Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-23T16:49:12.805Z Has data issue: false hasContentIssue false

Part II - Icebergs and their impacts

Published online by Cambridge University Press:  05 December 2015

Grant R. Bigg
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Icebergs
Their Science and Links to Global Change
, pp. 125 - 236
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ruddiman, W. F., Late Quaternary deposition of ice-rafted sand in the subpolar North Atlantic (lat 40° to 65°N). Geol. Soc. Amer. Bull., 88 (1977), 1813–27.2.0.CO;2>CrossRefGoogle Scholar
Sellwood, B. W. and Valdes, P. J., Mesozoic climates. In Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies, ed. Williams, M., Haywood, A. M., Gregory, F. J. and Schmidt, D. N.. Bath: Geological Society Publishing House (2007), pp. 201–24.Google Scholar
Eyles, N., Earth’s glacial record and its tectonic setting. Earth-Sci. Rev., 35 (1993), 124.CrossRefGoogle Scholar
Kirchvink, J. L., Late Proterozoic low-latitude glaciation: the snowball Earth. In The Proterozoic Biosphere, ed. Schopf, J. W. and Klein, C.. Cambridge: Cambridge University Press (1992), pp. 51–2.Google Scholar
Busfield, M. E. and Le Heron, D. P., Sequencing the Sturtian icehouse: dynamic ice behaviour in South Australia. J. Geol. Soc., 171 (2014), 443–56.CrossRefGoogle Scholar
Le Heron, D. P., Busfield, M. E. and Kamona, F., An interglacial on snowball Earth? Dynamic ice behaviour revealed in the Chuos Formation, Namibia. Sedimentol., 60 (2013), 411–27.CrossRefGoogle Scholar
Le Heron, D. P., Busfield, M. E. and Prave, A. R., Neoproterozoic ice sheets and olistoliths: multiple glacial cycles in the Kingston Peak Formation, California. J. Geol. Soc., 171 (2014), 525–38.CrossRefGoogle Scholar
Arnaud, E., Halverson, G. P. and Shields-Zhou, G., The Chiquerio Formation, southern Peru. Geol. Soc. Memoirs, 36 (2011), 481–6.Google Scholar
Dobrzinski, N. and Bahlburg, H., Sedimentology and environmental significance of the Cryogenian successions of the Yangtze Platform, South China block. Palaeogeogr., Palaeoclimatol., Palaeoecol., 254 (2007), 100–22.CrossRefGoogle Scholar
Scotese, C. R., Atlas of Earth History, Volume 1, Paleogeography. Arlington, TX: PALEOMAP Project (2001), 52 pp.Google Scholar
Eyles, C. H., Eyles, N. and Grey, K., Palaeoclimate implications from deep drilling of Neoproterozoic strata in the Officer Basin and Adelaide Rift Complex of Australia; a marine record of wet-based glaciers. Palaeogeogr., Palaeoclimatol., Palaeoecol., 248 (2007), 291312.CrossRefGoogle Scholar
Prave, A. R., Fallick, A. E., Thomas, C. W. and Graham, C. W., A composite C-isotope profile for the Neoproterozoic Dalradian Supergroup of Scotland and Ireland. J. Geol. Soc., 166 (2009), 845–57.CrossRefGoogle Scholar
McMechan, M. E., Vreeland diamictites – Neoproterozoic glaciogenic slope deposits, Rocky Mountains, northeast British Columbia. Bull. Canad. Petrol. Geol., 48 (2000), 246–61.Google Scholar
Williams, G. E., Goston, V. A., McKirdy, D. A. and Preiss, W. V., The elatina glaciations, late Cryogenian (Mainoan Epoch), South Australia: sedimentary facies and palaeoenvironments. Precambrian Res., 163 (2008), 307–31.CrossRefGoogle Scholar
Carto, S. L. and Eyles, N., Sedimentology of the Neoproterozoic (c 580 Ma) Squantum ‘Tillite’, Boston Basin, USA: mass flow deposition in a deep-water arc basin lacking direct glacial influence. Sed. Geol., 269 (2012), 114.Google Scholar
Le Heron, D. P., Meinhold, G., Page, A. and Whitham, A., Did lingering ice sheets moderate anoxia in the Early Palaeozoic of Libya? J. Geol. Soc., 170 (2013), 327–39.CrossRefGoogle Scholar
Schatz, E. R., Mangano, M. G., Buatois, L. A. and Limarino, C. O., Life in the Late Palaeozoic Ice Age: trace fossils from glacially influenced deposits in a Late Carboniferous fjord of western Argentina. J. Paleontol., 85 (2011), 502–18.CrossRefGoogle Scholar
Rygel, M. C., Fielding, C. R., Bann, K. L., et al., The Lower Permian Wasp Head Formation, Sydney Basin: high-latitude, shallow marine sedimentation following the late Asselian to early Sakmarian glacial event in eastern Australia. Sedimentology, 55 (2008), 1517–40.CrossRefGoogle Scholar
Rogala, B., James, N. P. and Reid, C. M., Deposition of polar carbonates during interglacial highstands on an early Permian shelf, Tasmania. J. Sediment. Res., 77 (2007), 587606.CrossRefGoogle Scholar
James, N. P., Frank, T. D. and Fielding, C. R., Carbonate sedimentation in a Permian high-latitude, subpolar depositional realm: Queensland, Australia. J. Sediment. Res., 79 (2009), 125–43.CrossRefGoogle Scholar
Lopez-Gamundi, O. R. and Buatois, L. A., Transgressions related to the demise of the Late Paleozoic Ice Age: their sequence stratigraphic context. Geol. Soc. Amer. Spec. Pap., 468 (2010), 135.Google Scholar
Eyles, N., Eyles, C. H. and Gostin, V. A., Iceberg rafting and scouring in the Early Permian Shoalhaven Group of New South Wales, Australia: evidence of Heinrich-like events. Palaeogeogr. Palaeoclimatol., Palaeoecol., 136 (1997), 117.CrossRefGoogle Scholar
Lo, C. H., Chung, S. L., Lee, T. Y., et al., Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events. Earth Planet. Sci. Lett., 198 (2002), 449–58.Google Scholar
Pearson, P. N. and Palmer, M. R., Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406 (2000), 695–9.CrossRefGoogle ScholarPubMed
Kennett, J. P., Cenozoic evolution of Antarctic glaciations, circum-Antarctic ocean, and their impact on global paleoceanography. J. Geophys. Res. – Oceans Atmos., 82 (1977), 3843–60.CrossRefGoogle Scholar
De Conto, R. M. and Pollard, D., Rapid Cenozoic glaciations of Antarctica induced by declining atmospheric CO2. Nature, 421 (2003), 245–9.Google ScholarPubMed
Schar, H. D., Bohaty, S. M., Zachos, J. C. and Delaney, M. L., Two-stepping into the icehouse: East Antarctic weathering during progressive ice-sheet expansion at the Eocene-Oligocene transition. Geology, 39 (2011), 383–6.Google Scholar
Williams, T., van de Flierdt, T., Hemming, S. R., et al., Evidence for iceberg armadas from East Antarctica in the Southern Ocean during the late Miocene and early Pliocene. Earth Planet. Sci. Lett., 290 (2010), 351–61.CrossRefGoogle Scholar
Passchier, S., Linkages between East Antarctic Ice Sheet extent and Southern Ocean temperatures based on a Pliocene high-resolution record of ice-rafted debris off Prydz Bay, East Antarctica. Paleoceanography, 26 (2011), PA4204, doi:10.1029/2010PA002061.CrossRefGoogle Scholar
Warnke, D. A., Marzo, B. and Hodell, D. A., Major deglaciation of east Antarctica during the early Late Pliocene? Not likely from a marine perspective. Mar. Micropaleon., 27 (1996), 237–51.CrossRefGoogle Scholar
Pudsey, C. J., Neogene record of Antarctic Peninsula glaciations in continental rise sediments: ODP Leg 178, Site 1095. In: Proc. ODP, Sci. Res., ed. Barker, P. F., Camerlenghi, A., Acton, G. D. and Ramsay, A. T. S., 178 (2001). College Station, Texas: ODP, 125.Google Scholar
Hillenbrand, C. D., Camerlenghi, A., Cowan, E. A., et al., The present and past bottom-current flow regime around the sediment drifts on the continental rise west of the Antarctic Peninsula. Mar. Geol., 255 (2008), 5563.CrossRefGoogle Scholar
De Schepper, S., Gibbard, P. L., Salzmann, U. and Ehlers, J., A global synthesis of the marine and terrestrial evidence for glaciation during the Pliocene Epoch. Earth-Sci. Rev., 135 (2014), 83102.CrossRefGoogle Scholar
Bartoli, G., Honisch, B. and Zeebe, R. E., Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations. Paleoceanography, 26 (2011), PA4213, doi:10.1029/2010PA002055.CrossRefGoogle Scholar
DeConto, R. M., Pollard, D., Wilson, P. A., et al., Thresholds for Cenozoic bipolar glaciation. Nature, 455 (2008), 652–6.CrossRefGoogle ScholarPubMed
Herbert, T. D., A long marine record of carbon cycle modulation by orbital-climatic changes. Proc. Nat. Acad. Sci. USA, 94 (1997), 8362–9.CrossRefGoogle ScholarPubMed
Berger, A., Milankovitch theory and climate. Rev. Geophys., 26 (1988), 624–57.CrossRefGoogle Scholar
Rohling, E. J. and Bigg, G. R., Paleo-salinity and δ18O: a critical assessment. J. Geophys. Res. Oceans, 103 (1998), 1307–18.CrossRefGoogle Scholar
Lisiecki, L. E. and Raymo, M. E., A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20 (2005), PA1003, doi:10.1029/2004PA001071.Google Scholar
Miller, G. H., Brigham-Grette, J., Alley, R. B., et al., Temperature and precipitation history of the Arctic. Quater. Sci. Rev., 29 (2010), 1679–715.CrossRefGoogle Scholar
Bigg, G. R., The Oceans and Climate, 2nd ed. Cambridge: Cambridge University Press (2003).Google Scholar
Lunt, D. J., Valdes, P. J., Haywood, A., et al., Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation. Clim. Dyn., 30 (2008), 118.CrossRefGoogle Scholar
Kleiven, H. F., Jansen, E., Fronval, T., et al., Intensification of Northern hemisphere glaciations in the circum-Arctic (3.5–2.4 Ma): ice-rafted detritus evidence. Palaeogeogr., Palaeoclim., Palaeoecol., 184 (2002), 213–23.Google Scholar
Bailey, I., Hole, G. M., Foster, G. L., et al., An alternative suggestion for the Pliocene onset of major northern hemisphere glaciations based on the geochemical provenance of North Atlantic Ocean ice-rafted debris. Quater. Sci. Rev., 75 (2013), 181–94.CrossRefGoogle Scholar
Darby, D. A., Ephemeral formation of perennial sea ice in the Arctic Ocean during the Middle Eocene. Nature Geosci., 7 (2014), 210–3.CrossRefGoogle Scholar
Moran, K., Backman, J., Brinkhuis, H., et al., The Cenozoic palaeoenvironment of the Arctic Ocean. Nature, 441 (2006), 601–5.CrossRefGoogle ScholarPubMed
Prueher, L. M. and Rea, D. K., Volcanic triggering of late Pliocene glaciations: evidence from the flux of volcanic glass and ice-rafted debris to the North Pacific Ocean. Palaeogeogr., Palaeoclim., Palaeoecol., 173 (2001), 215–30.CrossRefGoogle Scholar
Bailey, I., Liu, Q., Swann, G. E. A., et al., Iron fertilisation and biogeochemical cycles in the sub-Arctic northwest Pacific during the late Pliocene intensification of northern hemisphere glaciation. Earth Planet. Sci. Lett., 307 (2011), 253–65.CrossRefGoogle Scholar
St. John, K. E. K. and Krissek, L. A., Regional patterns of Pleistocene ice-rafted debris flux in the North Pacific. Paleoceanography, 14 (1999), 653–62.Google Scholar
Miller, K. G., Mountain, G. S., Wright, J. D. and Browning, J. V., A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records. Oceanography, 24 (2011), 4053.CrossRefGoogle Scholar
Ehrmann, W. E., Grobe, H. and Fütterer, D. K., Late Miocene to Holocene glacial history of East Antarctica revealed by sediments from sites 745 and 746. In: Proc. Ocean Drill. Prog., Sci. Res., ed. Barron, J., Larsen, B., Baldauf, J. G., et al. 119 (1991), pp. 239–60.CrossRefGoogle Scholar
Krissek, L. A., Late Cenozoic ice-rafting records from Leg 145 sites in the North Pacific: Late Miocene onset, Late Pliocene intensification, and Pliocene-Pleistocene events. In: Proc. Ocean Drill. Prog., Sci. Res., ed. Rea, D. K., Basov, I. A., Schull, D. W. and Allan, J. F., 145 (1995), 179–94.CrossRefGoogle Scholar
Wolf, T. C. W. and Thiede, J., History of terrigenous sedimentation during the past 10 m.y. in the North Atlantic (ODP Legs 104 and 105 and DSDP Leg 81). Mar. Geol., 101 (1991), 83102.CrossRefGoogle Scholar
O’Connell, S., Wolf-Welling, T. C. W., Cremer, M. and Stein, R., Neogene paleoceanography and paleoclimate history from Fram Strait: changes in accumulation rates. In: Proc. Ocean Drill. Prog., Sci. Res., ed. Thiede, J., Myhre, A. M., Firth, J. V., et al. 151 (1996), 569–82.CrossRefGoogle Scholar
St. John, K., Cenozoic ice-rafting history of the central Arctic: terrigenous sands on the Lomonosov Ridge. Paleoceanography, 23 (2008), PA1S05, doi:10.1029/2007PA001483.Google Scholar
Bigg, G. R., Clark, C. D. and Hughes, A. L. C., A last glacial ice sheet on the Pacific Russian coast and catastrophic change arising from coupled ice-volcanic interaction. Earth Planet. Sci. Lett., 265 (2008), 559–70.CrossRefGoogle Scholar
Barr, I. D. and Clark, C. D., Late Quaternary glaciations in far NE Russia: combining moraines, topography and chronology to assess regional and global glaciations synchrony. Quaternary. Sci. Rev., 53 (2012), 7287.CrossRefGoogle Scholar
Niessen, F. Hong, J. K., Hegewald, A., et al., Repeated Pleistocene glaciations of the East Siberian continental margin. Nature Geosci., 6 (2013), 842–6.CrossRefGoogle Scholar
Dove, D., Polyak, L. and Coakley, B., Widespread multi-source glacial erosion on the Chukchi Margin, Arctic Ocean. Quaternary Sci. Rev., 92 (2014), 112–22.CrossRefGoogle Scholar
Gebhardt, A. C., Jokat, W., Niessen, F., et al., Ice sheet grounding and iceberg plow marks on the northern and central Yermak Plateau revealed by geophysical data. Quaternary Sci. Rev., 30 (2011), 1726–38.CrossRefGoogle Scholar
McManus, J. F., Oppo, D. W. and Cullen, J. L., A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science, 283 (1999), 971–5.CrossRefGoogle ScholarPubMed
Svendsen, J. I., Alexanderson, H., Astakhov, V. I., et al., Late Quaternary ice sheet history of northern Eurasia. Quaternary Sci. Rev., 23 (2004), 1229–71.CrossRefGoogle Scholar
Jakobsson, M., Andreassen, K., Bjarnadóttir, L. R., et al., Arctic Ocean glacial history. Quaternary Sci. Rev., 92 (2014), 4067.CrossRefGoogle Scholar
Knies, J., Nowacyzk, N., Muller, C., et al., A multiproxy approach to reconstruct the environmental changes along the Eurasian continental margin over the last 150 000 years. Mar. Geol., 163 (2000), 317–44.CrossRefGoogle Scholar
Green, C. L., Bigg, G. R. and Green, J. A. M., Deep draft icebergs from the Barents Ice Sheet during MIS 6 are consistent with erosional evidence from the Lomonosov Ridge, central Arctic. Geophys. Res. Lett., 37 (2010), L23606, doi:10.1029/2010GL045299.CrossRefGoogle Scholar
Bauch, A. A., Interglacial climates and the Atlantic meridional overturning circulation: is there an Arctic controversy? Quaternary Sci. Rev., 63 (2013), 122.CrossRefGoogle Scholar
Hibbert, F. D., Austin, W. E. N., Leng, M. J. and Gatliff, R. W., British Ice Sheet dynamics inferred from North Atlantic ice-rafted debris records spanning the last 175 000 years. J. Quaternary Sci., 25 (2010), 461–82.CrossRefGoogle Scholar
Nürnberg, D., Dethleff, D., Tiedemann, R., et al., Okhotsk Sea ice coverage and Kamchatka glaciation over the last 350 ka – evidence from ice-rafted debris and planktonic δ18O. Palaeogeogr., Palaeoclim., Palaeoecol., 310 (2011), 191205.CrossRefGoogle Scholar
Carter, L., Neil, H. L. and Northcote, L., Quaternary ice-rafting events in the SW Pacific Ocean, off eastern New Zealand. Mar. Geol., 191 (2002), 1935.CrossRefGoogle Scholar
Hillenbrand, C.-D., Kuhn, G. and Frederichs, T., Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: an indicator for ice-sheet collapse? Quaternary Sci. Rev., 28 (2009), 1147–59.CrossRefGoogle Scholar
Cuffey, K. M. and Marshall, S. J., Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature, 404 (2000), 591–4.CrossRefGoogle ScholarPubMed
Blumier, T. and Brook, E. J., Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science, 291 (2001), 109–12.Google Scholar
Bond, G., Broecker, W., Johnsen, S., et al., Correlations between climate records from North-Atlantic sediments and Greenland ice. Nature, 365 (1993), 143–7.CrossRefGoogle Scholar
Reimer, P. J., Baillie, M. G. L., Bard, E., et al., INTCAL09 and MARINE09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon, 51 (2009), 1111–50.CrossRefGoogle Scholar
Peltier, W. R., Global glacial isostasy and the surface of the ice-age earth: the ice-5G (VM2) model and grace. Ann. Rev. Earth Planet. Sci., 32 (2004), 111–49.CrossRefGoogle Scholar
Hemming, S. R., Heinrich events: massive Late Pleistocene detritus layers of the North Atlantic and their global imprint. Rev. Geophys., 42 (2004), RG1005, doi:10.1029/2003RG000128.CrossRefGoogle Scholar
Heinrich, H., Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Res., 29 (1988), 142–52.CrossRefGoogle Scholar
Gwiazda, R. H., Hemming, S. R. and Broecker, W. S., Provenance of icebergs during Heinrich event 3 and the contrast to their sources during other Heinrich episodes. Paleoceanography, 11 (1996), 371–8.CrossRefGoogle Scholar
Darby, D. A., Bischof, J. F., Spielhagen, R. F., et al., Arctic ice export events and their potential impact on global climate during the late Pleistocene. Paleoceanography, 17 (2002), 1025, doi:10.1029/2001PA000639.CrossRefGoogle Scholar
Bigg, G. R., Levine, R. C. and Green, C. L., Modelling abrupt glacial North Atlantic freshening: rates of change and their implications for Heinrich events. Glob. Planet. Change, 79 (2011), 176–92.CrossRefGoogle Scholar
Hewitt, A. T., McDonald, D. and Bornhold, B. D., Ice-rafted debris in the North Pacific and correlation to North Atlantic climatic events. Geophys. Res. Lett., 24 (1997), 3261–4.CrossRefGoogle Scholar
Kiefer, T., Sarnthein, M., Erlenkauser, H., et al., North Pacific response to millennial-scale changes in ocean circulation over the last 60 kyr. Paleoceanography, 16 (2001), 179–89.CrossRefGoogle Scholar
Riethdorf, J.-R., Nürnberg, D., Max, L., et al., Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr. Clim. Past, 9 (2013), 1345–73.CrossRefGoogle Scholar
Kanfoush, S. L., Hodell, D. A., Charles, C. D., et al., Millennial-scale instability of the Antarctic Ice Sheet during the last glaciation. Science, 288 (2000), 1815–8.CrossRefGoogle ScholarPubMed
Manoj, M. C., Thamban, M., Basavaiah, N. and Mohan, R., Evidence for climatic and oceanographic controls on terrigenous sediment supply to the Indian Ocean sector of the Southern ocean over the past 63,000 years. Geo-Mar. Lett., 32 (2012), 251–65.CrossRefGoogle Scholar
Nielsen, S. H. H., Hodell, D. A., Kamenov, G., et al., Origin and significance of ice-rafted detritus in the Atlantic sector of the Southern Ocean. Geochem. Geophys. Geosystems, 8 (2007), Q12005, doi:10.1029/2007GC001618.CrossRefGoogle Scholar
Murton, J. B., Bateman, M. D., Dallimore, S. R., et al., Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature, 464 (2010), 740–3.CrossRefGoogle ScholarPubMed
Bond, G., Showers, W., Cheseby, M., et al., A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial climates. Science, 278 (1997), 1257–66.CrossRefGoogle Scholar
Andrews, J. T., Bigg, G. R. and Wilton, D. J., Holocene ice-rafting and sediment transport from the glaciated margin of East Greenland (67-70°N) to the N Iceland shelves: detecting and modelling changing sediment sources. Quaternary Sci. Rev., 91 (2014), 204–17.CrossRefGoogle Scholar

References

Broecker, W. S., Bond, G. and Klas, M., A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography, 5 (1990), 469–77.CrossRefGoogle Scholar
Fasullo, J. T. and Trenberth, K. E., The annual cycle of the energy budget. Part II: meridional structures and poleward transports. J. Clim., 21 (2008), 2313–25.CrossRefGoogle Scholar
Johns, W. E., Baringer, M. O., Beal, L. M., et al., Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5 degrees north. J. Clim., 24 (2011), 2429–49.CrossRefGoogle Scholar
Gordon, A. L., Interocean exchange of thermohaline water. J. Geophys. Res. Oceans, 91 (1986), 5037–46.CrossRefGoogle Scholar
Bigg, G. R., The Oceans and Climate, 2nd ed. Cambridge: Cambridge University Press (2003).Google Scholar
Holzer, M. and Primeau, F. W., Improved constraints on transit time distributions from argon 39: a maximum entropy approach. J. Geophys. Res. Oceans, 115 (2010), C12021, doi:10.1029/2010JC006410.CrossRefGoogle Scholar
Smeed, D. A., McCarthy, G. D., Cunningham, S. A., et al., Observed decline of the Atlantic meridional overturning circulation 2004–2012. Ocean Sci., 10 (2014), 2938.CrossRefGoogle Scholar
Yashayaev, I., Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr., 73 (2007), 242–76.CrossRefGoogle Scholar
Open University Course Team, Ocean Circulation. Oxford: Pergamon (1989).Google Scholar
van Sebille, E., Barron, C. N., Biastoch, A., et al., Relating Agulhas leakage to the Agulhas Current retroflection. Ocean Sci., 5 (2009), 511–21.CrossRefGoogle Scholar
Rodrigues, R. R., Wimbush, M., Watts, D. R., et al., South Atlantic transports obtained from subsurface float and hydrographic data. J. Mar. Res., 68 (2010), 819–50.CrossRefGoogle Scholar
Wunsch, C. and Ferrari, R., Vertical mixing and the general circulation of the oceans. Ann. Rev. Fluid Mech., 36 (2004), 281314.CrossRefGoogle Scholar
Hemming, S. R., Heinrich Events: massive Late Pleistocene detritus layers of the North Atlantic and their global imprint. Rev. Geophys., 42 (2004), RG1005, doi:10.1029/2003RG000128.CrossRefGoogle Scholar
Bigg, G. R., Levine, R. C. and Green, C. L., Modelling abrupt glacial North Atlantic freshening: rates of change and their implications for Heinrich events. Glob. Planet. Change, 79 (2011), 176–92.CrossRefGoogle Scholar
McManus, J. F., Oppo, D. W. and Cullen, J. L., A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science, 283 (1999), 971–5.CrossRefGoogle ScholarPubMed
Ruddiman, W. F., Late Quaternary deposition of ice-rafted sand in the subpolar North Atlantic (lat 40° to 65°N). Geol. Soc. Amer. Bull., 88 (1977), 1813–27.2.0.CO;2>CrossRefGoogle Scholar
Heinrich, H., Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Res., 29 (1988), 142–52.CrossRefGoogle Scholar
MacAyeal, D. R., Binge/purge oscillations of the Laurentide ice-sheet as a cause of the North-Atlantic’s Heinrich events. Paleoceanography, 8 (1993), 775–84.CrossRefGoogle Scholar
Bond, G., Broecker, W., Johnsen, S., et al., Correlations between climate records from North-Atlantic sediments and Greenland ice. Nature, 365 (1993), 143–7.CrossRefGoogle Scholar
Bond, G., Showers, W., Cheseby, M., et al., A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial climates. Science, 278 (1997), 1257–66.CrossRefGoogle Scholar
Wunsch, C., Abrupt climate change: an alternative view. Quaternary Res., 65 (2006), 191203.CrossRefGoogle Scholar
Wang, Z. M. and Mysak, L. A., Glacial abrupt climate changes and Dansgaard-Oeschger oscillations in a coupled climate model. Paleoceanography, 21 (2006), PA2001, doi:10.1029/2005PA001238.CrossRefGoogle Scholar
Petersen, S. V., Schrag, D. P. and Clark, P. U., A new mechanism for Dansgaard-Oeschger cycles. Paleoceanography, 28 (2013), 2430.CrossRefGoogle Scholar
Hulbe, C. L., MacAyeal, D. R., Denton, G. H., et al., Catastrophic ice shelf breakup as a source of Heinrich event icebergs. Paleoceanography, 19 (2004), PA1004, doi: 10.1029/ 2003PA000890.CrossRefGoogle Scholar
Alvarez-Solas, J., Montoya, M., Ritz, C., et al., Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes. Clim. Past, 7 (2011), 1297–306.CrossRefGoogle Scholar
Alvarez-Solas, J., Robinson, A., Montoya, M. and Ritz, C., Iceberg discharges of the last glacial period driven by oceanic circulation changes. Proc. Nat. Acad. Sci. USA, 110 (2013), 16350–4.CrossRefGoogle ScholarPubMed
Gonzalez, C. and Dupont, L. A., Tropical salt marsh succession as sea-level indicator during Heinrich events. Quaternary Sci. Rev., 28 (2009), 939–46.CrossRefGoogle Scholar
Andrews, J. T., Abrupt changes (Heinrich events) in late Quaternary North Atlantic marine environments: a history and review of data and concepts. J. Quaternary Sci., 13 (1998), 316.3.0.CO;2-0>CrossRefGoogle Scholar
Böse, M., Lüthgens, C., Lee, J. R. and Rose, J., Quaternary glaciations of northern Europe. Quaternary Sci. Rev., 44 (2012), 125.CrossRefGoogle Scholar
Scourse, J. D., Hall, I. R., McCave, I. N., et al., The origin of Heinrich layers: evidence from H2 for European precursor events. Earth Planet. Sci. Lett., 182 (2000), 187–95.CrossRefGoogle Scholar
Scourse, J. D., Haapaniemi, A. L., O’Cofaigh, C., et al., Growth, dynamics and deglaciation of the last British-Irish Ice Sheet: the deep-sea ice-rafted detritus record. Quaternary Sci. Rev., 28 (2009), 3066–84.CrossRefGoogle Scholar
Peck, V. L., Hall, I. R., Zahn, R., et al., High resolution evidence for linkages between NW European ice sheet instability and Atlantic meridional overturning circulation. Earth Planet. Sci. Lett., 243 (2006), 476–81.CrossRefGoogle Scholar
Dowdeswell, J. A., Elvorhoi, A., Andrews, J. T. and Hebbeln, D., Asynchronous deposition of ice-rafted debris layers in the Nordic seas and North Atlantic Ocean. Nature, 400 (1999), 348–51.CrossRefGoogle Scholar
Darby, D. A. and Zimmerman, P., Ice-rafted detritus events in the Arctic during the last glacial interval, and the timing of the Innuitian and Laurentide ice sheet calving events. Polar Res., 27 (2008), 114–27.CrossRefGoogle Scholar
Paillard, D. and Labeyrie, L., Role of the thermohaline circulation in the abrupt warming after Heinrich events. Nature, 372 (1994), 162–4.CrossRefGoogle Scholar
Vidal, L., Labeyrie, L., Cortijo, E., et al., Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events. Earth Planet. Sci. Lett., 146 (1997), 1327.CrossRefGoogle Scholar
Lynch-Stieglitz, J., Schmidt, M. W., Henry, G. L., et al., Muted changes in Atlantic overturning circulation over some glacial-aged Heinrich events. Nature Geosci., 7 (2014), 144–50.CrossRefGoogle Scholar
Weinelt, M., Sarnthein, M., Pflaumann, U., et al., Ice-free Nordic seas during the last glacial maximum? Potential sites of deepwater formation. Palaeoclimates, 1 (1996), 283309.Google Scholar
Bigg, G. R., Levine, R. C., Clark, C. D., et al., Last Glacial ice-rafted debris off south-western Europe: the role of the British-Irish Ice Sheet. J. Quaternary Sci., 25 (2010), 689–99.CrossRefGoogle Scholar
Levine, R. C. and Bigg, G. R., The sensitivity of the glacial ocean to Heinrich events from different sources, as modelled by a coupled atmosphere-iceberg-ocean model. Paleoceanography, 23 (2008), PA4213, doi:10.1029/2008PA001613.CrossRefGoogle Scholar
Roche, D., Paillard, D. and Cortijo, E., Constraints on the duration and freshwater release of Heinrich event 4 through isotope modelling. Nature, 432 (2004), 379–82.CrossRefGoogle ScholarPubMed
Roberts, W. H. G., Valdes, P. J., Payne, A. J., et al., A new constraint on the size of Heinrich Events from an iceberg-sediment model. Earth Planet. Sci. Lett., 386 (2014), 19.CrossRefGoogle Scholar
Rohling, E. J. and Bigg, G. R., Paleo-salinity and δ18O: a critical assessment. J. Geophys. Res. Oceans, 103 (1998), 1307–18.CrossRefGoogle Scholar
Peltier, W. R., Global glacial isostasy and the surface of the ice-age earth: the ice-5 G (VM2) model and grace. Ann. Rev. Earth Planet. Sci., 32 (2004), 111–49.CrossRefGoogle Scholar
Standford, J. D., Rohling, E. J., Bacon, S., et al., A new concept for the paleoceanographic evolution of Heinrich event 1 in the North Atlantic. Quaternary Sci. Rev., 30 (2011), 1047–66.Google Scholar
Bigg, G. R., Levine, R. C., Clark, C. D., et al., Sensitivity of the North Atlantic circulation to break-up of the marine sectors of the NW European ice sheets during the last Glacial: a synthesis of modelling and palaeoceanography. Glob. Planet. Change, 98–9 (2012), 153–65.Google Scholar
Miller, K. G., Mountain, G. S., Wright, J. D. and Browning, J. V., A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records. Oceanography, 24 (2011), 4053.CrossRefGoogle Scholar
Murton, J. B., Bateman, M. D., Dallimore, S. R., et al., Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature, 464 (2010), 740–3.CrossRefGoogle ScholarPubMed
van Grafenstein, U., Erlenkeuser, H., Muller, J., et al., The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Clim. Dyn., 14 (1998), 7381.CrossRefGoogle Scholar
Tornqvist, T. E., Nevitt, J. M. and Kohl, B., Synchronizing a sea-level jump, final Lake Agassiz drainage, and abrupt cooling 8200 years ago. Earth Planet. Sci. Lett., 315 (2012), 4150.Google Scholar
Wiersma, P. A. and Jongma, J. I., A role for icebergs in the 8.2 ka climate event. Clim. Dyn., 35 (2010), 535–49.CrossRefGoogle Scholar
Bond, G., Kromer, B., Beer, J., et al., Persistent solar influence on north Atlantic climate during the Holocene. Science, 294 (2001), 2130–6.CrossRefGoogle ScholarPubMed
Giraudeau, J., Grelaud, M., Solignac, S., et al., Millennial-scale variability in the Atlantic water advection to the Nordic Seas derived from Holocene coccolith concentration records. Quaternary Sci. Rev., 29 (2010), 1276–87.CrossRefGoogle Scholar
Darby, D. A., Ortiz, J. D., Grosch, C. E. and Lund, S. P., 1,500-year cycle in the Arctic Oscillation identified in Holocene Arctic sea-ice drift. Nature Geosci., 5 (2012), 897900.CrossRefGoogle Scholar
Andrews, J. T., Bigg, G. R. and Wilton, D. J., Holocene ice-rafting and sediment transport from the glaciated margin of East Greenland (67–70°N) to the N Iceland shelves: detecting and modelling changing sediment sources. Quaternary Sci. Rev., 91 (2014), 204–17.CrossRefGoogle Scholar
Bauch, H. A., Erlenkeuser, H., Spielhagen, R. F., et al., Distribution and stable isotope record of foraminifera, and ice-rafted debris of sediment core PS1230-1 (fig. 5) (2001), doi:10.1594/PANGAEA.58455.CrossRefGoogle Scholar
Kanfoush, S. L., Hodell, D. A., Charles, C. D., et al., Millennial-scale instability of the Antarctic Ice Sheet during the last glaciation. Science, 288 (2000), 1815–8.CrossRefGoogle ScholarPubMed
Manoj, M. C., Thamban, M., Basavaiah, N. and Mohan, R., Evidence for climatic and oceanographic controls on terrigenous sediment supply to the Indian Ocean sector of the Southern ocean over the past 63,000 years. Geo-Mar. Lett., 32 (2012), 251–65.CrossRefGoogle Scholar
Carter, L., Neil, H. L. and Northcote, L., Quaternary ice-rafting events in the SW Pacific Ocean, off eastern New Zealand. Mar. Geol., 191 (2002), 1935.CrossRefGoogle Scholar
Hewitt, A. T., McDonald, D. and Bornhold, B. D., Ice-rafted debris in the North Pacific and correlation to North Atlantic climatic events. Geophys. Res. Lett., 24 (1997), 3261–4.CrossRefGoogle Scholar
Bigg, G. R., Clark, C. D. and Hughes, A. L. C., A last glacial ice sheet on the Pacific Russian coast and catastrophic change arising from coupled ice-volcanic interaction. Earth Planet. Sci. Lett., 265 (2008), 559–70.CrossRefGoogle Scholar
Brigham-Grette, J., New perspectives on Beringian Quaternary paleogeography, stratigraphy and glacial history. Quaternary Sci. Rev., 20 (2001), 1524.CrossRefGoogle Scholar
Reithdorf, J. R., Nürnberg, D., Max, L., et al., Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the last 180 kyr. Clim. Past, 9 (2013), 1345–73.Google Scholar
Kiefer, T., Sarnthein, M., Erlenkeuser, H., et al., North Pacific response to millennial-scale changes in ocean circulation over the last 60 kyr. Paleoceanography, 16 (2001), 179–89.CrossRefGoogle Scholar
McCarron, A., Simultaneous volcanism and basin-wide iceberg discharge from the Kamchatka Peninsula at 40 ka BP? A synthesis of marine sediment sampling, iceberg modelling and greyscale core image analysis. MSc. thesis (2014), University of Sheffield.Google Scholar
Nürnberg, D., Dethleff, D., Tiedemann, R., et al., Okhotsk Sea ice coverage and Kamchatka glaciations over the last 350 ka – evidence from ice-rafted debris and planktonic δ18O. Palaeogeogr., Palaeoclimatol., Palaeoecol., 310 (2011), 191205.CrossRefGoogle Scholar
Gorbarenko, S. A., Southon, J. R., Keigwin, L. D., et al., Late Pleistocene-Holocene oceanographic variability in the Okhotsk Sea: geochemical, lithological and paleontological evidence. Palaeogeogr., Palaeoclimatol., Palaeoecol., 209 (2004), 281301.CrossRefGoogle Scholar
Reimer, P. J., Bard, E., Bayliss, A., et al., INTCAL13 and marine 13 radiocarbon age calibration curves 0–50,000 years cal. BP. Radiocarbon, 55 (2013), 1869–87.CrossRefGoogle Scholar
Rohling, E. J., Marsh, R., Wells, N. C., et al., Similar meltwater contributions to glacial sea level changes from Antarctic and northern ice sheets. Nature, 430 (2004), 1016–21.CrossRefGoogle ScholarPubMed
Braitseva, O. A., Melekestev, I. V., Ponomareva, V. V., et al., Ages of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region, Russia. Bull. Volcanol., 57 (1995), 383402.Google Scholar
Ponomareva, V. V., Portnyagin, M. V., Kuvikas, O. V., et al., Tephrochronological research in KALMAR project and its implications to the temporal and compositional evolution of volcanism in Kamchatka. Terra Nostra, 2009/1 (2009), 62–3.Google Scholar

References

Back, G., Narrative of an expedition in H. M. S. Terror, undertaken with a view to geographical discovery on the Arctic shores, in the years 1836–7. London: John Murray (1838), p. 401.Google Scholar
Hill, B. T., Ship Collision with iceberg database. ICETECH06-17-RF. National Research Council of Canada, 1–7, http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=8895095&lang=en (last accessed 6 January 2015).Google Scholar
Lundgren, N.-G., Bulk trade and maritime transport costs. The evolution of global markets. Resour. Policy, 22 (1996), 532.CrossRefGoogle Scholar
Tournadre, J., Anthropogenic pressure on the open ocean: The growth of ship traffic revealed by altimeter data analysis. Geophys. Res. Lett., 41 (2014), 7924–32.CrossRefGoogle Scholar
Bacon, E. M., Henry Hudson, his times and his voyages. New York: G. P. Putnam’s Sons, (1907), p. 63.Google Scholar
Hill, B. T., Database of ship collisions with icebergs. St. John’s, Canada: Institute for Marine Dynamics (2000), 36pp.Google Scholar
Coleman, E. C., The Royal Navy in Polar Exploration: From Frobisher to Ross. Stroud: Tempus (2006).Google Scholar
O’Brian, P., Desolation Island. London: W. W. Norton, (1978).Google Scholar
Campbell, R., The voyage of HMS Erebus and HMS Terror to the Southern and Antarctic regions, Part 1. J. Hakluyt Soc., April (2009), 337.Google Scholar
Lambert, A., Franklin. Tragic hero of polar navigation. London: Faber & Faber, (2009).Google Scholar
Thomson, C. W. and Murray, J., Scientific results of H.M.S. Challenger during the years 1873–76 under the command of Captain George S. Nares, R.N. F.R.S. and the late Captain Frank Tourle Thomson, R.N. London: HMSO (1885).Google Scholar
Murphy, D. L. and Cass, J. L., The International Ice Patrol – safeguarding life and property at sea. Coast Guard Proc. Mar. Safety Security Council, 69 (2012), 13–6.Google Scholar
Reynolds, W. E., International Ice Observation and Ice Patrol Service in the North Atlantic Ocean: season of 1922. Washington, DC: US Coast Guard (1923). https://archive.org/details/reportofinternat1013unit (last accessed 12 January 2015).Google Scholar
Christensen, E. and Luzader, J., From sea to air to space: a century of iceberg tracking technology. Coast Guard Proc. Mar. Safety Security Council, 69 (2012), 1722.Google Scholar
Smith, S. D., Hindcasting iceberg drift using current profiles and winds. Cold Reg. Sci. Technol., 22 (1993), 3345.CrossRefGoogle Scholar
Rignot, E., Velicogna, I., van den Broecke, M. R., et al., Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38 (2011), L05503, doi:10.1029/2011GL046583.CrossRefGoogle Scholar
Wikipedia, MV Explorer (1969), http://en.wikipedia.org/wiki/MV_Explorer (1969) (last accessed 16 January, 2015).Google Scholar
Ice classes of ships. Finnish Transport Agency, http://www.trafi.fi/en/maritime/ice_classes_of_ships (last accessed 16 January, 2015).Google Scholar
Report of investigation in the matter of sinking of passenger vessel EXPLORER (O.N. 8495) 23 November 2007 in the Bransfield Strait near the South Shetland Islands. Monrovia: Bureau of Maritime Affairs, (2009).Google Scholar
Marchenko, N., Floating ice induced ship casualties. Proc. 22nd IAHR International Symposium on Ice, 2014 IAHR (2014), 908–15.Google Scholar
Bigg, G. R., Giant iceberg divergence, in preparation (2015).Google Scholar
Kooyman, G. L., Ainley, D. G., Ballard, G. and Ponganis, P. J., Effects of giant icebergs on two emperor penguin colonies in the Ross Sea. Antarctica. Ant. Sci., 19 (2007), 31–8.CrossRefGoogle Scholar
Romanov, Y. A., Romanova, N. A. and Romanov, P., Distribution of icebergs in the Atlantic and Indian ocean sectors of the Antarctic region and its possible links with ENSO. Geophys. Res. Lett., 35 (2008), L02506, doi:10.1029/2007GL031685.CrossRefGoogle Scholar
Hughes, W., Icebergs. www.warwickhughes.com/climate/Iceberg.htm (last accessed 20 January, 2015).Google Scholar
Hawkins, J. D., May, D. A., Abell, F. Jr. and Ondrejik, D., Antarctic tabular iceberg A-24 movement and decay via satellite remote sensing, Fourth International Conference on Southern Hemisphere Meteorology and Oceanography 29 March – 2 April 1993. Boston: America Meteorological Society (1993), pp. 475–6.Google Scholar
Barrette, P., Offshore pipeline protection against seabed gouging by ice: an overview. Cold Reg. Sci. Technol., 69 (2011), 320.CrossRefGoogle Scholar
White, R., The proposed Strait of Belle Isle cable crossing. J. Undergrad. Eng. Res. Scholar., St. John’s: Memorial University, 2013, Paper PT-13.Google Scholar
Arcticfibre, Ice scour risk and network design. http://arcticfibre.com/network/ice-scour-risk-and-network-design/, (last accessed 20 January 2015).Google Scholar
Dowdeswell, J. A., Whittington, R. J. and Hodgkins, R., The sizes, frequencies and freeboards of East Greenland icebergs observed using ship radar and sextant. J. Geophys. Res. Oceans, 97 (1992), 3515–28.CrossRefGoogle Scholar
Li, Z. J. and Lu, P., Measurement of iceberg draft with marine radar. In: 6th International Symposium on Test and Measurement, Vols. 1–9, Proceedings, ed. Wen, T. D. (2005), pp. 2972–5.Google Scholar
Khan, R., Gamberg, B., Power, D., et al., Target detection and tracking with a high-frequency ground wave radar. IEEE J. Oceanic Eng., 19 (1994), 540–8.CrossRefGoogle Scholar
Lueng, H., Applying chaos to radar detection in an ocean environment – an experimental study. IEEE J. Oceanic Eng., 20 (1995), 5664.CrossRefGoogle Scholar
Silva, T. A. M., Quantifying Antarctic icebergs and their melting in the ocean. Sheffield: University of Sheffield, Ph. D. thesis (2006).Google Scholar
Kalmykov, A. L., Velichko, S. A., Tsymbal, V. N., et al., Observations of the marine-environment from spaceborne side-looking real aperture radars. Rem. Sens. Env., 45 (1993), 193208.CrossRefGoogle Scholar
See http://landsat.usgs.gov/index.php and associated webpages (last accessed 21 January 2015).Google Scholar
Ziying, Z., Zhen, L. and Peng, G., Automatic extraction of floating ice at Antarctic continental margin from remotely sensed imagery using object-based segmentation. Sci. China – Earth Sci., 55 (2012), 622–32.Google Scholar
See http://modis.gsfc.nasa.gov/ and associated webpages (last accessed 21 January, 2015).Google Scholar
Stuart, K. M. and Long, D. G., Tracking large tabular icebergs using the SeaWinds Ku-band microwave scatterometer. Deep Sea Res. II, 58 (2011), 1285–300.CrossRefGoogle Scholar
Rees, W. G., Physical principles of remote sensing, 2nd ed. Cambridge: Cambridge University Press (2001).CrossRefGoogle Scholar
Hall, J. A., Bigg, G. R. and Hall, R., Identification and tracking of individual sea ice floes from ENVISAT Wide Swath SAR images: a case study from Fram Strait. Rem. Sens. Lett., 3 (2012), 295304.CrossRefGoogle Scholar
Willis, C. J., Macklin, J. T., Partington, K. C., et al., Iceberg detection using ERS-1 synthetic aperture radar. Int. J. Rem. Sens., 17 (1996), 1777–95.CrossRefGoogle Scholar
Power, D., Youden, J., Lane, K., et al., Iceberg detection capabilities of RADARSAT synthetic aperture radar. Can. J. Rem. Sens., 27 (2001), 476–86.CrossRefGoogle Scholar
Wesche, C. and Dierking, W., Iceberg signatures and detection in SAR images in two test regions of the Weddell Sea. J. Glaciol., 58 (2012), 325–39.CrossRefGoogle Scholar
Denbina, M. and Collins, M. J., Iceberg detection using simulated dual-polarized Radarsat constellation. Can. J. Rem. Sens., 40 (2014), 165–78.CrossRefGoogle Scholar
Williams, R. N., Rees, W. G. and Young, N. W., A technique for the identification and analysis of icebergs in synthetic aperture radar images of Antarctica. Int. J. Rem. Sens., 20 (1999), 3183–99.CrossRefGoogle Scholar
Young, N. W., Turner, D., Hylands, G. and Williams, R. N., Near-coastal iceberg distribution in East Antarctica, 50–145 degrees E. Ann. Glaciol., 27 (1998), 6874.CrossRefGoogle Scholar
Gladstone, R. and Bigg, G. R., Satellite tracking of icebergs in the Weddell Sea. Antarctic Sci., 14 (2002), 278–87.CrossRefGoogle Scholar
Silva, T. A. M. and Bigg, G. R., Computer-based identification and tracking of Antarctic icebergs in SAR images. Rem. Sens. Env., 94 (2005), 287–97.CrossRefGoogle Scholar
Abramov, V. A., Russian iceberg observations in the Barents Sea, 1933–1990. Polar. Res., 11 (1992), 93–7.Google Scholar
Tournadre, J., Giaud-Ardhuin, F. and Legrésy, B., Antarctic icebergs distributions, 2002–2010. J. Geophys. Res. Oceans, 117 (2012), C05004, doi:10.1029/2011JC007441.CrossRefGoogle Scholar
Bigg, G. R., Wadley, M. R., Stevens, D. P. and Johnson, J. A., Prediction of iceberg trajectories in the North Atlantic and Arctic Oceans. Geophys. Res. Lett., 23 (1996), 3587–90.CrossRefGoogle Scholar
Gladstone, R., Bigg, G. R. and Nicholls, K.W., Icebergs and fresh water fluxes in the Southern Ocean. J. Geophys. Res. Oceans, 106 (2001), 19903–15.Google Scholar
Martin, T. and Adcroft, A., Parameterizing the fresh-water flux from land ice to ocean with interactive icebergs in a coupled climate model. Ocean Model., 34 (2010), 111–24.CrossRefGoogle Scholar
Bigg, G. R., Wei, H., Wilton, D. J., et al., A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change. Proc. Roy. Soc. Ser. A, 47 (2014), 20130662, doi:10.198/rspa.2013.2013.0662.CrossRefGoogle Scholar
Marsh, R., Ivchenko, R., V. O., Skliris, N., et al., NEMO-ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at coarse and eddy-permitting resolution. Geoscientific Mod. Dev., 8 (2015), 1547–62.Google Scholar
Bigg, G. R., Wadley, M. R., Stevens, D. P. and Johnson, J. A., Modelling the dynamics and thermodynamics of icebergs. Cold Reg. Sci. Technol., 26 (1997), 113–35.CrossRefGoogle Scholar
Levine, R. C. and Bigg, G. R., The sensitivity of the glacial ocean to Heinrich events from different sources, as modelled by a coupled atmosphere-iceberg-ocean model. Paleoceanography, 23 (2008), PA4213, doi:10.1029/2008PA001613.CrossRefGoogle Scholar
Lighey, C. and Hellmer, H. H., Modeling giant-iceberg drift under the influence of sea ice in the Weddell Sea, Antarctica. J. Glaciol., 47 (2001), 452–60.Google Scholar
Silva, T. A. M., Bigg, G. R. and Nicholls, K. W., The contribution of giant icebergs to the Southern Ocean freshwater flux. J. Geophys. Res. Oceans, 111 (2006), C03004, doi:10.1029/2004JC002843.CrossRefGoogle Scholar
Jongma, J. I., Driesschaert, E., Fichefet, T., et al., The effect of dynamic-thermodynamic icebergs on the Southern Ocean climate in a three-dimensional model. Ocean Model., 26 (2009), 104–13.CrossRefGoogle Scholar
Wadley, M. R., Jickells, T. D. and Heywood, K. J., The role of iron sources and transport for Southern Ocean productivity. Deep Sea Res. I, 87 (2014), 8294.CrossRefGoogle Scholar
Death, R., Wadham, J. L., Monteiro, F., et al., Antarctic ice sheet fertilises the Southern Ocean. Biogeosciences, 11 (2014), 2635–43.CrossRefGoogle Scholar
Death, R., Siegert, M. J., Bigg, G. R. and Wadley, M. R., Modelling iceberg trajectories, sedimentation rates and meltwater input to the ocean from the Eurasian Ice Sheet at the Last Glacial Maximum. Palaeogeogr., Palaeoclim. Palaeoecol., 236 (2006), 135–50.CrossRefGoogle Scholar
www.polarview.org/about (last accessed 28 January 2015).Google Scholar
www.c-core.ca/ (last accessed 28 January 2015).Google Scholar
www.icemar.eu/ (last accessed 28 January 2015).Google Scholar
Eik, K. and Marchenko, A., Model tests of iceberg towing. Cold Reg. Sci. Technol., 61 (2010), 1328.CrossRefGoogle Scholar
Marchenko, A. and Eik, K., Iceberg towing in open water: mathematical modelling and analysis of model tests. Cold Reg. Sci. Technol., 73 (2012), 1231.CrossRefGoogle Scholar
Vetter, C., Ulrich, C. and Rung, T., Analysis of towing gear concepts using iceberg towing simulations. Proc. ASME 30th Int. Conf. Ocean, offshore Arctic Eng., 1 (2011), 901–10.Google Scholar

References

Cook, J., Captain James Cook’s voyage from the year 1772 to July 1775. Greenwich: National Maritime Museum Manuscript, entry for 8th January, 1773 (material from http://cudl.lib.cam.ac.uk/view/MS-JOD-00020/1).Google Scholar
Coleman, E. C., The Royal Navy in Polar Exploration: From Frobisher to Ross. Stroud: Tempus (2006).Google Scholar
Riffenburgh, B. (ed.), Encyclopedia of the Antarctic. New York: Routledge (2007).Google Scholar
Scientific American, 9 (1863), 114.Google Scholar
The Washington Times, 9th March, 1914.Google Scholar
Agnew, J., Entertainment in the Old West: Theater, Music, Circuses, Medicine Shows, Prize fighting and other popular amusements. Jefferson, North Carolina: McFarland & Company (2011).Google Scholar
Decker, J. and Kinney, J., Alaska and the airplane. http://www.airspacemag.com/history-of-flight/alaska-and-the-airplane-69899341/?no-ist (accessed 23 February 2015).Google Scholar
Perutz, M. F., I wish I’d made you angry earlier: essays on science, scientists and humanity Oxford: Oxford University Press (2002).Google Scholar
Behrman, D., John Isaacs and his oceans Washington: American Geophysical Union (1992).CrossRefGoogle Scholar
Weeks, W. F. and Campbell, W. J., Icebergs as a fresh water source: an appraisal. J. Glaciol., 12 (1973), 207–33.CrossRefGoogle Scholar
Weeks, W. F. and Campbell, W. J., Towing icebergs to irrigate arid lands – manna or madness? Bull. Atom. Sci., 29 (1973), 35–9.CrossRefGoogle Scholar
Weeks, W. F. and Campbell, W. J., Towed icebergs – plausible or pipedream? Mar. Technol. Soc. J., 7 (1973), 2932.Google Scholar
Husseiny, A. A. (ed.), Proceedings of the First Conference on iceberg utilization for freshwater production. Ames: Iowa State University (1978).Google Scholar
Husseiny, A. A., Introduction and review. Desalination, 29 (1979), 13.CrossRefGoogle Scholar
Hult, J. L., Selecting and acquiring Antarctic icebergs for export. Desalination, 29 (1979), 45.CrossRefGoogle Scholar
Weeks, W. F. and Mellor, M., Some elements of iceberg technology. In: Proceedings of the First Conference on iceberg utilization for freshwater production, Ames: Iowa State University, ed. Husseiny, A. A. (1978), 4598.Google Scholar
Rossiter, J. R. and Gustajtis, K. A., Determination of iceberg underwater shape with impulse radar. Desalination, 29 (1979), 99107.CrossRefGoogle Scholar
Benedict, C. P., A towing concept for small icebergs. In: Proceedings of the First Conference on iceberg utilization for freshwater production ed. Husseiny, A. A.. Ames: Iowa State University (1978), pp. 334–8.Google Scholar
Prince, H. R. H. Al-Faisal, M. and Ismail, S., Feasibility of using paddle-wheels for the propulsion of icebergs. In: Proceedings of the First Conference on iceberg utilization for freshwater production, ed. Husseiny, A. A.. Ames: Iowa State University (1978), pp. 301–14.Google Scholar
Davis, T. A., Osmotic propulsion of icebergs. In: Proceedings of the First Conference on iceberg utilization for freshwater production, ed. Husseiny, A. A.. Ames: Iowa State University (1978), pp. 350–8.Google Scholar
Fuhs, A. E., Denner, W. W., Kelleher, M., et al., Self propelled icebergs. In: Proceedings of the First Conference on iceberg utilization for freshwater production, ed. Husseiny, A. A. Ames: Iowa State University (1978), pp. 359–78.Google Scholar
Hult, J. L., Protecting Antarctic icebergs for export. Desalination, 29 (1979), 97.CrossRefGoogle Scholar
Frisch, K. C. and Kresta, J. E., The use of foam insulation for transport of icebergs. In: Proceedings of the First Conference on iceberg utilization for freshwater production, ed. Husseiny, A. A.. Ames: Iowa State University (1978), pp. 418–22.Google Scholar
Cluff, C. B., Use of floating solar collectors in processing iceberg water. In: Proceedings of the First Conference on iceberg utilization for freshwater production, ed. Husseiny, A. A.. Ames: Iowa State University (1978), pp. 474–91.Google Scholar
Tate, G. L., The role of liquid oxygen explosive in iceberg utilization and development. Desalination, 29 (1979), 167–72.CrossRefGoogle Scholar
Staedter, T., Floating farm harvests water from melting icebergs. Discovery News (2014). http://mashable.com/2014/03/06/floating-farm-iceberg-meltwater/.Google Scholar
Ponte, L., Alien ice: an evaluation of some subsidiary effects and concomitant problems in iceberg utilization. In: Proceedings of the First Conference on iceberg utilization for freshwater production, ed. Husseiny, A. A.. Ames: Iowa State University (1978), pp. 1119.Google Scholar
Viñuales, J. E., Iced freshwater resources: a legal exploration. Yearbook Int. Law, 20 (2009), 188206.CrossRefGoogle Scholar
Coillet, D. W., An integrated ice-water system. Desalination, 29 (1979), 191–6.CrossRefGoogle Scholar
Koontz, D., Icebound. New York: Ballantine (1995).Google Scholar
Mission 2012, Glacial icebergs: sources of freshwater. Boston: Massachusetts Institute of Technology (2012). http://web.mit.edu/12.000/www/m2012/finalwebsite/solution/glaciers.shtml.Google Scholar
www.3ds.com/icedream/ (last accessed 2 March 2015).Google Scholar
http://icebergvodkaeurope.com/ (last accessed 2 March 2015).Google Scholar

References

Darwin, E., The botanic garden, a poem in two parts. Part 1. Containing the economy of vegetation. London: J. Johnson (1791), footnote to line 529.Google Scholar
Dewry, A., Climate change worries in the eighteenth century. The Freeman (1998). http://fee.org/freeman/detail/climate-change-worries-in-the-eighteenth-century#axzz2s0aM8FLv (last accessed 9 March 2015).Google Scholar
The Lunar Society. http://lunarsociety.org.uk/ (last accessed 9 March 2015).Google Scholar
Parker, D. E., Legg, T. P. and Folland, C. K., A new daily Central England Temperature Series. Int. J. Climatol., 12 (1992), 317–42.CrossRefGoogle Scholar
South with Endurance. Shackleton’s Antarctic Expedition 1914–1917. The photographs of Frank Hurley, ed. Rex, T.. St. Helens, U. K.: Ted Smart (2011).Google Scholar
Snyder, J., Tourism in the Polar Regions. The sustainability challenge. Paris: UNEP DTIE (2007).Google Scholar
Stocker, T. F., Dahe, Q., Plattner, G. K., et al., Technical Summary. In: Climate Change 2013: The physical basis. Contribution of Working Group 1 of the Intergovernmental Report on Climate Change, ed. Stocker, T. F., Qin, D., Plattner, G. K., et al. Cambridge: Cambridge University Press (2013), pp. 33115.Google Scholar
Bigg, G. R., Wei, H., Wilton, D. J., et al., A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change. Proc. Roy. Soc Ser. A, 470 (2014), 20130662, doi:10.1098/rspa.2013.0662.CrossRefGoogle ScholarPubMed
Seale, A., Christoffersen, P., Mugford, R. I. and O’Leary, M., Ocean forcing of the Greenland ice sheet: calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers. J. Geophys. Res. Earth Surf., 116 (2011), F03013, doi:10.1029/2010JF001847.CrossRefGoogle Scholar
Csatho, B., Schenk, T., Van der Veen, C. J. and Krabill, W.B., Intermittent thinning of Jakobshavn Isbrae, West Greenland, since the Little Ice Age. J. Glaciol., 54 (2008), 131–44.CrossRefGoogle Scholar
Rignot, E., Box, J. E., Burgess, E. and Hanna, E., Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett., 35 (2008), L20502, doi:10.1029/2008GL035417.CrossRefGoogle Scholar
Masson-Delmotte, V., Swingedouw, D., Landais, A., et al., Greenland climate change: from the past to the future. Wiley Interdiscipl. Rev. Clim. Change, 3 (2012), 427–49.Google Scholar
Mueller, D. R., Vincent, W. F. and Jeffries, M. O., Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophys. Res. Lett., 30 (2003), 2031, doi:10.1029/2003GL017931.CrossRefGoogle Scholar
Muenchow, A., Padman, L. and Fricker, H. A., Interannual changes of the floating ice shelf of Petermann Gletscher, North Greenland, from 2000 to 2012. J. Glaciol., 60 (2014), 489–99.Google Scholar
Khan, S. A., Kjaer, K. H., Bevis, M., et al., Sustained mass loss of the northeastern Greenland ice sheet triggered by regional warming. Nature Clim. Change, 4 (2014), 292–9.CrossRefGoogle Scholar
Mouginot, J., Rignot, E. and Scheuchl, B., Sustained increased in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett., 41 (2014), 1576–84.CrossRefGoogle Scholar
Thomas, R., Scheuchl, B., Frederick, E., et al., Continued slowing of the Ross Ice Shelf and thickening of West Antarctic ice streams. J. Glaciol., 59 (2013), 838–44.CrossRefGoogle Scholar
Silva, T. A. M., Bigg, G. R. and Nicholls, K. W., The contribution of giant icebergs to the Southern Ocean freshwater flux. J. Geophys. Res. Oceans, 111 (2006), C03004, doi:10.1029/2004JC002843.CrossRefGoogle Scholar
Collins, M., Knutti, R., Arblaster, J., et al., Long-term climate change: projections, commitments and irreversibility. In: Climate Change 2013: The physical basis. Contribution of Working Group 1 of the Intergovernmental Report on Climate Change, ed. Stocker, T. F., Qin, D., Plattner, G. K., et al. Cambridge: Cambridge University Press (2013), pp. 1029–136.Google Scholar
Straneo, F., Heimbach, P., Sergienko, O., et al., Challenges to understanding the dynamic response of Greenland’s marine terminating glaciers to oceanic and atmospheric forcing. Bull. Amer. Meteor. Soc., 94 (2013), 1131–44.CrossRefGoogle Scholar
Depoorter, M. A., Bamber, J. L., Griggs, J. A., et al., Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502 (2013), 8992.CrossRefGoogle ScholarPubMed
Rignot, E., Velicogna, I., van den Broecke, M. R., et al., Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38 (2011), L05503, doi:10.1029/2011GL046583.CrossRefGoogle Scholar
Hanna, E., Huybrechts, P., Cappelen, J., et al., Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing. J. Geophys. Res. Atmos., 116 (2011), D24121, doi:10.1029/2011JD016387.CrossRefGoogle Scholar
Winkelmann, R., Levermann, A., Martin, M. A. and Frieler, K., Increased future ice discharge from Antarctica owing to higher snowfall. Nature, 492 (2012), 239–42.CrossRefGoogle ScholarPubMed
Levermann, A., Winkelmann, R., Nowicki, S., et al., Projecting Antarctic ice discharge using response functions from SEARISE ice-sheet models. Earth-System Dyn., 5 (2014), 271–93.Google Scholar
Nick, F. M., Vieli, A., Andersen, M. L., et al., Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature, 497 (2013), 235–8.CrossRefGoogle Scholar
Hellmer, H. H., Kauker, F., Timmermann, R., et al., Twenty-first century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature, 485 (2012), 225–8.CrossRefGoogle ScholarPubMed
Barrand, N. E., Hindmarsh, R. C. A., Arthern, R. J., et al., Computing the volume response of the Antarctic Peninsula ice sheet to warming scenarios to 2200. J. Glaciol., 59 (2013), 397409.CrossRefGoogle Scholar
Fogwill, C. J., Turney, C. S. M., Meissner, K. J., et al., Testing the sensitivity of the East Antarctic Ice Sheet to Southern Ocean dynamics: past changes and future implications. J. Quaternary Sci., 29 (2014), 91–8.CrossRefGoogle Scholar
Mengel, M. and Levermann, A., Ice plug prevents irreversible discharge from East Antarctica. Nature Clim. Change, 4 (2014), 451–5.CrossRefGoogle Scholar
IPCC, Climate change 2014: synthesis report. Core writing team, ed. Pachauri, R. K. and Meyer, L. A., Cambridge: Cambridge University Press (2014).Google Scholar
Lasserre, F. and Pelletier, S., Polar super seaways? Maritime transport in the Arctic: an analysis of shipowners’ intentions. J. Trans. Geog., 19 (2011), 1465–73.Google Scholar
Bigg, G. R., Marsh, R. A., Wilton, D. J. and Ivchenko, V., B31 – a giant iceberg in the Southern Ocean. Ocean Challenge, 20 (2014), 32–4.Google Scholar
Marsh, R., Ivchenko, V. O., Skliris, N., et al., NEMO-ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at coarse and eddy-permitting resolution. Geoscientific Mod. Dev., 8 (2015), 1547-62.Google Scholar
Zhang, X., Shou, J. and Zhou, H., Scale and scope of maritime cargoes through the Arctic Passages. Adv. Polar Sci., 24 (2013), 158–66.Google Scholar
Zhang, Y. G., Pagini, M., Liu, Z., et al., A 40-million year history of atmospheric CO2. Phil. Trans. Roy. Soc. A, 371 (2013), 20130096, doi:10.1098/rsta.2013.0096.CrossRefGoogle Scholar
Alley, R. B., Andrews, J. T., Brigham-Grette, J., et al., History of the Greenland Ice Sheet: paleoclimatic insights. Quaternary Sci. Rev., 29 (2012), 1728–56.Google Scholar
Hansen, J., Sato, M., Russell, G. and Kharecha, P., Climate sensitivity, sea level, and atmospheric carbon dioxide. Phil. Trans. Roy. Soc. A, 371 (2013), 20120294, doi:10.1098/rsta.2012.0294.CrossRefGoogle ScholarPubMed
Hay, W. W., Can humans force a return to a ‘Cretaceous’ climate? Sediment. Geol., 235 (2011), 526.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×