Jiang, H., and Liu, J. O. (1996). Binding of thalidomide to alpha 1-acid glycoprotein may be involved in its inhibition of tumor necrosis factor alpha production. Proc. Natl Acad. Sci. U.S.A., 93, 7552–6CrossRefGoogle ScholarPubMed
Raza, A., Meyer, P., Dutt, D.et al. (2001). Thalidomide produces transfusion independence in long-standing refractory anemias of patients with myelodysplastic syndromes. Blood, 98, 958–65CrossRefGoogle ScholarPubMed
Knudson, A. G. Jr. (1971). Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. U.S.A., 68, 820–3CrossRefGoogle ScholarPubMed
French, J. E., Lacks, G. D., Trempus, C.et al. (2001). Loss of heterozygosity frequency at the Trp53 locus in p53-deficient (+/−) mouse tumors is carcinogen and tissue-dependent. Carcinogenesis, 22, 99–106CrossRefGoogle ScholarPubMed
Fero, M. L., Rivkin, M., Tasch, M.et al. (1996). A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell, 85, 733–44CrossRefGoogle ScholarPubMed
Song, W. J., Sullivan, M. G., Legare, R. D.et al. (1999). Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat. Genet, 23, 166–75CrossRefGoogle ScholarPubMed
Michaud, J., Wu, F., Osato, M.et al. (2002). In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood, 99, 1364–72CrossRefGoogle ScholarPubMed
Pierre, R. V. and Hoagland, H. C. (1972). Age-associated aneuploidy: loss of Y chromosome from human bone marrow cells with aging. Cancer, 30, 889–943.0.CO;2-1>CrossRefGoogle ScholarPubMed
United Kingdom Cancer Cytogenetics Group (UKCCG) (1992). Loss of the Y chromosome from normal and neoplastic bone marrows. Genes Chromosomes Cancer, 5, 83–8
Wiktor, A., Rybicki, B. A., Piao, Z. S.et al. (2000). Clinical significance of Y chromosome loss in hematologic disease. Genes Chromosomes Cancer, 27, 11–163.0.CO;2-I>CrossRefGoogle ScholarPubMed
Wattel, E., Lai, J. L., Hebbar, M.et al. (1993). De novo myelodysplastic syndrome (MDS) with deletion of the long arm of chromosome 20: a subtype of MDS with distinct hematological and prognostic features?Leuk. Res., 17, 921–6CrossRefGoogle Scholar
Kurtin, P. J., Dewald, G. W., Shields, D. J., and Hanson, C. A. (1996). Hematologic disorders associated with deletions of chromosome 20q: a clinicopathologic study of 107 patients. Am. J. Clin. Pathol., 106, 680–8CrossRefGoogle ScholarPubMed
Bench, A. J., Nacheva, E. P., Hood, T. L.et al. (2000). Chromosome 20 deletions in myeloid malignancies: reduction of the common deleted region, generation of a PAC/BAC contig and identification of candidate genes. UK Cancer Cytogenetics Group (UKCCG). Oncogene, 19, 3902–13CrossRefGoogle Scholar
Wang, P. W., Eisenbart, J. D., Espinosa, R. IIIet al. (2000). Refinement of the smallest commonly deleted segment of chromosome 20 in malignant myeloid diseases and development of a PAC-based physical and transcription map. Genomics, 67, 28–39CrossRefGoogle ScholarPubMed
Thirman, M. J. and Larson, R. A. (1996). Therapy-related myeloid leukemia. Hematol. Oncol. Clin. North Am., 10, 293–320CrossRefGoogle ScholarPubMed
West, R. R., Stafford, D. A., White, A. D., Bowen, D. T., and Padua, R. A. (2000). Cytogenetic abnormalities in the myelodysplastic syndromes and occupational or environmental exposure. Blood, 95, 2093–7Google ScholarPubMed
Larson, R. A., Beau, M. M., Vardiman, J. W., and Rowley, J. D. (1996). Myeloid leukemia after hematotoxins. Environ. Health Perspect., 104 (suppl. 6), 1303–17CrossRefGoogle ScholarPubMed
Aul, C., Bowen, D. T., and Yoshida, Y. (1998). Pathogenesis, etiology and epidemiology of myelodysplastic syndromes. Haematologica, 83, 71–86Google ScholarPubMed
Pedersen-Bjergaard, J., Andersen, M. K., and Christiansen, D. H. (2000). Therapy-related acute myeloid leukemia and myelodysplasia after high-dose chemotherapy and autologous stem cell transplantation. Blood, 95, 3273–9Google ScholarPubMed
McCarthy, C. J., Sheldon, S., Ross, C. W., and McCune, W. J. (1998). Cytogenetic abnormalities and therapy-related myelodysplastic syndromes in rheumatic disease. Arthritis Rheum., 41, 1493–63.0.CO;2-5>CrossRefGoogle ScholarPubMed
Hayes, R. B., Yin, S. N., Dosemeci, M.et al. (1997). Benzene and the dose-related incidence of hematologic neoplasms in China. Chinese Academy of Preventive Medicine–National Cancer Institute Benzene Study Group. J. Natl Cancer Inst., 89, 1065–71CrossRefGoogle ScholarPubMed
Fenaux, P., Lucidarme, D., Lai, J. L., and Bauters, F. (1989). Favorable cytogenetic abnormalities in secondary leukemia. Cancer, 63, 2505–83.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Rowley, J. D. and Olney, H. J. (2002). International workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia: overview report. Genes Chromosomes Cancer, 33, 331–45CrossRefGoogle ScholarPubMed
Boultwood, J., Lewis, S., and Wainscoat, J. S. (1994). The 5q− syndrome. Blood, 84, 3253–60Google ScholarPubMed
Fairman, J., Chumakov, I., Chinault, A. C., Nowell, P. C., and Nagarajan, L. (1995). Physical mapping of the minimal region of loss in 5q− chromosome. Proc. Natl Acad. Sci. U.S.A., 92, 7406–10CrossRefGoogle ScholarPubMed
Zhao, N., Stoffel, A., Wang, P. W.et al. (1997). Molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases to 1–1.5 Mb and preparation of a PAC-based physical map. Proc. Natl Acad. Sci. U.S.A., 94, 6948–53CrossRefGoogle ScholarPubMed
Jaju, R. J., Boultwood, J., Oliver, F. J.et al. (1998). Molecular cytogenetic delineation of the critical deleted region in the 5q− syndrome. Genes Chromosomes Cancer, 22, 251–63.0.CO;2-R>CrossRefGoogle ScholarPubMed
Horrigan, S. K., Arbieva, Z. H., Xie, H. Y.et al. (2000). Delineation of a minimal interval and identification of 9 candidates for a tumor suppressor gene in malignant myeloid disorders on 5q31. Blood, 95, 2372–7Google ScholarPubMed
Beau, M. M., Espinosa, R. III, Neuman, W. L.et al. (1993). Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases. Proc. Natl Acad. Sci. U.S.A., 90, 5484–8CrossRefGoogle ScholarPubMed
Boultwood, J., Fidler, C., Strickson, A. J.et al. (2002). Narrowing and genomic annotation of the commonly deleted region of the 5q− syndrome. Blood, 99, 4638–41CrossRefGoogle ScholarPubMed
Paulsson, K., Sall, T., Fioretos, T., Mitelman, F., and Johansson, B. (2001). The incidence of trisomy 8 as a sole chromosomal aberration in myeloid malignacies varies in relation to gender, age, prior iatrogenic genotoxic exposure, and morphology. Cancer Genet. Cytogenet., 130, 160–5CrossRefGoogle Scholar
Maserati, E., Aprili, F., Vinante, F.et al. (2002). Trisomy 8 in myelodysplasia and acute leukemia is constitutional in 15–20% of cases. Genes Chromosomes Cancer, 33, 93–7CrossRefGoogle ScholarPubMed
Mastrangelo, R., Tornesello, A., Mastrangelo, S., Zollino, M., and Neri, G. (1995). Constitution trisomy 8 mosaicism evolving to primary myelodysplastic syndrome: a new subset of biologically related patients?Am. J. Hematol., 48, 67–8CrossRefGoogle Scholar
Matsuda, A., Yagasaki, F., Jinnai, I.et al. (1998). Trisomy 8 may not be related to the pathogenesis of myelodysplastic syndromes: disappearance of trisomy 8 in a patient with refractory anaemia without haematological improvement. Eur. J. Hematol., 60, 260–1CrossRefGoogle ScholarPubMed
Kardos, G., Baumann, I., Passmore, S. J.et al. (2003). Refractory anemia in childhood: a retrospective analysis of 67 patients with particular reference to monosomy 7. Blood, 102, 1997–2003CrossRefGoogle ScholarPubMed
Luna-Fineman, S., Shannon, K. M., and Lange, B. J. (1995). Childhood monosomy 7: epidemiology, biology, and mechanistic implications. Blood, 85, 1985–99Google ScholarPubMed
Emanuel, P. D. (1999). Myelodysplasia and myeloproliferative disorders in childhood: an update. Br. J. Haematol., 105, 852–63CrossRefGoogle ScholarPubMed
Martinez-Climent, J. A. and Garcia-Conde, J. (1999). Chromosomal rearrangements in childhood acute myeloid leukemia and myelodysplastic syndromes. J. Pediatr. Hematol. Oncol., 21, 91–102CrossRefGoogle ScholarPubMed
Bjork, J., Albin, M., Mauritzson, N.et al. (2000). Smoking and myelodysplastic syndromes. Epidemiology, 11, 285–91CrossRefGoogle ScholarPubMed
Kere, J. (1989). Chromosome 7 long arm deletion breakpoints in preleukemia: mapping by pulsed field gel electrophoresis. Nucleic Acids Res., 17, 1511–20CrossRefGoogle ScholarPubMed
Johnson, E. J., Scherer, S. W., Osborne, L.et al. (1996). Molecular definition of a narrow interval at 7q22.1 associated with myelodysplasia. Blood, 87, 3579–86Google ScholarPubMed
Beau, M. M., Espinosa, R. III, Davis, E. M.et al. (1996). Cytogenetic and molecular delineation of a region of chromosome 7 commonly deleted in malignant myeloid diseases. Blood, 88, 1930–5Google ScholarPubMed
Fischer, K., Frohling, S., Scherer, S. W.et al. (1997). Molecular cytogenetic delineation of deletions and translocations involving chromosome band 7q22 in myeloid leukemias. Blood, 89, 2036–41Google ScholarPubMed
Liang, H., Fairman, J., Claxton, D. F.et al. (1998). Molecular anatomy of chromosome 7q deletions in myeloid neoplasms: evidence for multiple critical loci. Proc. Natl Acad. Sci. U.S.A., 95, 3781–5CrossRefGoogle ScholarPubMed
Tosi, S., Scherer, S. W., Giudici, G.et al. (1999). Delineation of multiple deleted regions in 7q in myeloid disorders. Genes Chromosomes Cancer, 25, 384–923.0.CO;2-D>CrossRefGoogle ScholarPubMed
Döhner, K., Brown, J., Hehmann, U.et al. (1998). Molecular cytogenetic characterization of a critical region in bands 7q35–q36 commonly deleted in malignant myeloid disorders. Blood, 92, 4031–5Google ScholarPubMed
Lewis, S., Abrahamson, G., Boultwood, J.et al. (1996). Molecular characterization of the 7q deletion in myeloid disorders. Br. J. Haematol., 93, 75–80CrossRefGoogle ScholarPubMed
Kratz, C. P., Emerling, B. M., Donovan, S.et al. (2001). Candidate gene isolation and comparative analysis of a commonly deleted segment of 7q22 implicated in myeloid malignancies. Genomic, 77, 171–80CrossRefGoogle ScholarPubMed
Johansson, B., Mertens, F., and Mitelman, F. (1993). Cytogenetic deletion maps of hematologic neoplasms: circumstantial evidence for tumor suppressor loci. Genes Chromosomes Cancer, 8, 205–18CrossRefGoogle ScholarPubMed
Wang, P., Spielberger, R. T., Thangavelu, M.et al.dic(5;17): a recurring abnormality in malignant myeloid disorders associated with mutations of TP53. Genes Chromosomes Cancer, 20, 282–913.0.CO;2-Z>CrossRef
Lai, J. L., Preudhomme, C., Zandecki, M.et al. (1995). Myelodysplastic syndromes and acute myeloid leukemia with 17p deletion. An entity characterized by specific dysgranulopoiesis and a high incidence of P53 mutations. Leukemia, 9, 370–81Google Scholar
Merlat, A., Lai, J. L., Sterkers, Y.et al. (1999). Therapy-related myelodysplastic syndrome and acute myeloid leukemia with 17p deletion. A report on 25 cases. Leukemia, 13, 250–7CrossRefGoogle ScholarPubMed
Sankar, M., Tanaka, K., Kumaravel, T. S.et al. (1998). Identification of a commonly deleted region at 17p13.3 in leukemia and lymphoma associated with 17p abnormality. Leukemia, 12, 510–16CrossRefGoogle ScholarPubMed
Rowley, J. D. (2000). Molecular genetics in acute leukemia. Leukemia, 14, 513–17CrossRefGoogle ScholarPubMed
Bain, B. J., Moorman, A. V., Johansson, B., Mehta, A. B., and Secker-Walker, L. M. (1998). Myelodysplastic syndromes associated with 11q23 abnormalities. European 11q23 workshop participants. Leukemia, 12, 834–9CrossRefGoogle ScholarPubMed
Secker-Walker, L. M., Moorman, A. V., Bain, B. J., and Mehta, A. B. (1998). Secondary acute leukemia and myelodysplastic syndrome with 11q23 abnormalities. EU Concerted Action 11q23 Workshop. Leukemia, 12, 840–4CrossRefGoogle ScholarPubMed
Bloomfield, C. D., Archer, K. J., Mrozek, K.et al. (2002). 11q23 balanced chromosome aberrations in treatment-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer, 33, 362–78CrossRefGoogle ScholarPubMed
Rowley, J. D., Reshmi, S., Sobulo, O.et al. (1997). All patients with the t(11;16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders. Blood, 90, 535–41Google Scholar
Beau, M. M., Albain, K. S., Larson, R. A.et al. (1986). Clinical and cytogenetic correlations in 63 patients with therapy-related myelodysplastic syndromes and acute nonlymphocytic leukemia: further evidence for characteristic abnormalities of chromosomes no. 5 and 7. J. Clin. Oncol., 4, 325–45CrossRefGoogle ScholarPubMed
Smith, S. M., Beau, M. M., Huo, D.et al. (2003). Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood, 102, 42–52CrossRefGoogle ScholarPubMed
Cortes, J., O'Brien, S., Kantarjian, H.et al. (1994). Abnormalities in the long arm of chromosome 11 (11q) in patients with de novo and secondary acute myelogenous leukemias and myelodysplastic syndromes. Leukemia, 8, 2174–8Google Scholar
Super, H. J., McCabe, N. R., Thirman, M. J.et al. (1993). Rearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase II. Blood, 82, 3705–11Google ScholarPubMed
Look, A. T. (1997). Oncogenic transcription factors in the human acute leukemias. Science, 278, 1059–64CrossRefGoogle ScholarPubMed
Golub, T. R., Barker, G. F., Lovett, M., and Gilliland, D. G. (1994). Fusion of PDGF receptor beta to a novel ETS-like gene, TEL, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell, 77, 307–16CrossRefGoogle Scholar
Ross, T. S., Bernard, O. A., Berger, R., and Gilliland, D. G. (1998). Fusion of huntington interacting protein 1 to platelet-derived growth factor beta receptor (PDGR-beta-R) in chronic myelomonocytic leukemia with t(5;7)(q33;q11.2). Blood, 91, 4419–26Google Scholar
Magnusson, M. K., Meade, K. E., Brown, K. E.et al. (2001). Rabaptin-5 is a novel fusion partner to platelet-derived growth factor beta receptor in chronic myelomonocytic leukemia. Blood, 98, 2518–25CrossRefGoogle ScholarPubMed
Kulkarni, S., Heath, C., Parker, S.et al. (2000). Fusion of H4/D10S170 to the platelet-derived growth factor receptor beta in BCR-ABL negative myeloproliferative disorders with a t(5;10)(q33;q21). Cancer Res., 60, 3592–8Google Scholar
Abe, A., Emi, N., Tanimoto, M.et al. (1997). Fusion of the platelet-derived growth factor receptor beta to a novel gene CEV14 in acute myelogenous leukemia after clonal evolution. Blood, 90, 4271–7Google ScholarPubMed
Rubin, C. M., Larson, R. A., Bitter, M. A.et al. (1987). Association of a chromosomal 3;21 translocation with the blast phase of chronic myelogenous leukemia. Blood, 70, 1338–42Google ScholarPubMed
Rubin, C. M., Larson, R. A., Anastasi, J.et al. (1990). t(3;21)(q26;q22): A recurring chromosomal abnormality in therapy-related myelodysplastic syndrome and acute myeloid leukemia. Blood, 76, 2594–8Google Scholar
Nucifora, G., Begy, C. R., Kobayashi, H.et al. (1994). Consistent intergenic splicing and production of multiple transcripts between AML1 at 21q22 and unrelated genes at 3q26 in (3;21)(q26;q22) translocations. Proc. Natl Acad. Sci. U.S.A., 91, 4004–8CrossRefGoogle ScholarPubMed
Sitailo, S., Sood, R., Barton, K., and Nucifora, G. (1999). Forced expression of the leukemia-associated gene EVI1 in ES cells: a model for myeloid leukemia with 3q26 rearrangements. Leukemia, 13, 1639–45CrossRefGoogle ScholarPubMed
Sood, R., Talwar-Trikha, A., Chakrabarti, S. R., and Nucifora, G. (1999). MDS1/EVI1 enhances TGF-beta1 signaling and strengthens its growth-inhibitory effect but the leukemia-associated fusion protein AML1/MDS1/EVI1, product of the t(3;21), abrogates growth-inhibition in response to TGF-beta1. Leukemia, 13, 348–57CrossRefGoogle Scholar
Martinelli, G., Ottaviani, E., Buonamici, S.et al. (2003). Association of 3q21q26 syndrome with different RPN1EVI1 fusion transcripts. Haematologica, 88, 1221–8Google ScholarPubMed
Pekarsky, Y., Rynditch, A., Wieser, R., Fonasch, C., and Gardiner, K. (1997). Activation of a novel gene in 3q21 and identification of intergenic fusion transcripts with ecotropic viral insertion site I in leukemia. Cancer Res., 57, 3914–19Google ScholarPubMed
Raynaud, S. D., Baens, M., Grosgeorge, J.et al. (1996). Fluorescence in situ hybridization analysis of t(3;12)(q26;p13): a recurring chromosomal abnormality involving the TEL gene (ETV6) in myelodysplastic syndromes. Blood, 88, 682–9Google Scholar
Block, A. M. W., Carroll, A. J., Hagemeijer, A.et al. (2002). Rare recurring balanced chromosome abnormalies in therapy-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer, 33, 401–12CrossRefGoogle Scholar
Lepelley, P., Soenen, V., Preudhomme, C.et al. (1995). BCL-2 expression in myelodysplastic syndromes and its correlation with hematological features, p53 mutations and prognosis. Leukemia, 9, 726–30Google ScholarPubMed
Ridge, S. A., Worwood, M., Oscier, D., Jacobs, A., and Padua, R. A. (1990). FMS mutations in myelodysplastic, leukemic, and normal subjects. Proc. Natl Acad. Sci. U.S.A., 87, 1377–80CrossRefGoogle ScholarPubMed
Kiyoi, H., Towatari, M., Yokota, S.et al. (1998). Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia, 12, 1333–7CrossRefGoogle ScholarPubMed
Horiike, S., Yokota, S., Nakao, M.et al. (1997). Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia. Leukemia, 11, 1442–6CrossRefGoogle ScholarPubMed
Tidow, N., Kasper, B., and Welte, K. (1998). Clinical implications of G-CSF receptor mutations. Crit. Rev. Oncol. Hematol., 28, 1–6CrossRefGoogle ScholarPubMed
Saunthararajah, Y., Nakamura, R., Nam, J. M.et al. (2002). HLA-DR15 (DR2) is overrepresented in myelodysplastic syndrome and aplastic anemia and predicts a response to immunosuppression in myelodysplastic syndrome. Blood, 100, 1570–4Google ScholarPubMed
Arland, M., Fiedler, W., Samalecos, A., and Hossfeld, D. K. (1994). Absence of point mutations in a functionally important part of the extracellular domain of the C-KIT proto-oncogene in a series of patients with acute myeloid leukemia (AML). Leukemia, 8, 498–501Google Scholar
Siitonen, T., Savolainen, E. R., and Koistinen, P. (1994). Expression of the c-KIT proto-oncogene in myeloproliferative disorders and myelodysplastic syndromes. Leukemia, 8, 631–7Google ScholarPubMed
Zochbauer, S., Gsur, A., Gotzl, M.et al. (1994). MDR1 gene expression in myelodysplastic syndrome and in acute myeloid leukemia evolving from myelodysplastic syndrome. Anticancer Res., 14, 1293–5Google ScholarPubMed
Bueso-Ramos, C. E., Manshouri, T., Haidar, M. A.et al. (1995). Multiple patterns of MDM-2 deregulation in human leukemias: implications in leukemogenesis and prognosis. Leuk. Lymphoma, 17, 13–18CrossRefGoogle ScholarPubMed
Faderl, S., Kantarjian, H. M., Estey, E.et al. (2000). The prognostic significance of p16(INK4a)/p14(ARF) locus deletion and MDM-2 protein expression in adult acute myelogenous leukemia. Cancer, 89, 1976–823.3.CO;2-E>CrossRefGoogle ScholarPubMed
Ogata, K. and Tamura, H. (2000). Thrombopoietin and myelodysplastic syndromes. Int. J. Hematol., 72, 173–7Google ScholarPubMed
Bouscary, D., Preudhomme, C., Ribrag, V.et al. (1995). Prognostic value of C-MPL expression in myelodysplastic syndromes. Leukemia, 9, 783–8Google ScholarPubMed
Shannon, K. M., O'Connell, P., Martin, G. A.et al. (1994). Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N. Engl. J. Med., 330, 597–601CrossRefGoogle ScholarPubMed
Gallagher, A., Darley, R. L., and Padua, R. (1997). The molecular basis of myelodysplastic syndromes. Haematologica, 82, 191–204Google ScholarPubMed
Padua, R. A. and West, R. R. (2000). Oncogene mutation and prognosis in the myelodysplastic syndromes. Br. J. Haematol., 111, 873–4Google ScholarPubMed
Christiansen, D. H., Andersen, M. K., and Pedersen-Bjergaard, J. (2003). Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia, 17, 1813–19CrossRefGoogle ScholarPubMed
Loh, M. L., Vattikuti, S., Schubbert, S.et al. (2003). Somatic mutations in PTPN11 implicate the protein tyrosine phosphatase SHP-2 in leukemogenesis. Blood, 103, 2325–31CrossRefGoogle Scholar
Counter, C. M., Gupta, J., Harley, C. B., Leber, B., and Bacchetti, S. (1995). Telomerase activity in normal leukocytes and in hematologic malignancies. Blood, 85, 2315–20Google ScholarPubMed
Norrback, K. F. and Roos, G. (1997). Telomeres and telomerase in normal and malignant haematopoietic cells. Eur. J. Cancer, 33, 774–80CrossRefGoogle ScholarPubMed
Xu, D., Gruber, A., Peterson, C., and Pisa, P. (1998). Telomerase activity and the expression of telomerase components in acute myelogenous leukaemia. Br. J. Haematol., 102, 1367–75CrossRefGoogle ScholarPubMed
Li, B., Yang, J., Andrews, C.et al. (2000). Telomerase activity in preleukemia and acute myelogenous leukemia. Leuk. Lymphoma, 36, 579–87CrossRefGoogle ScholarPubMed
Misawa, S. and Horiike, S. (1996). TP53 mutations in myelodysplastic syndrome. Leuk. Lymphoma, 23, 417–22CrossRefGoogle ScholarPubMed
Kita-Sasai, Y., Horiike, S., Misawa, S.et al. (2001). International prognostic scoring system and TP53 mutations are independent prognostic indicators for patients with myelodysplastic syndrome. Br. J. Haematol., 115, 309–12CrossRefGoogle ScholarPubMed
Cilloni, D., Gottardi, E., Messa, F.et al. (2003). Significant correlation between the degree of WTI expression and the international prognostic scoring system score in patients with myelodysplastic syndromes. J. Clin. Oncol., 21, 1988–95CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×