Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-01T10:56:44.149Z Has data issue: false hasContentIssue false

7 - Abrupt climate change due to icebergs

from Part II - Icebergs and their impacts

Published online by Cambridge University Press:  05 December 2015

Grant R. Bigg
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Icebergs
Their Science and Links to Global Change
, pp. 155 - 181
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Broecker, W. S., Bond, G. and Klas, M., A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography, 5 (1990), 469–77.CrossRefGoogle Scholar
Fasullo, J. T. and Trenberth, K. E., The annual cycle of the energy budget. Part II: meridional structures and poleward transports. J. Clim., 21 (2008), 2313–25.CrossRefGoogle Scholar
Johns, W. E., Baringer, M. O., Beal, L. M., et al., Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5 degrees north. J. Clim., 24 (2011), 2429–49.CrossRefGoogle Scholar
Gordon, A. L., Interocean exchange of thermohaline water. J. Geophys. Res. Oceans, 91 (1986), 5037–46.CrossRefGoogle Scholar
Bigg, G. R., The Oceans and Climate, 2nd ed. Cambridge: Cambridge University Press (2003).Google Scholar
Holzer, M. and Primeau, F. W., Improved constraints on transit time distributions from argon 39: a maximum entropy approach. J. Geophys. Res. Oceans, 115 (2010), C12021, doi:10.1029/2010JC006410.CrossRefGoogle Scholar
Smeed, D. A., McCarthy, G. D., Cunningham, S. A., et al., Observed decline of the Atlantic meridional overturning circulation 2004–2012. Ocean Sci., 10 (2014), 2938.CrossRefGoogle Scholar
Yashayaev, I., Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr., 73 (2007), 242–76.CrossRefGoogle Scholar
Open University Course Team, Ocean Circulation. Oxford: Pergamon (1989).Google Scholar
van Sebille, E., Barron, C. N., Biastoch, A., et al., Relating Agulhas leakage to the Agulhas Current retroflection. Ocean Sci., 5 (2009), 511–21.CrossRefGoogle Scholar
Rodrigues, R. R., Wimbush, M., Watts, D. R., et al., South Atlantic transports obtained from subsurface float and hydrographic data. J. Mar. Res., 68 (2010), 819–50.CrossRefGoogle Scholar
Wunsch, C. and Ferrari, R., Vertical mixing and the general circulation of the oceans. Ann. Rev. Fluid Mech., 36 (2004), 281314.CrossRefGoogle Scholar
Hemming, S. R., Heinrich Events: massive Late Pleistocene detritus layers of the North Atlantic and their global imprint. Rev. Geophys., 42 (2004), RG1005, doi:10.1029/2003RG000128.CrossRefGoogle Scholar
Bigg, G. R., Levine, R. C. and Green, C. L., Modelling abrupt glacial North Atlantic freshening: rates of change and their implications for Heinrich events. Glob. Planet. Change, 79 (2011), 176–92.CrossRefGoogle Scholar
McManus, J. F., Oppo, D. W. and Cullen, J. L., A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science, 283 (1999), 971–5.CrossRefGoogle ScholarPubMed
Ruddiman, W. F., Late Quaternary deposition of ice-rafted sand in the subpolar North Atlantic (lat 40° to 65°N). Geol. Soc. Amer. Bull., 88 (1977), 1813–27.2.0.CO;2>CrossRefGoogle Scholar
Heinrich, H., Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Res., 29 (1988), 142–52.CrossRefGoogle Scholar
MacAyeal, D. R., Binge/purge oscillations of the Laurentide ice-sheet as a cause of the North-Atlantic’s Heinrich events. Paleoceanography, 8 (1993), 775–84.CrossRefGoogle Scholar
Bond, G., Broecker, W., Johnsen, S., et al., Correlations between climate records from North-Atlantic sediments and Greenland ice. Nature, 365 (1993), 143–7.CrossRefGoogle Scholar
Bond, G., Showers, W., Cheseby, M., et al., A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial climates. Science, 278 (1997), 1257–66.CrossRefGoogle Scholar
Wunsch, C., Abrupt climate change: an alternative view. Quaternary Res., 65 (2006), 191203.CrossRefGoogle Scholar
Wang, Z. M. and Mysak, L. A., Glacial abrupt climate changes and Dansgaard-Oeschger oscillations in a coupled climate model. Paleoceanography, 21 (2006), PA2001, doi:10.1029/2005PA001238.CrossRefGoogle Scholar
Petersen, S. V., Schrag, D. P. and Clark, P. U., A new mechanism for Dansgaard-Oeschger cycles. Paleoceanography, 28 (2013), 2430.CrossRefGoogle Scholar
Hulbe, C. L., MacAyeal, D. R., Denton, G. H., et al., Catastrophic ice shelf breakup as a source of Heinrich event icebergs. Paleoceanography, 19 (2004), PA1004, doi: 10.1029/ 2003PA000890.CrossRefGoogle Scholar
Alvarez-Solas, J., Montoya, M., Ritz, C., et al., Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes. Clim. Past, 7 (2011), 1297–306.CrossRefGoogle Scholar
Alvarez-Solas, J., Robinson, A., Montoya, M. and Ritz, C., Iceberg discharges of the last glacial period driven by oceanic circulation changes. Proc. Nat. Acad. Sci. USA, 110 (2013), 16350–4.CrossRefGoogle ScholarPubMed
Gonzalez, C. and Dupont, L. A., Tropical salt marsh succession as sea-level indicator during Heinrich events. Quaternary Sci. Rev., 28 (2009), 939–46.CrossRefGoogle Scholar
Andrews, J. T., Abrupt changes (Heinrich events) in late Quaternary North Atlantic marine environments: a history and review of data and concepts. J. Quaternary Sci., 13 (1998), 316.3.0.CO;2-0>CrossRefGoogle Scholar
Böse, M., Lüthgens, C., Lee, J. R. and Rose, J., Quaternary glaciations of northern Europe. Quaternary Sci. Rev., 44 (2012), 125.CrossRefGoogle Scholar
Scourse, J. D., Hall, I. R., McCave, I. N., et al., The origin of Heinrich layers: evidence from H2 for European precursor events. Earth Planet. Sci. Lett., 182 (2000), 187–95.CrossRefGoogle Scholar
Scourse, J. D., Haapaniemi, A. L., O’Cofaigh, C., et al., Growth, dynamics and deglaciation of the last British-Irish Ice Sheet: the deep-sea ice-rafted detritus record. Quaternary Sci. Rev., 28 (2009), 3066–84.CrossRefGoogle Scholar
Peck, V. L., Hall, I. R., Zahn, R., et al., High resolution evidence for linkages between NW European ice sheet instability and Atlantic meridional overturning circulation. Earth Planet. Sci. Lett., 243 (2006), 476–81.CrossRefGoogle Scholar
Dowdeswell, J. A., Elvorhoi, A., Andrews, J. T. and Hebbeln, D., Asynchronous deposition of ice-rafted debris layers in the Nordic seas and North Atlantic Ocean. Nature, 400 (1999), 348–51.CrossRefGoogle Scholar
Darby, D. A. and Zimmerman, P., Ice-rafted detritus events in the Arctic during the last glacial interval, and the timing of the Innuitian and Laurentide ice sheet calving events. Polar Res., 27 (2008), 114–27.CrossRefGoogle Scholar
Paillard, D. and Labeyrie, L., Role of the thermohaline circulation in the abrupt warming after Heinrich events. Nature, 372 (1994), 162–4.CrossRefGoogle Scholar
Vidal, L., Labeyrie, L., Cortijo, E., et al., Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events. Earth Planet. Sci. Lett., 146 (1997), 1327.CrossRefGoogle Scholar
Lynch-Stieglitz, J., Schmidt, M. W., Henry, G. L., et al., Muted changes in Atlantic overturning circulation over some glacial-aged Heinrich events. Nature Geosci., 7 (2014), 144–50.CrossRefGoogle Scholar
Weinelt, M., Sarnthein, M., Pflaumann, U., et al., Ice-free Nordic seas during the last glacial maximum? Potential sites of deepwater formation. Palaeoclimates, 1 (1996), 283309.Google Scholar
Bigg, G. R., Levine, R. C., Clark, C. D., et al., Last Glacial ice-rafted debris off south-western Europe: the role of the British-Irish Ice Sheet. J. Quaternary Sci., 25 (2010), 689–99.CrossRefGoogle Scholar
Levine, R. C. and Bigg, G. R., The sensitivity of the glacial ocean to Heinrich events from different sources, as modelled by a coupled atmosphere-iceberg-ocean model. Paleoceanography, 23 (2008), PA4213, doi:10.1029/2008PA001613.CrossRefGoogle Scholar
Roche, D., Paillard, D. and Cortijo, E., Constraints on the duration and freshwater release of Heinrich event 4 through isotope modelling. Nature, 432 (2004), 379–82.CrossRefGoogle ScholarPubMed
Roberts, W. H. G., Valdes, P. J., Payne, A. J., et al., A new constraint on the size of Heinrich Events from an iceberg-sediment model. Earth Planet. Sci. Lett., 386 (2014), 19.CrossRefGoogle Scholar
Rohling, E. J. and Bigg, G. R., Paleo-salinity and δ18O: a critical assessment. J. Geophys. Res. Oceans, 103 (1998), 1307–18.CrossRefGoogle Scholar
Peltier, W. R., Global glacial isostasy and the surface of the ice-age earth: the ice-5 G (VM2) model and grace. Ann. Rev. Earth Planet. Sci., 32 (2004), 111–49.CrossRefGoogle Scholar
Standford, J. D., Rohling, E. J., Bacon, S., et al., A new concept for the paleoceanographic evolution of Heinrich event 1 in the North Atlantic. Quaternary Sci. Rev., 30 (2011), 1047–66.Google Scholar
Bigg, G. R., Levine, R. C., Clark, C. D., et al., Sensitivity of the North Atlantic circulation to break-up of the marine sectors of the NW European ice sheets during the last Glacial: a synthesis of modelling and palaeoceanography. Glob. Planet. Change, 98–9 (2012), 153–65.Google Scholar
Miller, K. G., Mountain, G. S., Wright, J. D. and Browning, J. V., A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records. Oceanography, 24 (2011), 4053.CrossRefGoogle Scholar
Murton, J. B., Bateman, M. D., Dallimore, S. R., et al., Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature, 464 (2010), 740–3.CrossRefGoogle ScholarPubMed
van Grafenstein, U., Erlenkeuser, H., Muller, J., et al., The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Clim. Dyn., 14 (1998), 7381.CrossRefGoogle Scholar
Tornqvist, T. E., Nevitt, J. M. and Kohl, B., Synchronizing a sea-level jump, final Lake Agassiz drainage, and abrupt cooling 8200 years ago. Earth Planet. Sci. Lett., 315 (2012), 4150.Google Scholar
Wiersma, P. A. and Jongma, J. I., A role for icebergs in the 8.2 ka climate event. Clim. Dyn., 35 (2010), 535–49.CrossRefGoogle Scholar
Bond, G., Kromer, B., Beer, J., et al., Persistent solar influence on north Atlantic climate during the Holocene. Science, 294 (2001), 2130–6.CrossRefGoogle ScholarPubMed
Giraudeau, J., Grelaud, M., Solignac, S., et al., Millennial-scale variability in the Atlantic water advection to the Nordic Seas derived from Holocene coccolith concentration records. Quaternary Sci. Rev., 29 (2010), 1276–87.CrossRefGoogle Scholar
Darby, D. A., Ortiz, J. D., Grosch, C. E. and Lund, S. P., 1,500-year cycle in the Arctic Oscillation identified in Holocene Arctic sea-ice drift. Nature Geosci., 5 (2012), 897900.CrossRefGoogle Scholar
Andrews, J. T., Bigg, G. R. and Wilton, D. J., Holocene ice-rafting and sediment transport from the glaciated margin of East Greenland (67–70°N) to the N Iceland shelves: detecting and modelling changing sediment sources. Quaternary Sci. Rev., 91 (2014), 204–17.CrossRefGoogle Scholar
Bauch, H. A., Erlenkeuser, H., Spielhagen, R. F., et al., Distribution and stable isotope record of foraminifera, and ice-rafted debris of sediment core PS1230-1 (fig. 5) (2001), doi:10.1594/PANGAEA.58455.CrossRefGoogle Scholar
Kanfoush, S. L., Hodell, D. A., Charles, C. D., et al., Millennial-scale instability of the Antarctic Ice Sheet during the last glaciation. Science, 288 (2000), 1815–8.CrossRefGoogle ScholarPubMed
Manoj, M. C., Thamban, M., Basavaiah, N. and Mohan, R., Evidence for climatic and oceanographic controls on terrigenous sediment supply to the Indian Ocean sector of the Southern ocean over the past 63,000 years. Geo-Mar. Lett., 32 (2012), 251–65.CrossRefGoogle Scholar
Carter, L., Neil, H. L. and Northcote, L., Quaternary ice-rafting events in the SW Pacific Ocean, off eastern New Zealand. Mar. Geol., 191 (2002), 1935.CrossRefGoogle Scholar
Hewitt, A. T., McDonald, D. and Bornhold, B. D., Ice-rafted debris in the North Pacific and correlation to North Atlantic climatic events. Geophys. Res. Lett., 24 (1997), 3261–4.CrossRefGoogle Scholar
Bigg, G. R., Clark, C. D. and Hughes, A. L. C., A last glacial ice sheet on the Pacific Russian coast and catastrophic change arising from coupled ice-volcanic interaction. Earth Planet. Sci. Lett., 265 (2008), 559–70.CrossRefGoogle Scholar
Brigham-Grette, J., New perspectives on Beringian Quaternary paleogeography, stratigraphy and glacial history. Quaternary Sci. Rev., 20 (2001), 1524.CrossRefGoogle Scholar
Reithdorf, J. R., Nürnberg, D., Max, L., et al., Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the last 180 kyr. Clim. Past, 9 (2013), 1345–73.Google Scholar
Kiefer, T., Sarnthein, M., Erlenkeuser, H., et al., North Pacific response to millennial-scale changes in ocean circulation over the last 60 kyr. Paleoceanography, 16 (2001), 179–89.CrossRefGoogle Scholar
McCarron, A., Simultaneous volcanism and basin-wide iceberg discharge from the Kamchatka Peninsula at 40 ka BP? A synthesis of marine sediment sampling, iceberg modelling and greyscale core image analysis. MSc. thesis (2014), University of Sheffield.Google Scholar
Nürnberg, D., Dethleff, D., Tiedemann, R., et al., Okhotsk Sea ice coverage and Kamchatka glaciations over the last 350 ka – evidence from ice-rafted debris and planktonic δ18O. Palaeogeogr., Palaeoclimatol., Palaeoecol., 310 (2011), 191205.CrossRefGoogle Scholar
Gorbarenko, S. A., Southon, J. R., Keigwin, L. D., et al., Late Pleistocene-Holocene oceanographic variability in the Okhotsk Sea: geochemical, lithological and paleontological evidence. Palaeogeogr., Palaeoclimatol., Palaeoecol., 209 (2004), 281301.CrossRefGoogle Scholar
Reimer, P. J., Bard, E., Bayliss, A., et al., INTCAL13 and marine 13 radiocarbon age calibration curves 0–50,000 years cal. BP. Radiocarbon, 55 (2013), 1869–87.CrossRefGoogle Scholar
Rohling, E. J., Marsh, R., Wells, N. C., et al., Similar meltwater contributions to glacial sea level changes from Antarctic and northern ice sheets. Nature, 430 (2004), 1016–21.CrossRefGoogle ScholarPubMed
Braitseva, O. A., Melekestev, I. V., Ponomareva, V. V., et al., Ages of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region, Russia. Bull. Volcanol., 57 (1995), 383402.Google Scholar
Ponomareva, V. V., Portnyagin, M. V., Kuvikas, O. V., et al., Tephrochronological research in KALMAR project and its implications to the temporal and compositional evolution of volcanism in Kamchatka. Terra Nostra, 2009/1 (2009), 62–3.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×