Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T06:43:18.648Z Has data issue: false hasContentIssue false

5 - Molecular mechanisms and gene expression patterns in myelodysplastic syndromes

Published online by Cambridge University Press:  22 August 2009

Wolf-Karsten Hofmann
Affiliation:
University Hospital “Benjamin Franklin,” Berlin, Germany
H. Phillip Koeffler
Affiliation:
Cedars Sinai Research Institute, UCLA School of Medicine, Los Angeles, CA
Peter L. Greenberg
Affiliation:
Stanford University School of Medicine, California
Get access
Type
Chapter
Information
Myelodysplastic Syndromes
Clinical and Biological Advances
, pp. 129 - 146
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Parker, J. and Mufti, G. J. (1996). Ras and myelodysplasia: lessons from the last decade. Semin. Hematol., 33, 206–24Google ScholarPubMed
Saitoh, K., Miura, I., Takahashi, N., and Miura, A. B. (1998). Fluorescence in situ hybridization of progenitor cells obtained by fluorescence-activated cell sorting for the detection of cells affected by chromosome abnormality trisomy 8 in patients with myelodysplastic syndromes. Blood, 92, 2886–92Google ScholarPubMed
Hofmann, W. K., Kalina, U., Wagner, S.et al. (1999). Characterization of defective megakaryocytic development in patients with myelodysplastic syndromes. Exp. Hematol., 27, 395–400CrossRefGoogle ScholarPubMed
Miyazato, A., Ueno, S., Ohmine, K.et al. (2001). Identification of myelodysplastic syndrome-specific genes by DNA microarray analysis with purified hematopoietic stem cell fraction. Blood, 98, 422–7CrossRefGoogle ScholarPubMed
Kalina, U., Hofmann, W. K., Koschmieder, S.et al. (2000). Alteration of c-mpl-mediated signal transduction in CD34(+) cells from patients with myelodysplastic syndromes. Exp. Hematol., 28, 1158–63CrossRefGoogle ScholarPubMed
Preisler, H. D., Li, B., Chen, H.et al. (2001). P15INK4B gene methylation and expression in normal, myelodysplastic, and acute myelogenous leukemia cells and in the marrow cells of cured lymphoma patients. Leukemia, 15, 1589–95CrossRefGoogle ScholarPubMed
Kaneko, H., Horiike, S., Taniwaki, M., and Misawa, S. (1996). Microsatellite instability is an early genetic event in myelodysplastic syndrome but is infrequent and not associated with TGF-beta receptor type II gene mutation. Leukemia, 10, 1696–9Google Scholar
Ben-Yehuda, D., Krichevsky, S., Caspi, O.et al. (1996). Microsatellite instability and p53 mutations in therapy-related leukemia suggest mutator phenotype. Blood, 88, 4296–303Google ScholarPubMed
Tasaka, T., Lee, S., Spira, S.et al. (1996). Infrequent microsatellite instability during the evolution of myelodysplastic syndrome to acute myelocytic leukemia. Leuk. Res., 20, 113–17CrossRefGoogle Scholar
Willman, C. L. (1998). Molecular genetic features of myelodysplastic syndromes (MDS). Leukemia, 12 (suppl. 1), S2–6Google Scholar
Rimsza, L. M., Kopecky, K. J., Ruschulte, J.et al. (2000). Microsatellite instability is not a defining genetic feature of acute myeloid leukemogenesis in adults: results of a retrospective study of 132 patients and review of the literature. Leukemia, 14, 1044–51CrossRefGoogle Scholar
Hofmann, W. K., Vos, S., Tsukasaki, K.et al. (2001). Altered apoptosis pathways in mantle cell lymphoma detected by oligonucleotide microarray. Blood, 98, 787–94CrossRefGoogle ScholarPubMed
Krug, U., Ganser, A., and Koeffler, H. P. (2002). Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene, 21, 3475–95CrossRefGoogle ScholarPubMed
Chen, Z. and Sandberg, A. A. (2002). Molecular cytogenetic aspects of hematological malignancies: clinical implications. Am. J. Med. Genet., 115, 130–41CrossRefGoogle ScholarPubMed
Hirai, H. (2002). Molecular pathogenesis of MDS. Int. J. Hematol., 76 (suppl. 2), 213–21CrossRefGoogle ScholarPubMed
Thiede, T., Engquist, L., and Billstrom, R. (1998). Application of megakaryocytic morphology in diagnosing 5q− syndrome. Eur. J. Haematol., 41, 434–7CrossRefGoogle Scholar
Greenberg, P., Cox, C., Beau, M. M.et al. (1997). International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood, 89, 2079–88Google ScholarPubMed
Carter, G., Ridge, S., and Padua, R. A. (1992). Genetic lesions in preleukemia. Crit. Rev. Oncog., 3, 339–64Google ScholarPubMed
Willman, C. L., Sever, C. E., Pallavicini, M. G.et al. (1993). Deletion of IRF-1, mapping to chromosome 5q31.1, in human leukemia and preleukemic myelodysplasia. Science, 1993; 259, 968–71CrossRefGoogle ScholarPubMed
Borkhardt, A., Bojesen, S., Haas, O. A.et al. (2000). The human GRAF gene is fused to MLL in a unique t(5;11)(q31;q23) and both alleles are disrupted in three cases of myelodysplastic syndrome/acute myeloid leukemia with a deletion 5q. Proc. Natl Acad. Sci. U.S.A., 97, 9168–73CrossRefGoogle Scholar
Heim, S. (1992). Cytogenetic findings in primary and secondary MDS. Leuk. Res., 16, 43–6CrossRefGoogle ScholarPubMed
Golub, T. R., Barker, G. F., Lovett, M., and Gilliland, D. G. (1994). Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell, 77, 307–16CrossRefGoogle Scholar
Apperley, J. F., Gardembas, M., Melo, J. V.et al. (2002). Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N. Engl. J. Med., 347, 481–7CrossRefGoogle ScholarPubMed
Passmore, S. J., Chessells, J. M., Kempski, H.et al. (2003). Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia in the UK: a population-based study of incidence and survival. Br. J. Haematol., 121, 758–67CrossRefGoogle Scholar
Emanuel, P. D. (2004). Juvenile myelomonocytic leukemia. Curr. Hematol. Rep., 3, 203–9Google ScholarPubMed
Locatelli, F., Niemeyer, C., Angelucci, E.et al. (1997). Allogeneic bone marrow transplantation for chronic myelomonocytic leukemia in childhood: a report from the European working group on myelodysplastic syndrome in childhood. J. Clin. Oncol., 15, 566–73CrossRefGoogle Scholar
Shannon, K. M., O'Connell, P., Martin, G. A.et al. (1994). Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N. Engl. J. Med., 330, 597–601CrossRefGoogle ScholarPubMed
Side, L. E., Emanuel, P. D., Taylor, B.et al. (1998). Mutations of the NF1 gene in children with juvenile myelomonocytic leukemia without clinical evidence of neurofibromatosis, type 1. Blood, 92, 267–72Google ScholarPubMed
Flotho, C., Valcamonica, S., Mach-Pascual, S.et al. (1999). RAS mutations and clonality analysis in children with juvenile myelomonocytic leukemia (JMML). Leukemia, 13, 32–7CrossRefGoogle Scholar
Tartaglia, M., Niemeyer, C. M., Fragale, A.et al. (2003). Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet., 34, 148–50CrossRefGoogle ScholarPubMed
Dong, F., Brynes, R. K., Tidow, N.et al. (1995). Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N. Engl. J. Med., 333, 487–93CrossRefGoogle ScholarPubMed
Freedman, M. H., Bonilla, M. A., Fier, C.et al. (2000). Myelodysplasia syndrome and acute myeloid leukemia in patients with congenital neutropenia receiving G-CSF therapy. Blood, 96, 429–36Google ScholarPubMed
Dale, D. C., Person, R. E., Bolyard, A. A.et al. (2000). Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood, 96, 2317–22Google ScholarPubMed
Song, W. J., Sullivan, M. G., Legare, R. D.et al. (1999). Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat. Genet., 23, 166–75CrossRefGoogle ScholarPubMed
Ho, C. Y., Otterud, B., Legare, R. D.et al. (1996). Linkage of a familial platelet disorder with a propensity to develop myeloid malignancies to human chromosome 21q22.1–22.2. Blood, 87, 5218–24Google ScholarPubMed
Imai, Y., Kurokawa, M., Izutsu, K.et al. (2000). Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukemogenesis. Blood, 96, 3154–60Google ScholarPubMed
Horwitz, M., Benson, K. F., Li, F. Q.et al. (1997). Genetic heterogeneity in familial acute myelogenous leukemia: evidence for a second locus at chromosome 16q21–23.2. Am. J. Hum. Genet., 61, 873–81CrossRefGoogle ScholarPubMed
Fenaux, P. (2001). Chromosome and molecular abnormalities in myelodysplastic syndromes. Int. J. Hematol., 73, 429–37CrossRefGoogle ScholarPubMed
Paquette, R. L., Landaw, E. M., Pierre, R. V.et al. (1993). N-ras mutations are associated with poor prognosis and increased risk of leukemia in myelodysplastic syndrome. Blood, 82, 590–9Google ScholarPubMed
Lai, J. L., Preudhomme, C., Zandecki, M.et al. (1995). Myelodysplastic syndromes and acute myeloid leukemia with 17p deletion. An entity characterized by specific dysgranulopoiesis and a high incidence of p53 mutations. Leukemia, 9, 370–81Google Scholar
Jonveaux, P., Fenaux, P., Quiquandon, I.et al. (1991). Mutations in the p53 gene in myelodysplastic syndromes. Oncogene, 6, 2243–7Google ScholarPubMed
Pabst, T., Mueller, B. U., Zhang, P.et al. (2001). Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EB Palpha), in acute myeloid leukemia. Nat. Genet., 27, 263–70CrossRefGoogle Scholar
Gombart, A. F., Hofmann, W. K., Kawano, S.et al. (2002). Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic syndromes and acute myeloid leukemias. Blood, 99, 1332–40CrossRefGoogle ScholarPubMed
Hofmann, W. K., Miller, C. W., Tsukasaki, K.et al. (2001). Mutation analysis of the DNA-damage checkpoint gene CHK2 in myelodysplastic syndromes and acute myeloid leukemias. Leuk. Res., 25, 333–8CrossRefGoogle ScholarPubMed
Dasika, G. K., Lin, S. C., Zhao, S.et al. (1999). DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene, 18, 7883–99CrossRefGoogle ScholarPubMed
Herman, J. G. and Baylin, S. B. (2003). Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med., 349, 2042–54CrossRefGoogle ScholarPubMed
Nakamaki, T., Bartram, C., Seriu, T.et al. (1997). Molecular analysis of the cyclin-dependent kinase inhibitor genes, p15, p16, p18 and p19 in the myelodysplastic syndromes. Leuk. Res., 21, 235–40CrossRefGoogle ScholarPubMed
Uchida, T., Kinoshita, T., Nagai, H.et al. (1997). Hypermethylation of the p15INK4B gene in myelodysplastic syndromes. Blood, 90, 1403–9Google ScholarPubMed
Quesnel, B., Guillerm, G., Vereecque, R.et al. (1998). Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood, 91, 2985–90Google ScholarPubMed
Herman, J. G., Civin, C. I., Issa, J. P.et al. (1997). Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res., 57, 837–41Google ScholarPubMed
Hofmann, W. K., Vos, S., Komor, M.et al. (2002). Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow. Blood, 100, 3553–60CrossRefGoogle ScholarPubMed
DeRisi, J., Hazel, B., Marc, P.et al. (2000). Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants. FEBS Lett., 470, 156–60CrossRefGoogle ScholarPubMed
Kaminski, N., Allard, J. D., Pittet, J. F.et al. (2002). Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis. Proc. Natl Acad. Sci. U.S.A., 97, 1778–83CrossRefGoogle Scholar
Vos, J., Couderc, G., Tarte, K.et al. (2001). Identifying intercellular signaling genes expressed in malignant plasma cells by using complementary DNA arrays. Blood, 98, 771–80CrossRefGoogle ScholarPubMed
Neiman, P. E., Ruddell, A., Jasoni, C.et al. (2001). Analysis of gene expression during myc oncogene-induced lymphomagenesis in the bursa of Fabricius. Proc. Natl Acad. Sci. U.S.A., 98, 6378–83CrossRefGoogle ScholarPubMed
Lee, Y. T., Miller, L. D., Gubin, A. N.et al. (2001). Transcription patterning of uncoupled proliferation and differentiation in myelodysplastic bone marrow with erythroid-focused arrays. Blood, 98, 1914–21CrossRefGoogle ScholarPubMed
Golub, T. R., Slonim, D. K., Tamayo, P.et al. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286, 531–7CrossRefGoogle ScholarPubMed
Schoch, C., Kohlmann, A., Schnittger, S.et al. (2002). Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proc. Natl Acad. Sci. U.S.A., 99, 10008–13CrossRefGoogle ScholarPubMed
Alizadeh, A. A., Eisen, M. B., Davis, R. E.et al. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403, 503–11CrossRefGoogle ScholarPubMed
Rosenwald, A., Wright, G., Chan, W. C.et al. (2002). The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. J. Med., 346, 1937–47CrossRefGoogle ScholarPubMed
Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467–70CrossRefGoogle ScholarPubMed
Kondratyev, A. D., Chung, K. N., and Jung, M. O. (1996). Identification and characterization of a radiation-inducible glycosylated human early-response gene. Cancer Res., 56, 1498–502Google ScholarPubMed
Schmidt, J. V., Matteson, P. G., Jones, B. K., Guan, X. J., and Tilghman, S. M. (2002). The Dlk1 and Gtl2 genes are linked and reciprocally imprinted. Genes Dev., 14, 1997–2002Google Scholar
Ueda, M., Ota, J., Yamashita, Y.et al. (2003). DNA microarray analysis of stage progression mechanism in myelodysplastic syndrome. Br. J. Haematol., 123, 288–96CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×