Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-23T15:57:22.220Z Has data issue: false hasContentIssue false

6 - Icebergs and past climates

from Part II - Icebergs and their impacts

Published online by Cambridge University Press:  05 December 2015

Grant R. Bigg
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Icebergs
Their Science and Links to Global Change
, pp. 127 - 154
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ruddiman, W. F., Late Quaternary deposition of ice-rafted sand in the subpolar North Atlantic (lat 40° to 65°N). Geol. Soc. Amer. Bull., 88 (1977), 1813–27.2.0.CO;2>CrossRefGoogle Scholar
Sellwood, B. W. and Valdes, P. J., Mesozoic climates. In Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies, ed. Williams, M., Haywood, A. M., Gregory, F. J. and Schmidt, D. N.. Bath: Geological Society Publishing House (2007), pp. 201–24.Google Scholar
Eyles, N., Earth’s glacial record and its tectonic setting. Earth-Sci. Rev., 35 (1993), 124.CrossRefGoogle Scholar
Kirchvink, J. L., Late Proterozoic low-latitude glaciation: the snowball Earth. In The Proterozoic Biosphere, ed. Schopf, J. W. and Klein, C.. Cambridge: Cambridge University Press (1992), pp. 51–2.Google Scholar
Busfield, M. E. and Le Heron, D. P., Sequencing the Sturtian icehouse: dynamic ice behaviour in South Australia. J. Geol. Soc., 171 (2014), 443–56.CrossRefGoogle Scholar
Le Heron, D. P., Busfield, M. E. and Kamona, F., An interglacial on snowball Earth? Dynamic ice behaviour revealed in the Chuos Formation, Namibia. Sedimentol., 60 (2013), 411–27.CrossRefGoogle Scholar
Le Heron, D. P., Busfield, M. E. and Prave, A. R., Neoproterozoic ice sheets and olistoliths: multiple glacial cycles in the Kingston Peak Formation, California. J. Geol. Soc., 171 (2014), 525–38.CrossRefGoogle Scholar
Arnaud, E., Halverson, G. P. and Shields-Zhou, G., The Chiquerio Formation, southern Peru. Geol. Soc. Memoirs, 36 (2011), 481–6.Google Scholar
Dobrzinski, N. and Bahlburg, H., Sedimentology and environmental significance of the Cryogenian successions of the Yangtze Platform, South China block. Palaeogeogr., Palaeoclimatol., Palaeoecol., 254 (2007), 100–22.CrossRefGoogle Scholar
Scotese, C. R., Atlas of Earth History, Volume 1, Paleogeography. Arlington, TX: PALEOMAP Project (2001), 52 pp.Google Scholar
Eyles, C. H., Eyles, N. and Grey, K., Palaeoclimate implications from deep drilling of Neoproterozoic strata in the Officer Basin and Adelaide Rift Complex of Australia; a marine record of wet-based glaciers. Palaeogeogr., Palaeoclimatol., Palaeoecol., 248 (2007), 291312.CrossRefGoogle Scholar
Prave, A. R., Fallick, A. E., Thomas, C. W. and Graham, C. W., A composite C-isotope profile for the Neoproterozoic Dalradian Supergroup of Scotland and Ireland. J. Geol. Soc., 166 (2009), 845–57.CrossRefGoogle Scholar
McMechan, M. E., Vreeland diamictites – Neoproterozoic glaciogenic slope deposits, Rocky Mountains, northeast British Columbia. Bull. Canad. Petrol. Geol., 48 (2000), 246–61.Google Scholar
Williams, G. E., Goston, V. A., McKirdy, D. A. and Preiss, W. V., The elatina glaciations, late Cryogenian (Mainoan Epoch), South Australia: sedimentary facies and palaeoenvironments. Precambrian Res., 163 (2008), 307–31.CrossRefGoogle Scholar
Carto, S. L. and Eyles, N., Sedimentology of the Neoproterozoic (c 580 Ma) Squantum ‘Tillite’, Boston Basin, USA: mass flow deposition in a deep-water arc basin lacking direct glacial influence. Sed. Geol., 269 (2012), 114.Google Scholar
Le Heron, D. P., Meinhold, G., Page, A. and Whitham, A., Did lingering ice sheets moderate anoxia in the Early Palaeozoic of Libya? J. Geol. Soc., 170 (2013), 327–39.CrossRefGoogle Scholar
Schatz, E. R., Mangano, M. G., Buatois, L. A. and Limarino, C. O., Life in the Late Palaeozoic Ice Age: trace fossils from glacially influenced deposits in a Late Carboniferous fjord of western Argentina. J. Paleontol., 85 (2011), 502–18.CrossRefGoogle Scholar
Rygel, M. C., Fielding, C. R., Bann, K. L., et al., The Lower Permian Wasp Head Formation, Sydney Basin: high-latitude, shallow marine sedimentation following the late Asselian to early Sakmarian glacial event in eastern Australia. Sedimentology, 55 (2008), 1517–40.CrossRefGoogle Scholar
Rogala, B., James, N. P. and Reid, C. M., Deposition of polar carbonates during interglacial highstands on an early Permian shelf, Tasmania. J. Sediment. Res., 77 (2007), 587606.CrossRefGoogle Scholar
James, N. P., Frank, T. D. and Fielding, C. R., Carbonate sedimentation in a Permian high-latitude, subpolar depositional realm: Queensland, Australia. J. Sediment. Res., 79 (2009), 125–43.CrossRefGoogle Scholar
Lopez-Gamundi, O. R. and Buatois, L. A., Transgressions related to the demise of the Late Paleozoic Ice Age: their sequence stratigraphic context. Geol. Soc. Amer. Spec. Pap., 468 (2010), 135.Google Scholar
Eyles, N., Eyles, C. H. and Gostin, V. A., Iceberg rafting and scouring in the Early Permian Shoalhaven Group of New South Wales, Australia: evidence of Heinrich-like events. Palaeogeogr. Palaeoclimatol., Palaeoecol., 136 (1997), 117.CrossRefGoogle Scholar
Lo, C. H., Chung, S. L., Lee, T. Y., et al., Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events. Earth Planet. Sci. Lett., 198 (2002), 449–58.Google Scholar
Pearson, P. N. and Palmer, M. R., Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406 (2000), 695–9.CrossRefGoogle ScholarPubMed
Kennett, J. P., Cenozoic evolution of Antarctic glaciations, circum-Antarctic ocean, and their impact on global paleoceanography. J. Geophys. Res. – Oceans Atmos., 82 (1977), 3843–60.CrossRefGoogle Scholar
De Conto, R. M. and Pollard, D., Rapid Cenozoic glaciations of Antarctica induced by declining atmospheric CO2. Nature, 421 (2003), 245–9.Google ScholarPubMed
Schar, H. D., Bohaty, S. M., Zachos, J. C. and Delaney, M. L., Two-stepping into the icehouse: East Antarctic weathering during progressive ice-sheet expansion at the Eocene-Oligocene transition. Geology, 39 (2011), 383–6.Google Scholar
Williams, T., van de Flierdt, T., Hemming, S. R., et al., Evidence for iceberg armadas from East Antarctica in the Southern Ocean during the late Miocene and early Pliocene. Earth Planet. Sci. Lett., 290 (2010), 351–61.CrossRefGoogle Scholar
Passchier, S., Linkages between East Antarctic Ice Sheet extent and Southern Ocean temperatures based on a Pliocene high-resolution record of ice-rafted debris off Prydz Bay, East Antarctica. Paleoceanography, 26 (2011), PA4204, doi:10.1029/2010PA002061.CrossRefGoogle Scholar
Warnke, D. A., Marzo, B. and Hodell, D. A., Major deglaciation of east Antarctica during the early Late Pliocene? Not likely from a marine perspective. Mar. Micropaleon., 27 (1996), 237–51.CrossRefGoogle Scholar
Pudsey, C. J., Neogene record of Antarctic Peninsula glaciations in continental rise sediments: ODP Leg 178, Site 1095. In: Proc. ODP, Sci. Res., ed. Barker, P. F., Camerlenghi, A., Acton, G. D. and Ramsay, A. T. S., 178 (2001). College Station, Texas: ODP, 125.Google Scholar
Hillenbrand, C. D., Camerlenghi, A., Cowan, E. A., et al., The present and past bottom-current flow regime around the sediment drifts on the continental rise west of the Antarctic Peninsula. Mar. Geol., 255 (2008), 5563.CrossRefGoogle Scholar
De Schepper, S., Gibbard, P. L., Salzmann, U. and Ehlers, J., A global synthesis of the marine and terrestrial evidence for glaciation during the Pliocene Epoch. Earth-Sci. Rev., 135 (2014), 83102.CrossRefGoogle Scholar
Bartoli, G., Honisch, B. and Zeebe, R. E., Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations. Paleoceanography, 26 (2011), PA4213, doi:10.1029/2010PA002055.CrossRefGoogle Scholar
DeConto, R. M., Pollard, D., Wilson, P. A., et al., Thresholds for Cenozoic bipolar glaciation. Nature, 455 (2008), 652–6.CrossRefGoogle ScholarPubMed
Herbert, T. D., A long marine record of carbon cycle modulation by orbital-climatic changes. Proc. Nat. Acad. Sci. USA, 94 (1997), 8362–9.CrossRefGoogle ScholarPubMed
Berger, A., Milankovitch theory and climate. Rev. Geophys., 26 (1988), 624–57.CrossRefGoogle Scholar
Rohling, E. J. and Bigg, G. R., Paleo-salinity and δ18O: a critical assessment. J. Geophys. Res. Oceans, 103 (1998), 1307–18.CrossRefGoogle Scholar
Lisiecki, L. E. and Raymo, M. E., A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20 (2005), PA1003, doi:10.1029/2004PA001071.Google Scholar
Miller, G. H., Brigham-Grette, J., Alley, R. B., et al., Temperature and precipitation history of the Arctic. Quater. Sci. Rev., 29 (2010), 1679–715.CrossRefGoogle Scholar
Bigg, G. R., The Oceans and Climate, 2nd ed. Cambridge: Cambridge University Press (2003).Google Scholar
Lunt, D. J., Valdes, P. J., Haywood, A., et al., Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation. Clim. Dyn., 30 (2008), 118.CrossRefGoogle Scholar
Kleiven, H. F., Jansen, E., Fronval, T., et al., Intensification of Northern hemisphere glaciations in the circum-Arctic (3.5–2.4 Ma): ice-rafted detritus evidence. Palaeogeogr., Palaeoclim., Palaeoecol., 184 (2002), 213–23.Google Scholar
Bailey, I., Hole, G. M., Foster, G. L., et al., An alternative suggestion for the Pliocene onset of major northern hemisphere glaciations based on the geochemical provenance of North Atlantic Ocean ice-rafted debris. Quater. Sci. Rev., 75 (2013), 181–94.CrossRefGoogle Scholar
Darby, D. A., Ephemeral formation of perennial sea ice in the Arctic Ocean during the Middle Eocene. Nature Geosci., 7 (2014), 210–3.CrossRefGoogle Scholar
Moran, K., Backman, J., Brinkhuis, H., et al., The Cenozoic palaeoenvironment of the Arctic Ocean. Nature, 441 (2006), 601–5.CrossRefGoogle ScholarPubMed
Prueher, L. M. and Rea, D. K., Volcanic triggering of late Pliocene glaciations: evidence from the flux of volcanic glass and ice-rafted debris to the North Pacific Ocean. Palaeogeogr., Palaeoclim., Palaeoecol., 173 (2001), 215–30.CrossRefGoogle Scholar
Bailey, I., Liu, Q., Swann, G. E. A., et al., Iron fertilisation and biogeochemical cycles in the sub-Arctic northwest Pacific during the late Pliocene intensification of northern hemisphere glaciation. Earth Planet. Sci. Lett., 307 (2011), 253–65.CrossRefGoogle Scholar
St. John, K. E. K. and Krissek, L. A., Regional patterns of Pleistocene ice-rafted debris flux in the North Pacific. Paleoceanography, 14 (1999), 653–62.Google Scholar
Miller, K. G., Mountain, G. S., Wright, J. D. and Browning, J. V., A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records. Oceanography, 24 (2011), 4053.CrossRefGoogle Scholar
Ehrmann, W. E., Grobe, H. and Fütterer, D. K., Late Miocene to Holocene glacial history of East Antarctica revealed by sediments from sites 745 and 746. In: Proc. Ocean Drill. Prog., Sci. Res., ed. Barron, J., Larsen, B., Baldauf, J. G., et al. 119 (1991), pp. 239–60.CrossRefGoogle Scholar
Krissek, L. A., Late Cenozoic ice-rafting records from Leg 145 sites in the North Pacific: Late Miocene onset, Late Pliocene intensification, and Pliocene-Pleistocene events. In: Proc. Ocean Drill. Prog., Sci. Res., ed. Rea, D. K., Basov, I. A., Schull, D. W. and Allan, J. F., 145 (1995), 179–94.CrossRefGoogle Scholar
Wolf, T. C. W. and Thiede, J., History of terrigenous sedimentation during the past 10 m.y. in the North Atlantic (ODP Legs 104 and 105 and DSDP Leg 81). Mar. Geol., 101 (1991), 83102.CrossRefGoogle Scholar
O’Connell, S., Wolf-Welling, T. C. W., Cremer, M. and Stein, R., Neogene paleoceanography and paleoclimate history from Fram Strait: changes in accumulation rates. In: Proc. Ocean Drill. Prog., Sci. Res., ed. Thiede, J., Myhre, A. M., Firth, J. V., et al. 151 (1996), 569–82.CrossRefGoogle Scholar
St. John, K., Cenozoic ice-rafting history of the central Arctic: terrigenous sands on the Lomonosov Ridge. Paleoceanography, 23 (2008), PA1S05, doi:10.1029/2007PA001483.Google Scholar
Bigg, G. R., Clark, C. D. and Hughes, A. L. C., A last glacial ice sheet on the Pacific Russian coast and catastrophic change arising from coupled ice-volcanic interaction. Earth Planet. Sci. Lett., 265 (2008), 559–70.CrossRefGoogle Scholar
Barr, I. D. and Clark, C. D., Late Quaternary glaciations in far NE Russia: combining moraines, topography and chronology to assess regional and global glaciations synchrony. Quaternary. Sci. Rev., 53 (2012), 7287.CrossRefGoogle Scholar
Niessen, F. Hong, J. K., Hegewald, A., et al., Repeated Pleistocene glaciations of the East Siberian continental margin. Nature Geosci., 6 (2013), 842–6.CrossRefGoogle Scholar
Dove, D., Polyak, L. and Coakley, B., Widespread multi-source glacial erosion on the Chukchi Margin, Arctic Ocean. Quaternary Sci. Rev., 92 (2014), 112–22.CrossRefGoogle Scholar
Gebhardt, A. C., Jokat, W., Niessen, F., et al., Ice sheet grounding and iceberg plow marks on the northern and central Yermak Plateau revealed by geophysical data. Quaternary Sci. Rev., 30 (2011), 1726–38.CrossRefGoogle Scholar
McManus, J. F., Oppo, D. W. and Cullen, J. L., A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science, 283 (1999), 971–5.CrossRefGoogle ScholarPubMed
Svendsen, J. I., Alexanderson, H., Astakhov, V. I., et al., Late Quaternary ice sheet history of northern Eurasia. Quaternary Sci. Rev., 23 (2004), 1229–71.CrossRefGoogle Scholar
Jakobsson, M., Andreassen, K., Bjarnadóttir, L. R., et al., Arctic Ocean glacial history. Quaternary Sci. Rev., 92 (2014), 4067.CrossRefGoogle Scholar
Knies, J., Nowacyzk, N., Muller, C., et al., A multiproxy approach to reconstruct the environmental changes along the Eurasian continental margin over the last 150 000 years. Mar. Geol., 163 (2000), 317–44.CrossRefGoogle Scholar
Green, C. L., Bigg, G. R. and Green, J. A. M., Deep draft icebergs from the Barents Ice Sheet during MIS 6 are consistent with erosional evidence from the Lomonosov Ridge, central Arctic. Geophys. Res. Lett., 37 (2010), L23606, doi:10.1029/2010GL045299.CrossRefGoogle Scholar
Bauch, A. A., Interglacial climates and the Atlantic meridional overturning circulation: is there an Arctic controversy? Quaternary Sci. Rev., 63 (2013), 122.CrossRefGoogle Scholar
Hibbert, F. D., Austin, W. E. N., Leng, M. J. and Gatliff, R. W., British Ice Sheet dynamics inferred from North Atlantic ice-rafted debris records spanning the last 175 000 years. J. Quaternary Sci., 25 (2010), 461–82.CrossRefGoogle Scholar
Nürnberg, D., Dethleff, D., Tiedemann, R., et al., Okhotsk Sea ice coverage and Kamchatka glaciation over the last 350 ka – evidence from ice-rafted debris and planktonic δ18O. Palaeogeogr., Palaeoclim., Palaeoecol., 310 (2011), 191205.CrossRefGoogle Scholar
Carter, L., Neil, H. L. and Northcote, L., Quaternary ice-rafting events in the SW Pacific Ocean, off eastern New Zealand. Mar. Geol., 191 (2002), 1935.CrossRefGoogle Scholar
Hillenbrand, C.-D., Kuhn, G. and Frederichs, T., Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: an indicator for ice-sheet collapse? Quaternary Sci. Rev., 28 (2009), 1147–59.CrossRefGoogle Scholar
Cuffey, K. M. and Marshall, S. J., Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature, 404 (2000), 591–4.CrossRefGoogle ScholarPubMed
Blumier, T. and Brook, E. J., Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science, 291 (2001), 109–12.Google Scholar
Bond, G., Broecker, W., Johnsen, S., et al., Correlations between climate records from North-Atlantic sediments and Greenland ice. Nature, 365 (1993), 143–7.CrossRefGoogle Scholar
Reimer, P. J., Baillie, M. G. L., Bard, E., et al., INTCAL09 and MARINE09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon, 51 (2009), 1111–50.CrossRefGoogle Scholar
Peltier, W. R., Global glacial isostasy and the surface of the ice-age earth: the ice-5G (VM2) model and grace. Ann. Rev. Earth Planet. Sci., 32 (2004), 111–49.CrossRefGoogle Scholar
Hemming, S. R., Heinrich events: massive Late Pleistocene detritus layers of the North Atlantic and their global imprint. Rev. Geophys., 42 (2004), RG1005, doi:10.1029/2003RG000128.CrossRefGoogle Scholar
Heinrich, H., Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Res., 29 (1988), 142–52.CrossRefGoogle Scholar
Gwiazda, R. H., Hemming, S. R. and Broecker, W. S., Provenance of icebergs during Heinrich event 3 and the contrast to their sources during other Heinrich episodes. Paleoceanography, 11 (1996), 371–8.CrossRefGoogle Scholar
Darby, D. A., Bischof, J. F., Spielhagen, R. F., et al., Arctic ice export events and their potential impact on global climate during the late Pleistocene. Paleoceanography, 17 (2002), 1025, doi:10.1029/2001PA000639.CrossRefGoogle Scholar
Bigg, G. R., Levine, R. C. and Green, C. L., Modelling abrupt glacial North Atlantic freshening: rates of change and their implications for Heinrich events. Glob. Planet. Change, 79 (2011), 176–92.CrossRefGoogle Scholar
Hewitt, A. T., McDonald, D. and Bornhold, B. D., Ice-rafted debris in the North Pacific and correlation to North Atlantic climatic events. Geophys. Res. Lett., 24 (1997), 3261–4.CrossRefGoogle Scholar
Kiefer, T., Sarnthein, M., Erlenkauser, H., et al., North Pacific response to millennial-scale changes in ocean circulation over the last 60 kyr. Paleoceanography, 16 (2001), 179–89.CrossRefGoogle Scholar
Riethdorf, J.-R., Nürnberg, D., Max, L., et al., Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr. Clim. Past, 9 (2013), 1345–73.CrossRefGoogle Scholar
Kanfoush, S. L., Hodell, D. A., Charles, C. D., et al., Millennial-scale instability of the Antarctic Ice Sheet during the last glaciation. Science, 288 (2000), 1815–8.CrossRefGoogle ScholarPubMed
Manoj, M. C., Thamban, M., Basavaiah, N. and Mohan, R., Evidence for climatic and oceanographic controls on terrigenous sediment supply to the Indian Ocean sector of the Southern ocean over the past 63,000 years. Geo-Mar. Lett., 32 (2012), 251–65.CrossRefGoogle Scholar
Nielsen, S. H. H., Hodell, D. A., Kamenov, G., et al., Origin and significance of ice-rafted detritus in the Atlantic sector of the Southern Ocean. Geochem. Geophys. Geosystems, 8 (2007), Q12005, doi:10.1029/2007GC001618.CrossRefGoogle Scholar
Murton, J. B., Bateman, M. D., Dallimore, S. R., et al., Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature, 464 (2010), 740–3.CrossRefGoogle ScholarPubMed
Bond, G., Showers, W., Cheseby, M., et al., A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial climates. Science, 278 (1997), 1257–66.CrossRefGoogle Scholar
Andrews, J. T., Bigg, G. R. and Wilton, D. J., Holocene ice-rafting and sediment transport from the glaciated margin of East Greenland (67-70°N) to the N Iceland shelves: detecting and modelling changing sediment sources. Quaternary Sci. Rev., 91 (2014), 204–17.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×