Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-19T22:22:43.113Z Has data issue: false hasContentIssue false

Chapter 1 - The Genetic Programs Regulating Embryonic Lung Development and Induced Pluripotent Stem Cell Differentiation

Published online by Cambridge University Press:  05 April 2016

Alan H. Jobe
Affiliation:
University of Cincinnati
Jeffrey A. Whitsett
Affiliation:
Cincinnati Children’s Hospital
Steven H. Abman
Affiliation:
University of Colorado School of Medicine
Get access

Summary

Abstract

This chapter reviews the current knowledge of the molecular mechanisms controlling embryonic lung development in animal models from the initial specification of a small number of respiratory progenitor cells in the ventral foregut endoderm through the formation of the mature adult lung with regionally specialized epithelial, interstitial, and vascular compartments. In the second half of this chapter we introduce induced pluripotent stem cells (iPSCs) as a compelling new platform to study human lung biology at developmental time-points previously inaccessible to researchers. iPSCs offer the potential to generate functional lung tissue in vitro by translating the knowledge gained from studying respiratory system development in different animal models where many of the signaling pathways or airway branching mechanisms are evolutionarily conserved. There are many exciting possible applications of iPSC-derived lung tissue, including the ability to model human lung disease, screen novel drug therapies, and ultimately generate functional, transplantable lung cells or 3-D tissues for those suffering from one of the many forms of end-stage lung disease.

Type
Chapter
Information
Fetal and Neonatal Lung Development
Clinical Correlates and Technologies for the Future
, pp. 1 - 21
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Morrisey, EE, Hogan, BLM. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell. 2010 Jan 19;18(1):823.CrossRefGoogle ScholarPubMed
Zorn, AM, Wells, JM. Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol. 2009;25(1):221251.CrossRefGoogle ScholarPubMed
Ornitz, DM, Yin, Y. Signaling networks regulating development of the lower respiratory tract. Cold Spring Harb Perspect Biol. 2012 May;4(5):a008318–008318.CrossRefGoogle ScholarPubMed
Peng, T, Tian, Y, Boogerd, CJ, et al. Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor. Nature. 2013 Aug 29;500(7464):589592.CrossRefGoogle ScholarPubMed
Lazzaro, D, Price, M, de Felice, M, Di Lauro, R. The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development. 1991 Dec;113(4):10931104.CrossRefGoogle ScholarPubMed
Kubo, A, Shinozaki, K, Shannon, JM, et al. Development of definitive endoderm from embryonic stem cells in culture. Development. 2004 Apr;131(7):16511662.CrossRefGoogle ScholarPubMed
D'Amour, KA, Agulnick, AD, Eliazer, S, Kelly, OG, Kroon, E, Baetge, EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005 Dec;23(12):15341541.CrossRefGoogle ScholarPubMed
Engert, S, Burtscher, I, Liao, WP, Dulev, S, Schotta, G, Lickert, H. Wnt/β-catenin signalling regulates Sox17 expression and is essential for organizer and endoderm formation in the mouse. Development. The Company of Biologists Limited. 2013 Aug;140(15):31283138.Google ScholarPubMed
Sinner, D, Rankin, S, Lee, M, Zorn, AM. Sox17 and beta-catenin cooperate to regulate the transcription of endodermal genes. Development. 2004 Jul;131(13):30693080.CrossRefGoogle ScholarPubMed
Horb, ME, Slack, JM. Endoderm specification and differentiation in Xenopus embryos. Dev Biol. 2001 Aug 15;236(2):330343.CrossRefGoogle ScholarPubMed
Kumar, M, Jordan, N, Melton, D, Grapin-Botton, A. Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate. Dev Biol. 2003 Jul 1;259(1):109122.CrossRefGoogle Scholar
Fagman, H, Amendola, E, Parrillo, L, et al. Gene expression profiling at early organogenesis reveals both common and diverse mechanisms in foregut patterning. Dev Biol. 2011 Nov 15;359(2):163175.CrossRefGoogle ScholarPubMed
Millien, G, Beane, J, Lenburg, M, et al. Characterization of the mid-foregut transcriptome identifies genes regulated during lung bud induction. Gene Expr Patterns. 2008 Jan;8(2):124139.CrossRefGoogle ScholarPubMed
Maeda, Y, Davé, V, Whitsett, JA. Transcriptional control of lung morphogenesis. Physiol Rev. 2007 Jan;87(1):219244.CrossRefGoogle ScholarPubMed
Kimura, S, Hara, Y, Pineau, T, et al. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev. 1996 Jan 1;10(1):6069.CrossRefGoogle Scholar
Minoo, P, Su, G, Drum, H, Bringas, P, Kimura, S. Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(–/–) mouse embryos. Dev Biol. 1999 May 1;209(1):6071.CrossRefGoogle ScholarPubMed
Boucherat, O, Montaron, S, Bérubé-Simard, F-A, et al. Partial functional redundancy between Hoxa5 and Hoxb5 paralog genes during lung morphogenesis. Am J Physiol Lung Cell Mol Physiol. 2013 Jun 15;304(12):L817830.CrossRefGoogle ScholarPubMed
Serls, AE, Doherty, S, Parvatiyar, P, Wells, JM, Deutsch, GH. Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development. 2005 Jan;132(1):3547.CrossRefGoogle ScholarPubMed
Sakiyama, J-I, Yamagishi, A, Kuroiwa, A. Tbx4-FGF10 system controls lung bud formation during chicken embryonic development. Development. 2003 Apr;130(7):12251234.CrossRefGoogle ScholarPubMed
Shifley, ET, Kenny, AP, Rankin, SA, Zorn, AM. Prolonged FGF signaling is necessary for lung and liver induction in Xenopus. BMC Dev Biol. 2012;12(1):27.CrossRefGoogle ScholarPubMed
Wang, JH, Deimling, SJ, D'Alessandro, NE, Zhao, L, Possmayer, F, Drysdale, TA. Retinoic acid is a key regulatory switch determining the difference between lung and thyroid fates in Xenopus laevis. BMC Dev Biol. 2011;11(1):75.CrossRefGoogle ScholarPubMed
Goss, AM, Tian, Y, Tsukiyama, T, et al. Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell. 2009 Aug 1;17(2):290298.CrossRefGoogle ScholarPubMed
Harris-Johnson, KS, Domyan, ET, Vezina, CM, Sun, X. Beta-catenin promotes respiratory progenitor identity in mouse foregut. Proc Nat Acad Sci USA. 2009 Sep 22;106(38):16287–16292.CrossRefGoogle Scholar
Rankin, SA, Gallas, AL, Neto, A, Gómez-Skarmeta, JL, Zorn, AM. Suppression of BMP4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/β-catenin-mediated lung specification in Xenopus. Development. 2012 Aug;139(16):30103020.CrossRefGoogle ScholarPubMed
Li, Y, Gordon, J, Manley, NR, Litingtung, Y, Chiang, C. BMP4 is required for tracheal formation: a novel mouse model for tracheal agenesis. Dev Biol. 2008 Oct 1;322(1):145155.CrossRefGoogle ScholarPubMed
Que, J, Choi, M, Ziel, JW, Klingensmith, J, Hogan, BLM. Morphogenesis of the trachea and esophagus: current players and new roles for noggin and BMPs. Differentiation. 2006 Sep;74(7):422437.CrossRefGoogle ScholarPubMed
Domyan, ET, Ferretti, E, Throckmorton, K, Mishina, Y, Nicolis, SK, Sun, X. Signaling through BMP receptors promotes respiratory identity in the foregut via repression of Sox2. Development. 2011 Mar 1;138(5):971981.CrossRefGoogle ScholarPubMed
Que, J, Luo, X, Schwartz, RJ, Hogan, BLM. Multiple roles for Sox2 in the developing and adult mouse trachea. Development. 2009 Jun;136(11):18991907.CrossRefGoogle ScholarPubMed
Woo, J, Miletich, I, Kim, B-M, Sharpe, PT, Shivdasani, RA. Barx1-mediated inhibition of Wnt signaling in the mouse thoracic foregut controls tracheo-esophageal septation and epithelial differentiation. PLoS One. 2011;6(7):e22493.CrossRefGoogle ScholarPubMed
Litingtung, Y, Lei, L, Westphal, H, Chiang, C. Sonic hedgehog is essential to foregut development. Nat Genet. 1998 Sep;20(1):5861.CrossRefGoogle ScholarPubMed
Motoyama, J, Liu, J, Mo, R, Ding, Q, Post, M, Hui, CC. Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat Genet. 1998 Sep;20(1):5457.CrossRefGoogle ScholarPubMed
Min, H, Danilenko, DM, Scully, SA, et al. FGF-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev. 1998 Oct 15;12(20):31563161.CrossRefGoogle ScholarPubMed
Sekine, K, Ohuchi, H, Fujiwara, M, et al. FGF10 is essential for limb and lung formation. Nat Genet. 1999 Jan;21(1):138141.CrossRefGoogle ScholarPubMed
Desai, TJ, Chen, F, , J, et al. Distinct roles for retinoic acid receptors alpha and beta in early lung morphogenesis. Dev Biol. 2006 Mar 1;291(1):1224.CrossRefGoogle ScholarPubMed
Wang, Z, Dollé, P, Cardoso, WV, Niederreither, K. Retinoic acid regulates morphogenesis and patterning of posterior foregut derivatives. Dev Biol. 2006 Sep 15;297(2):433445.CrossRefGoogle ScholarPubMed
Chen, F, Cao, Y, Qian, J, Shao, F, Niederreither, K, Cardoso, WV. A retinoic acid-dependent network in the foregut controls formation of the mouse lung primordium. J Clin Invest. 2010 Jun;120(6):20402048.CrossRefGoogle ScholarPubMed
Chen, F, Desai, TJ, Qian, J, Niederreither, K, , J, Cardoso, WV. Inhibition of TGF beta signaling by endogenous retinoic acid is essential for primary lung bud induction. Development. 2007 Aug;134(16):29692979.CrossRefGoogle ScholarPubMed
Arora, R, Metzger, RJ, Papaioannou, VE. Multiple roles and interactions of Tbx4 and Tbx5 in development of the respiratory system. Barsh, GS, editor. PLoS Genet. 2012;8(8):e1002866.CrossRefGoogle ScholarPubMed
Li, W, Lin, C-Y, Shang, C, et al. Pbx1 activates FGF10 in the mesenchyme of developing lungs. Genesis. 2014 May;52(5):399407.CrossRefGoogle ScholarPubMed
Metzger, RJ, Klein, OD, Martin, GR, Krasnow, MA. The branching programme of mouse lung development. Nature. 2008 Jun 5;453(7196):745750.CrossRefGoogle ScholarPubMed
Alanis, DM, Chang, DR, Akiyama, H, Krasnow, MA, Chen, J. Two nested developmental waves demarcate a compartment boundary in the mouse lung. Nat Commun. 2014;5:3923.CrossRefGoogle ScholarPubMed
Tompkins, DH, Besnard, V, Lange, AW, et al. Sox2 activates cell proliferation and differentiation in the respiratory epithelium. Am J Respir Cell Mol Biol. 2011 Jul;45(1):101110.CrossRefGoogle ScholarPubMed
Chang, DR, Martinez Alanis, D, Miller, RK, et al. Lung epithelial branching program antagonizes alveolar differentiation. Proc Natl Acad Sci USA. 2013 Nov 5;110(45):18042–18051.CrossRefGoogle Scholar
Rockich, BE, Hrycaj, SM, Shih, HP, et al. Sox9 plays multiple roles in the lung epithelium during branching morphogenesis. Proc Natl Acad Sci USA. 2013 Nov 19;110(47):E4456–4464.CrossRefGoogle Scholar
Rawlins, EL, Clark, CP, Xue, Y, Hogan, BLM. The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells. Development. 2009 Nov;136(22):37413745.CrossRefGoogle ScholarPubMed
Hyatt, BA, Shangguan, X, Shannon, JM. FGF-10 induces SP-C and BMP4 and regulates proximal-distal patterning in embryonic tracheal epithelium. Am J Physiol Lung Cell Mol Physiol. 2004 Dec;287(6):L11161126.CrossRefGoogle ScholarPubMed
Weaver, M, Dunn, NR, Hogan, BL. BMP4 and FGF10 play opposing roles during lung bud morphogenesis. Development. 2000 Jun;127(12):26952704.CrossRefGoogle ScholarPubMed
Abler, LL, Mansour, SL, Sun, X. Conditional gene inactivation reveals roles for FGF10 and FGFR2 in establishing a normal pattern of epithelial branching in the mouse lung. Dev Dyn. 2009 Aug;238(8):19992013.CrossRefGoogle ScholarPubMed
Volckaert, T, Campbell, A, Dill, E, Li, C, Minoo, P, De Langhe, S. Localized FGF10 expression is not required for lung branching morphogenesis but prevents differentiation of epithelial progenitors. Development. 2013 Sep;140(18):37313742.CrossRefGoogle Scholar
Rajagopal, J, Carroll, TJ, Guseh, JS, et al. Wnt7b stimulates embryonic lung growth by coordinately increasing the replication of epithelium and mesenchyme. Development. 2008 May;135(9):16251634.CrossRefGoogle ScholarPubMed
Mahoney, JE, Mori, M, Szymaniak, AD, Varelas, X, Cardoso, WV. The Hippo pathway effector Yap controls patterning and differentiation of airway epithelial progenitors. Dev Cell. 2014 Jul 28;30(2):137150.CrossRefGoogle ScholarPubMed
Zhao, R, Fallon, TR, Saladi, SV, et al. Yap tunes airway epithelial size and architecture by regulating the identity, maintenance, and self-renewal of stem cells. Dev Cell. 2014 Jul 28;30(2):151165.CrossRefGoogle ScholarPubMed
Herriges, M, Morrisey, EE. Lung development: orchestrating the generation and regeneration of a complex organ. Development. 2014 Feb;141(3):502513.CrossRefGoogle ScholarPubMed
Tian, Y, Zhang, Y, Hurd, L, et al. Regulation of lung endoderm progenitor cell behavior by miR302/367. Development. 2011 Apr;138(7):12351245.CrossRefGoogle ScholarPubMed
Herriges, MJ, Swarr, DT, Morley, MP, et al. Long noncoding RNAs are spatially correlated with transcription factors and regulate lung development. Genes Dev. Cold Spring Harbor Lab. 2014 Jun 15;28(12):13631379.Google ScholarPubMed
Wang, Y, Tian, Y, Morley, MP, et al. Development and regeneration of Sox2+ endoderm progenitors are regulated by a Hdac1/2-BMP4/Rb1 regulatory pathway. Dev Cell. 2013 Feb 25;24(4):345358.CrossRefGoogle ScholarPubMed
Shan, L, Aster, JC, Sklar, J, Sunday, ME. Notch-1 regulates pulmonary neuroendocrine cell differentiation in cell lines and in transgenic mice. Am J Physiol Lung Cell Mol Physiol. 2007 Feb;292(2):L500509.CrossRefGoogle ScholarPubMed
Guseh, JS, Bores, SA, Stanger, BZ, et al. Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development. 2009 May;136(10):17511759.CrossRefGoogle ScholarPubMed
Morimoto, M, Nishinakamura, R, Saga, Y, Kopan, R. Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development. 2012 Dec 1;139(23):43654373.CrossRefGoogle ScholarPubMed
Tsao, P-N, Vasconcelos, M, Izvolsky, KI, Qian, J, , J, Cardoso, WV. Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development. 2009 Jul;136(13):22972307.CrossRefGoogle ScholarPubMed
Wade, KC, Guttentag, SH, Gonzales, LW, et al. Gene induction during differentiation of human pulmonary type II cells in vitro. Am J Respir Cell Mol Biol. 2006 Jun 1;34(6):727737.CrossRefGoogle ScholarPubMed
Desai, TJ, Brownfield, DG, Krasnow, MA. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature. 2014 Feb 5;507:116.CrossRefGoogle ScholarPubMed
Treutlein, B, Brownfield, DG, Wu, AR, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014 May 15;509(7500):371375.CrossRefGoogle ScholarPubMed
Kleinsmith, LJ, Pierce, GB. Multipotentiality of single embryonal carcinoma cells. Cancer Res. 1964 Oct;24:15441551.Google ScholarPubMed
Solter, D, Skreb, N, Damjanov, I. Extrauterine growth of mouse egg-cylinders results in malignant teratoma. Nature. 1970 Aug 1;227(5257):503504.CrossRefGoogle Scholar
Stevens, LC. The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Dev Biol. 1970 Mar;21(3):364382.CrossRefGoogle ScholarPubMed
Evans, MJ, Kaufman, MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981 Jul 9;292(5819):154156.CrossRefGoogle ScholarPubMed
Nagy, A, Gócza, E, Diaz, EM, Prideaux, VR, Iványi, E, Markkula, M, et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development. 1990 Nov;110(3):815821.CrossRefGoogle ScholarPubMed
Nagy, A, Rossant, J, Nagy, R, Abramow-Newerly, W, Roder, JC. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA. 1993 Sep 15;90(18):84248428.CrossRefGoogle ScholarPubMed
Thomas, KR, Capecchi, MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 1987 Nov 6;51(3):503152.CrossRefGoogle ScholarPubMed
Bradley, A, Hasty, P, Davis, A, Ramirez-Solis, R. Modifying the mouse: design and desire. Biotechnology (NY). 1992 May;10(5):534539.Google ScholarPubMed
Lewandoski, M. Conditional control of gene expression in the mouse. Nat Rev Genet. 2001 Oct;2(10):743755.CrossRefGoogle ScholarPubMed
Thomson, JA, Itskovitz-Eldor, J, Shapiro, SS, Waknitz, MA, Swiergiel, JJ, Marshall, VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998 Nov 6;282(5391):11451147.CrossRefGoogle ScholarPubMed
Yamanaka, S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell. 2012 Jun 14;10(6):678684.CrossRefGoogle ScholarPubMed
Gurdon, JB. Adult frogs derived from the nuclei of single somatic cells. Dev Biol. 1962 Apr;4:256273.CrossRefGoogle ScholarPubMed
Wilmut, I, Schnieke, AE, McWhir, J, Kind, AJ, Campbell, KH. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997 Feb 27;385(6619):810813.CrossRefGoogle ScholarPubMed
Davis, RL, Weintraub, H, Lassar, AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987 Dec 24;51(6):9871000.CrossRefGoogle ScholarPubMed
Takahashi, K, Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006 Aug 25;126(4):663676.CrossRefGoogle ScholarPubMed
Zhao, X-Y, Li, W, Lv, Z, et al. iPS cells produce viable mice through tetraploid complementation. Nature. 2009 Sep 3;461(7260):8690.CrossRefGoogle ScholarPubMed
Kang, L, Wang, J, Zhang, Y, Kou, Z, Gao, S. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell. 2009 Aug 7;5(2):135138.CrossRefGoogle ScholarPubMed
Boland, MJ, Hazen, JL, Nazor, KL, et al. Adult mice generated from induced pluripotent stem cells. Nature. 2009 Sep 3;461(7260):9194.CrossRefGoogle ScholarPubMed
Takahashi, K, Tanabe, K, Ohnuki, M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007 Nov 30;131(5):861872.CrossRefGoogle ScholarPubMed
Yu, J, Vodyanik, MA, Smuga-Otto, K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007 Dec 21;318(5858):19171920.CrossRefGoogle ScholarPubMed
Wang, Y, Liu, J, Tan, X, et al. Induced pluripotent stem cells from human hair follicle mesenchymal stem cells. Stem Cell Rev. 2013 Aug;9(4):451460.CrossRefGoogle ScholarPubMed
Loh, Y-H, Agarwal, S, Park, I-H, et al. Generation of induced pluripotent stem cells from human blood. Blood. 2009 May 28;113(22):54765479.CrossRefGoogle ScholarPubMed
Ichida, JK, Blanchard, J, Lam, K, et al. A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell. 2009 Nov 6;5(5):491503.CrossRefGoogle ScholarPubMed
Murry, CE, Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008 Feb 22;132(4):661680.CrossRefGoogle ScholarPubMed
Kriks, S, Shim, J-W, Piao, J, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature. 2011 Dec 22;480(7378):547551.CrossRefGoogle ScholarPubMed
Hirami, Y, Osakada, F, Takahashi, K, al. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett. 2009 Jul 24;458(3):126131.CrossRefGoogle ScholarPubMed
Shiba, Y, Fernandes, S, Zhu, W-Z, et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature. 2012 Sep 13;489(7415):322325.CrossRefGoogle ScholarPubMed
van Laake, LW, Passier, R, Monshouwer-Kloots, J, et al. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res. 2007 Oct;1(1):924.CrossRefGoogle ScholarPubMed
Nostro, MC, Sarangi, F, Ogawa, S, et al. Stage-specific signaling through TGFβ family members and Wnt regulates patterning and pancreatic specification of human pluripotent stem cells. Development. 2011 Mar;138(5):861871.CrossRefGoogle ScholarPubMed
Cai, J, Zhao, Y, Liu, Y, et al. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology. 2007 May;45(5):12291239.CrossRefGoogle ScholarPubMed
Spence, JR, Mayhew, CN, Rankin, SA, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 2011 Feb 3;470(7332):105109.CrossRefGoogle ScholarPubMed
Coraux, C, Nawrocki-Raby, B, Hinnrasky, J, et al. Embryonic stem cells generate airway epithelial tissue. Am J Respir Cell Mol Biol. 2005 Feb;32(2):8792.CrossRefGoogle ScholarPubMed
Van Haute, L, De Block, G, Liebaers, I, Sermon, K, De Rycke, M. Generation of lung epithelial-like tissue from human embryonic stem cells. Respir Res. 2009;10(1):105.CrossRefGoogle ScholarPubMed
Wang, D, Haviland, DL, Burns, AR, Zsigmond, E, Wetsel, RA. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells. Proc Natl Acad Sci USA. 2007 Mar 13;104(11):44494454.CrossRefGoogle ScholarPubMed
Christodoulou, C, Longmire, TA, Shen, SS, et al. Mouse ES and iPS cells can form similar definitive endoderm despite differences in imprinted genes. J Clin Invest. 2011 Jun;121(6):23132325.CrossRefGoogle ScholarPubMed
Gadue, P, Huber, TL, Paddison, PJ, Keller, GM. Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci USA. 2006 Nov 7;103(45):1680616811.CrossRefGoogle Scholar
Tada, S, Era, T, Furusawa, C, et al. Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development. 2005 Oct;132(19):43634374.CrossRefGoogle ScholarPubMed
Yasunaga, M, Tada, S, Torikai-Nishikawa, S, et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol. 2005 Dec;23(12):15421550.CrossRefGoogle Scholar
Gouon-Evans, V, Boussemart, L, Gadue, P, et al. BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol. 2006 Nov;24(11):14021411.CrossRefGoogle ScholarPubMed
Green, MD, Chen, A, Nostro, M-C, et al. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat Biotechnol. 2011 Mar;29(3):267272.CrossRefGoogle ScholarPubMed
Longmire, TA, Ikonomou, L, Hawkins, F, et al. Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell. 2012 Apr 6;10(4):398411.CrossRefGoogle ScholarPubMed
Mou, H, Zhao, R, Sherwood, R, et al. Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell. 2012 Apr 6;10(4):385397.CrossRefGoogle ScholarPubMed
Huang, SXL, Islam, MN, O'Neill, J, et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nature. 2014 Jan 1;32(1):8491.Google ScholarPubMed
Brafman, DA, Moya, N, Allen-Soltero, S, Fellner, T, Robinson, M, McMillen, ZL, et al. Analysis of SOX2-expressing cell populations derived from human pluripotent stem cells. Stem Cell Rep. 2013 Nov;1(5):464478.CrossRefGoogle ScholarPubMed
Ghaedi, M, Calle, EA, Mendez, JJ, et al. Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. J Clin Invest. 2013 Nov 1;123(11):49504962.CrossRefGoogle ScholarPubMed
You, Y, Richer, EJ, Huang, T, Brody, SL. Growth and differentiation of mouse tracheal epithelial cells: selection of a proliferative population. Am J Physiol Lung Cell Mol Physiol. 2002 Dec;283(6):L13151321.CrossRefGoogle ScholarPubMed
Firth, AL, Dargitz, CT, Qualls, SJ, et al. Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc Natl Acad Sci USA. 2014 Apr 29;111(17):E1723–1730.CrossRefGoogle Scholar
Ogawa, S, Surapisitchat, J, Virtanen, C, et al. Three-dimensional culture and cAMP signaling promote the maturation of human pluripotent stem cell-derived hepatocytes. Development. 2013 Jul 16;140(15):32853296.CrossRefGoogle ScholarPubMed
Saito, H, Takeuchi, M, Chida, K, Miyajima, A. Generation of glucose-responsive functional islets with a three-dimensional structure from mouse fetal pancreatic cells and iPS cells in vitro. PLoS One. 2011;6(12):e28209.CrossRefGoogle ScholarPubMed
Gotoh, S, Ito, I, Nagasaki, T, et al. Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Rep. 2014 Sep;3(3):394403.CrossRefGoogle ScholarPubMed
Baiguera, S, Jungebluth, P, Burns, A, et al. Tissue engineered human tracheas for in vivo implantation. Biomaterials. 2010 Dec;31(34):89318938.CrossRefGoogle ScholarPubMed
Macchiarini, P, Jungebluth, P, Go, T, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008 Dec 13;372(9655):20232030.CrossRefGoogle ScholarPubMed
Ott, HC, Clippinger, B, Conrad, C, et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med. 2010 Aug;16(8):927933.CrossRefGoogle ScholarPubMed
Petersen, TH, Calle, EA, Zhao, L, et al. Tissue-engineered lungs for in vivo implantation. Science. 2010 Jul 30;329(5991):538541.CrossRefGoogle ScholarPubMed
Daly, AB, Wallis, JM, Borg, ZD, et al. Initial binding and recellularization of decellularized mouse lung scaffolds with bone marrow-derived mesenchymal stromal cells. Tissue Eng. Part A. 2012 Jan;18(1–2):116.CrossRefGoogle ScholarPubMed
Inoue-Yokoo, T, Tani, K, Sugiyama, D. Mesodermal and hematopoietic differentiation from ES and iPS cells. Stem Cell Rev. 2013 Aug;9(4):422434.CrossRefGoogle ScholarPubMed
Era, T. Mesoderm cell development from ES cells. Methods Mol Biol. 2010;636:87103.CrossRefGoogle ScholarPubMed
Suzuki, T, Mayhew, C, Sallese, A, et al. Use of induced pluripotent stem cells to recapitulate pulmonary alveolar proteinosis pathogenesis. Am J Respir Crit Care Med. 2014 Jan 15;189(2):183193.CrossRefGoogle ScholarPubMed
Lachmann, N, Happle, C, Ackermann, M, Lüttge, D, Wetzke, M, Merkert, S, et al. Gene correction of human induced pluripotent stem cells repairs the cellular phenotype in pulmonary alveolar proteinosis. Am J Respir Crit Care Med. 2014 Jan 15;189(2):167182.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×