Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T21:07:31.288Z Has data issue: false hasContentIssue false

Chapter 10 - Perinatal Modifiers of Lung Structure and Function

Published online by Cambridge University Press:  05 April 2016

Alan H. Jobe
Affiliation:
University of Cincinnati
Jeffrey A. Whitsett
Affiliation:
Cincinnati Children’s Hospital
Steven H. Abman
Affiliation:
University of Colorado School of Medicine
Get access

Summary

Abstract

The fetal lung progresses through a series of orchestrated developmental events that ultimately leads to a structurally and a functionally mature lung at term birth. However, a number of insults during fetal gestation can lead to aberrant lung growth and/or lung injury. The focus in this chapter is on events that occur after the fetus is of viable gestation rather than the early embryonic insults that ultimately lead to bronchopulmonary dysplasia, lung hypoplasia, or other clinically relevant adverse lung outcomes. Reviews of experimental animal studies are presented in the context of how these studies inform us of likely pathways of lung injury documented in clinical studies. The major perinatal insults discussed are chorioamnionitis, drugs and toxins, and intrauterine growth restriction or nutritional insults. The chapter also integrates how the developmental immune system modulates the lung injury and inflammation that leads to poor functional lung outcomes.

Type
Chapter
Information
Fetal and Neonatal Lung Development
Clinical Correlates and Technologies for the Future
, pp. 187 - 204
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shannon, JM, Deterding, RR. Epithelial-mesenchymal interactions in lung development. In: McDonald, JA, ed. Lung Growth and Development. New York, NY: Marcel Dekker; 1997:81106.Google Scholar
Pringle, KC. Human fetal lung development and related animal models. Clin Obstet Gynecol. 1986;29:502513.CrossRefGoogle ScholarPubMed
Kim, MJ, Romero, R, Gervasi, MT, et al. Widespread microbial invasion of the chorioamniotic membranes is a consequence and not a cause of intra-amniotic infection. Lab Invest. 2009;89:924936.CrossRefGoogle Scholar
Ikegami, M, Moss, TJ, Kallapur, SG, et al. Minimal lung and systemic responses to TNF{alpha} in preterm sheep. Am J Physiol Lung Cell Mol Physiol. 2003;285:L121L129.CrossRefGoogle Scholar
Kallapur, SG, Moss, TJ, Auten, RL Jr, et al. IL-8 signaling does not mediate intra-amniotic LPS-induced inflammation and maturation in preterm fetal lamb lung. Am J Physiol Lung Cell Mol Physiol. 2009;297:L512519.CrossRefGoogle Scholar
Sadowsky, DW, Adams, KM, Gravett, MG, Witkin, SS, Novy, MJ. Preterm labor is induced by intraamniotic infusions of interleukin-1beta and tumor necrosis factor-alpha but not by interleukin-6 or interleukin-8 in a nonhuman primate model. Am J Obstet Gynecol. 2006;195:15781589.CrossRefGoogle Scholar
DiGiulio, DB. Diversity of microbes in amniotic fluid. Semin Fetal Neonatal Med. 2012;17:211.CrossRefGoogle ScholarPubMed
Novy, MJ, Duffy, L, Axthelm, MK, et al. Ureaplasma parvum or Mycoplasma hominis as sole pathogens cause chorioamnionitis, preterm delivery, and fetal pneumonia in rhesus macaques. Reprod Sci. 2009;16:5670.CrossRefGoogle ScholarPubMed
Dando, SJ, Nitsos, I, Kallapur, SG, et al. The role of the multiple banded antigen of Ureaplasma parvum in intra-amniotic infection: major virulence factor or decoy? PLoS One. 2012;7: e29856.CrossRefGoogle ScholarPubMed
Knox, CL, Dando, SJ, Nitsos, I, et al. The severity of chorioamnionitis in pregnant sheep is associated with in vivo variation of the surface-exposed multiple- banded antigen/gene of Ureaplasma parvum. Biol Reprod. 2010;83:415426.CrossRefGoogle ScholarPubMed
Payne, MS, Kemp, MW, Kallapur, SG, et al. Intrauterine Candida albicans infection elicits severe inflammation in fetal sheep. Pediatr Res. 2014;75:716722.CrossRefGoogle ScholarPubMed
Kallapur, SG, Willet, KE, Jobe, AH, Ikegami, M, Bachurski, CJ. Intra-amniotic endotoxin: chorioamnionitis precedes lung maturation in preterm lambs. AM J Physiol Lung Cell Mol Physiol. 2001;280:L527L536.CrossRefGoogle ScholarPubMed
Bachurski, CJ, Ross, GF, Ikegami, M, Kramer, BW, Jobe, AH, Intra-amniotic endotoxin increases pulmonary surfactant proteins and induces SP-B processing in fetal sheep. Am J Physiol Lung Cell Mol Physiol. 2001;280:L279285.CrossRefGoogle ScholarPubMed
Kramer, BW, Kallapur, SG, Moss, TJ, et al. Modulation of fetal inflammatory response on exposure to lipopolysaccharide by chorioamnion, lung, or gut in sheep. Am J Obstet Gynecol. 2010;202:77 e7179.CrossRefGoogle ScholarPubMed
Kemp, MW, Kannan, PS, Saito, M, et al. Selective exposure of the fetal lung and skin/amnion (but not gastro-intestinal tract) to LPS elicits acute systemic inflammation in fetal sheep. PLoS One. 2013;8:e63355.CrossRefGoogle ScholarPubMed
Moss, TJ, Nitsos, I, Kramer, BW, Ikegami, M, Newnham, JP, Jobe, AH. Intra-amniotic endotoxin induces lung maturation by direct effects on the developing respiratory tract in preterm sheep. Am J Obstet Gynecol. 2002;187:10591065.CrossRefGoogle ScholarPubMed
Sosenko, IR, Kallapur, SG, Nitsos, I, et al. IL-1alpha causes lung inflammation and maturation by direct effects on preterm fetal lamb lungs. Pediatr Res. 2006;60:294298.CrossRefGoogle ScholarPubMed
Kallapur, SG, Moss, TJM, Ikegami, M, Jasman, RL, Newnham, JP, Jobe, AH. Recruited inflammatory cells mediate endotoxin induced lung maturation in preterm fetal lambs. Am J Respir Crit Care Med. 2005;172:13151321.CrossRefGoogle ScholarPubMed
Kallapur, SG, Nitsos, I, Moss, TJ, et al. IL-1 mediates pulmonary and systemic inflammatory responses to chorioamnionitis induced by lipopolysaccharide. Am J Respir Crit Care Med. 2009;179:955961.CrossRefGoogle ScholarPubMed
Willet, K.E., Jobe, AH, Ikegami, M, Newnham, J, Brennan, S, Sly, PD. Antenatal endotoxin and glucocorticoid effects on lung morphometry in preterm lambs. Pediatr Res. 2000;48:782788.CrossRefGoogle ScholarPubMed
Collins, JJ, Kuypers, E, Nitsos, I, et al. LPS-induced chorioamnionitis and antenatal corticosteroids modulate Shh signaling in the ovine fetal lung. Am J Physiol Lung Cell Mol Physiol. 2012;303:L778787.CrossRefGoogle ScholarPubMed
Blackwell, TS, Hipps, AN, Yamamoto, Y, et al. NF-kappaB signaling in fetal lung macrophages disrupts airway morphogenesis. J Immunol. 2011;187:27402747.CrossRefGoogle ScholarPubMed
Kallapur, SG, Bachurski, CJ, Le Cras, TD, Joshi, SN, Ikegami, M, Jobe, AH. Vascular changes after intra-amniotic endotoxin in preterm lamb lungs. Am J Physiol Lung Cell Mol Physiol. 2004;287:L11781185.CrossRefGoogle ScholarPubMed
Polglase, GR, Hooper, SB, Gill, AW, et al. Intrauterine inflammation causes pulmonary hypertension and cardiovascular sequelae in preterm lambs. J Appl Physiol. 2010;108:17571765.CrossRefGoogle ScholarPubMed
Kallapur, SG, Kramer, BW, Jobe, AH. Ureaplasma and BPD. Semin Perinatol. 2013;37:94101.CrossRefGoogle ScholarPubMed
Bry, K, Whitsett, JA, Lappalainen, U. IL-1beta disrupts postnatal lung morphogenesis in the mouse. Am J Respir Cell Mol Biol. 2007;36:3242.CrossRefGoogle ScholarPubMed
Kallapur, SG, Nitsos, I, Moss, TJM, et al. Chronic endotoxin exposure does not cause sustained structural abnormalities in the fetal sheep lungs. Am J Physiol Lung Cell Mol Biol. 2005;288:L966L974.CrossRefGoogle Scholar
Kramer, BW, Joshi, SN, Moss, TJ, et al. Endotoxin-induced maturation of monocytes in preterm fetal sheep lung. Am J Physiol Lung Cell Mol Physiol. 2007;293:L345353.CrossRefGoogle ScholarPubMed
Kallapur, SG, Jobe, AH, Ball, MK, et al. Pulmonary and systemic endotoxin tolerance in preterm fetal sheep exposed to chorioamnionitis. J Immunol. 2007;179:84918499.CrossRefGoogle ScholarPubMed
Kallapur, SG, Kramer, BW, Knox, CL, et al. Chronic fetal exposure to Ureaplasma parvum suppresses innate immune responses in sheep. J Immunol. 2011;187:26882695.CrossRefGoogle ScholarPubMed
Kramer, BW, Kallapur, SG, Moss, TJ, Nitsos, I, Newnham, JP, Jobe, AH. Intra-amniotic LPS modulation of TLR signaling in lung and blood monocytes of fetal sheep. Innate Immun. 2009;15:101107.CrossRefGoogle ScholarPubMed
Tang, JR, Seedorf, GJ, Muehlethaler, V, et al. Moderate postnatal hyperoxia accelerates lung growth and attenuates pulmonary hypertension in infant rats after exposure to intra-amniotic endotoxin. Am J Physiol Lung Cell Mol Physiol. 2010;299:L735748.CrossRefGoogle ScholarPubMed
Kallapur, SG, Presicce, P, Rueda, CM, Jobe, AH, Chougnet, CA. Fetal immune response to chorioamnionitis. Semin Reprod Med. 2014;32:5667.Google ScholarPubMed
Kunzmann, S, Collins, JJ, Yang, Y, et al. Antenatal inflammation reduces cav-1 expression and influences multiple signaling pathways in preterm fetal lungs. Am J Respir Cell Mol Biol. 2011;45:969976.CrossRefGoogle ScholarPubMed
Kunzmann, S, Speer, CP, Jobe, AH, Kramer, BW. Antenatal inflammation induced TGF-beta1 but suppressed CTGF in preterm lungs. Am J Physiol Lung Cell Mol Physiol. 2007;292:L223231.CrossRefGoogle ScholarPubMed
Sweet, DG, Huggett, MT, Warner, JA, et al. Maternal betamethasone and chorioamnionitis induce different collagenases during lung maturation in fetal sheep. Neonatology. 2008;94:7986.CrossRefGoogle ScholarPubMed
Lappalainen, U, Whitsett, JA, Wert, SE, Tichelaar, JW, Bry, K. Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am J Respir Cell Mol Biol. 2005;32:311318.CrossRefGoogle ScholarPubMed
Benjamin, JT, Smith, RJ, Halloran, BA, Day, TJ, Kelly, DR, Prince, LS. FGF-10 is decreased in bronchopulmonary dysplasia and suppressed by Toll-like receptor activation. Am J Physiol Lung Cell Mol Physiol. 2007;292:L550558.CrossRefGoogle ScholarPubMed
Mandell, E, Seedorf, G, Gien, J, Abman, SH. Vitamin D treatment improves survival and infant lung structure after intra-amniotic endotoxin exposure in rats: potential role for the prevention of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2014;306:L420428.CrossRefGoogle ScholarPubMed
Saxena, AR, Seely, EW, Rich-Edwards, JW, Wilkins-Haug, LE, Karumanchi, SA, McElrath, TF. First trimester PAPP-A levels correlate with sFlt-1 levels longitudinally in pregnant women with and without preeclampsia. BMC Pregnancy Childbirth. 2013;13:85.CrossRefGoogle ScholarPubMed
Tang, JR, Karumanchi, SA, Seedorf, G, Markham, N, Abman, SH. Excess soluble vascular endothelial growth factor receptor-1 in amniotic fluid impairs lung growth in rats: linking preeclampsia with bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2012;302:L3646.CrossRefGoogle ScholarPubMed
Liu, Y, Cox, SR, Morita, T, Kourembanas, S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5' enhancer. Circ Res. 1995;77:638643.CrossRefGoogle ScholarPubMed
Grover, TR, Asikainen, TM, Kinsella, JP, Abman, SH, White, CW. Hypoxia-inducible factors HIF-1alpha and HIF-2alpha are decreased in an experimental model of severe respiratory distress syndrome in preterm lambs. Am J Physiol Lung Cell Mol Physiol. 2007;292:L13451351.CrossRefGoogle Scholar
Asikainen, TM, Waleh, NS, Schneider, BK, Clyman, RI, White, CW. Enhancement of angiogenic effectors through hypoxia-inducible factor in preterm primate lung in vivo. Am J Physiol Lung Cell Mol Physiol. 2006;291:L588595.CrossRefGoogle ScholarPubMed
Bhatt, AJ, Pryhuber, GS, Huyck, H, Watkins, RH, Metlay, LA, Maniscalco, WM. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1 and Tie-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Critic Care Med. 2001;164:19711980.CrossRefGoogle ScholarPubMed
Maniscalco, WM, Watkins, RH, Pryhuber, GS, Bhatt, A, Shea, C, Huyck, H. Angiogenic factors and alveolar vasculature: development and alterations by injury in very premature baboons. Am J Physiol Lung Cell Mol Physiol. 2002;282:L811823.CrossRefGoogle ScholarPubMed
Malloy, MH. Chorioamnionitis: epidemiology of newborn management and outcome United States 2008. J Perinatol. 2014;34(8):611615.CrossRefGoogle ScholarPubMed
Hartling, L, Liang, Y, Lacaze-Masmonteil, T. Chorioamnionitis as a risk factor for bronchopulmonary dysplasia: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2012;97:F8F17.CrossRefGoogle ScholarPubMed
Been, JV, Rours, IG, Kornelisse, RF, et al. Histologic chorioamnionitis, fetal involvement, and antenatal steroids: effects on neonatal outcome in preterm infants. Am J Obstet Gynecol. 2009;201:587 e581–588.CrossRefGoogle ScholarPubMed
Been, JV, Rours, IG, Kornelisse, RF, Jonkers, F, de Krijger, RR, Zimmermann, LJ. Chorioamnionitis alters the response to surfactant in preterm infants. J Pediatr. 2010;156:1015 e11.CrossRefGoogle ScholarPubMed
Jones, MH, Corso, AL, Tepper, RS, et al. Chorioamnionitis and subsequent lung function in preterm infants. PLoS One. 2013;8:e81193.CrossRefGoogle ScholarPubMed
Kumar, R, Yu, Y, Story, RE, et al. Prematurity, chorioamnionitis, and the development of recurrent wheezing: a prospective birth cohort study. J Allergy Clin Immunol. 2008;121:878884 e876.CrossRefGoogle ScholarPubMed
Kenyon, SL, Taylor, DJ, Tarnow-Mordi, W. Broad-spectrum antibiotics for preterm, prelabour rupture of fetal membranes: the ORACLE I randomised trial. ORACLE Collaborative Group. Lancet. 2001;357:979988.CrossRefGoogle ScholarPubMed
Kenyon, SL, Taylor, DJ, Tarnow-Mordi, W, Broad-spectrum antibiotics for spontaneous preterm labour: the ORACLE II randomised trial. ORACLE Collaborative Group. Lancet. 2001;357:989994.CrossRefGoogle ScholarPubMed
Wang, EE, Ohlsson, A, Kellner, JD, Association of Ureaplasma urealyticum colonization with chronic lung disease of prematurity: results of a metaanalysis. J Pediatr. 1995;127:640644.CrossRefGoogle ScholarPubMed
Schelonka, RL, Katz, B, Waites, KB, Benjamin, DK Jr. Critical appraisal of the role of Ureaplasma in the development of bronchopulmonary dysplasia with metaanalytic techniques. Pediatr Infect Dis J. 2005;24:10331039.CrossRefGoogle ScholarPubMed
Lowe, J, Watkins, WJ, Edwards, MO, et al. Association between pulmonary Ureaplasma colonization and bronchopulmonary dysplasia in preterm infants: updated systematic review and meta-analysis. Pediatr Infect Dis J. 2014;33:697702.CrossRefGoogle ScholarPubMed
Ballard, HO, Anstead, MI, Shook, LA. Azithromycin in the extremely low birth weight infant for the prevention of bronchopulmonary dysplasia: a pilot study. Respir Res. 2007;8:41.CrossRefGoogle ScholarPubMed
Ozdemir, R, Erdeve, O, Dizdar, EA, et al. Clarithromycin in preventing bronchopulmonary dysplasia in Ureaplasma urealyticum-positive preterm infants. Pediatrics. 2011;128:e14961501.CrossRefGoogle ScholarPubMed
Ballard, HO, ; Shook, LA, Bernard, P, et al. Use of azithromycin for the prevention of bronchopulmonary dysplasia in preterm infants: a randomized, double-blind, placebo controlled trial. Pediatr Pulmonol. 2011;46:111118.CrossRefGoogle ScholarPubMed
Gharehbaghi, MM, Peirovifar, A, Ghojazadeh, M, Mahallei, M. Efficacy of azithromycin for prevention of bronchopulmonary dysplasia (BPD). Turkish J Med Sci. 2012;42:10701075.Google Scholar
Liggins, GC, Howie, RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics. 1972;50:515525.CrossRefGoogle ScholarPubMed
Crowley, PA. Antenatal corticosteroid therapy: a meta-analysis of the randomized trials, 1972 to 1994. Am J Obstet Gynecol. 1995;173:322335.CrossRefGoogle ScholarPubMed
Kallapur, SG, Kramer, BW, Moss, TJ, et al. Maternal glucocorticoids increase endotoxin-induced lung inflammation in preterm lambs. Am J Physiol Lung Cell Mol Physiol. 2003;284:L633L642.CrossRefGoogle ScholarPubMed
Kuypers, E, Collins, JJ, Kramer, BW, et al. Intra-amniotic LPS and antenatal betamethasone: inflammation and maturation in preterm lamb lungs. Am J Physiol Lung Cell Mol Physiol. 2012;302:L380389.CrossRefGoogle ScholarPubMed
Pike, K, Pillow, JJ, Lucas, JS. Long term respiratory consequences of intrauterine growth restriction. Semin Fetal Neonatal Med. 2012;17:9298.CrossRefGoogle ScholarPubMed
Bose, C, Van Marter, LJ, Laughon, M, et al. Fetal growth restriction and chronic lung disease among infants born before the 28th week of gestation. Pediatrics. 2009;124:e450458.CrossRefGoogle ScholarPubMed
Joss-Moore, LA, Wang, Y, Baack, ML, et al. IUGR decreases PPARgamma and SETD8 expression in neonatal rat lung and these effects are ameliorated by maternal DHA supplementation. Early Hum Dev. 2010;86:785791.CrossRefGoogle ScholarPubMed
Massaro, D, Massaro, GD. Retinoids, alveolus formation, and alveolar deficiency: clinical implications. Am J Respir Cell Mol Biol. 2003;28:271274.CrossRefGoogle ScholarPubMed
Londhe, VA, Maisonet, TM, Lopez, B, Shin, BC, Huynh, J, Devaskar, SU. Retinoic acid rescues alveolar hypoplasia in the calorie-restricted developing rat lung. Am J Respir Cell Mol Biol. 2013;48:179187.CrossRefGoogle ScholarPubMed
Bland, RD, Albertine, KH, Pierce, RA, Starcher, BC, Carlton, DP. Impaired alveolar development and abnormal lung elastin in preterm lambs with chronic lung injury: potential benefits of retinol treatment. Biol Neonate. 2003;84:101102.CrossRefGoogle ScholarPubMed
Tyson, JE, Wright, LL, Oh, W, et al. Vitamin A supplementation for extremely-low-birth-weight infants. National Institute of Child Health and Human Development Neonatal Research Network. N Engl J Med. 1999;340:19621968.CrossRefGoogle ScholarPubMed
Barker, DJ, Winter, PD, Osmond, C, Margetts, B, Simmonds, SJ. Weight in infancy and death from ischaemic heart disease. Lancet. 1989;2:577580.CrossRefGoogle ScholarPubMed
Torrance, HL, Voorbij, HA, Wijnberger, LD, van Bel, F, Visser, GH. Lung maturation in small for gestational age fetuses from pregnancies complicated by placental insufficiency or maternal hypertension. Early Hum Dev. 2008;84:465469.CrossRefGoogle ScholarPubMed
Lawlor, DA, Ebrahim, S, Davey Smith, G. Association of birth weight with adult lung function: findings from the British Women's Heart and Health Study and a meta-analysis. Thorax. 2005;60:851858.CrossRefGoogle ScholarPubMed
Kotecha, SJ, Watkins, WJ, Heron, J, Henderson, J, Dunstan, FD, Kotecha, S. Spirometric lung function in school-age children: effect of intrauterine growth retardation and catch-up growth. Am J Respir Crit Care Med. 2010;181:969974.CrossRefGoogle ScholarPubMed
Lucas, JS, Inskip, HM, Godfrey, KM, et al. Small size at birth and greater postnatal weight gain: relationships to diminished infant lung function. Am J Respir Crit Care Med. 2004;170:534540.CrossRefGoogle ScholarPubMed
Ebrahim, SH, Floyd, RL, Merritt, RK II, Decoufle, P, Holtzman, D. Trends in pregnancy-related smoking rates in the United States, 1987–1996. JAMA. 2000;283:361366.CrossRefGoogle ScholarPubMed
Collins, MH, Moessinger, AC, Kleinerman, J, et al. Fetal lung hypoplasia associated with maternal smoking: a morphometric analysis. Pediatr Res. 1985;19:408412.CrossRefGoogle ScholarPubMed
Sekhon, HS, Jia, Y, Raab, R, et al. Prenatal nicotine increases pulmonary alpha7 nicotinic receptor expression and alters fetal lung development in monkeys. J Clin Invest. 1999;103:637647.CrossRefGoogle ScholarPubMed
Sandberg, K, Poole, SD, Hamdan, A, Arbogast, P, Sundell, HW. Altered lung development after prenatal nicotine exposure in young lambs. Pediatr Res. 2004;56:432439.CrossRefGoogle ScholarPubMed
Sekhon, HS, Keller, JA, Benowitz, NL, Spindel, ER. Prenatal nicotine exposure alters pulmonary function in newborn rhesus monkeys. Am J Respir Crit Care Med. 2001;164:989994.CrossRefGoogle ScholarPubMed
Wuenschell, CW, Zhao, J, Tefft, JD, Warburton, D. Nicotine stimulates branching and expression of SP-A and SP-C mRNAs in embryonic mouse lung culture. Am J Physiol. 1998;274:L165170.Google ScholarPubMed
Lieberman, E, Torday, J, Barbieri, R, Cohen, A, Van Vunakis, H, Weiss, ST. Association of intrauterine cigarette smoke exposure with indices of fetal lung maturation. Obstet Gynecol. 1992;79:564570.Google ScholarPubMed
Elliot, J, Vullermin, P, Robinson, P. Maternal cigarette smoking is associated with increased inner airway wall thickness in children who die from sudden infant death syndrome. Am J Respir Crit Care Med. 1998;158:802806.CrossRefGoogle ScholarPubMed
Hoo, AF, Henschen, M, Dezateux, C, Costeloe, K, Stocks, J. Respiratory function among preterm infants whose mothers smoked during pregnancy. Am J Respir Crit Care Med. 1998;158:700705.CrossRefGoogle ScholarPubMed
Milner, AD, Marsh, MJ, Ingram, DM, Fox, GF, Susiva, C. Effects of smoking in pregnancy on neonatal lung function. Arch Dis Child Fetal Neonatal Ed. 1999;80:F814.CrossRefGoogle ScholarPubMed
Hayatbakhsh, MR, Sadasivam, S, Mamun, AA, Najman, JM, Williams, GM, O'Callaghan, MJ. Maternal smoking during and after pregnancy and lung function in early adulthood: a prospective study. Thorax. 2009;64:810814.CrossRefGoogle ScholarPubMed
McEvoy, CT, Schilling, D, Clay, N, et al. Vitamin C supplementation for pregnant smoking women and pulmonary function in their newborn infants: a randomized clinical trial. JAMA. 2014;311:20742082.CrossRefGoogle ScholarPubMed
Grigoriadis, S, Vonderporten, EH, Mamisashvili, L, et al. Prenatal exposure to antidepressants and persistent pulmonary hypertension of the newborn: systematic review and meta-analysis. BMJ. 2014;348:f6932.CrossRefGoogle ScholarPubMed
Epstein, MB, Bates, MN, Arora, NK, Balakrishnan, K, Jack, DW, Smith, KR. Household fuels, low birth weight, and neonatal death in India: the separate impacts of biomass, kerosene, and coal. Int J Hyg Environ Health. 2013;216:523532.CrossRefGoogle ScholarPubMed
Wigglesworth, JS, Desai, R. Effect on lung growth of cervical cord section in the rabbit fetus. Early Hum Dev. 1979;3:5165.CrossRefGoogle ScholarPubMed
Moessinger, AC, Harding, R, Adamson, TM, Singh, M, Kiu, GT. Role of lung fluid volume in growth and maturation of the fetal sheep lung. J Clin Invest. 1990;86:12701277.CrossRefGoogle ScholarPubMed
Lines, A, Hooper, SB, Harding, R. Lung liquid production rates and volumes do not decrease before labor in healthy fetal sheep. J Appl Physiol. 1997;82:927932.CrossRefGoogle Scholar
Hummler, E, Barker, P, Gatzy, J, et al. Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet. 1996;12:325328.CrossRefGoogle ScholarPubMed
Benachi, A, Chailley-Heu, B, Delezoide, AL, et al. Lung growth and maturation after tracheal occlusion in diaphragmatic hernia. Am J Respir Crit Care Med. 1998;157:921927.CrossRefGoogle ScholarPubMed
Chauhan, SP, Doherty, DD, Magann, EF, Cahanding, F, Moreno, F, Klausen, JH. Amniotic fluid index vs single deepest pocket technique during modified biophysical profile: a randomized clinical trial. Am J Obstet Gynecol. 2004;191:661667.CrossRefGoogle ScholarPubMed
Nakamura, Y, Funatsu, Y, Yamamoto, I, et al. Potter's syndrome associated with renal agenesis or dysplasia. Morphological and biochemical study of the lung. Arch Pathol Lab Med. 1985;109:441444.Google ScholarPubMed
Chien, LN, Chiou, HY, Wang, CW, Yeh, TF, Chen, CM. Oligohydramnios increases the risk of respiratory hospitalization in childhood: a population-based study. Pediatr Res. 2014;75:576581.CrossRefGoogle ScholarPubMed
Thibeault, DW, Beatty, EC Jr, Hall, RT, Bowen, SK, O'Neill, DH. Neonatal pulmonary hypoplasia with premature rupture of fetal membranes and oligohydramnios. J Pediatr. 1985;107:273277.CrossRefGoogle ScholarPubMed
Williams, O, Michel, B, Hutchings, G, Debauche, C, Hubinont, C. Two-year neonatal outcome following PPROM prior to 25 weeks with a prolonged period of oligohydramnios. Early Hum Dev. 2012;88:657661.CrossRefGoogle ScholarPubMed
Liggins, GC. Growth of the fetal lung. J Dev Physiol. 1984;6:237248.Google ScholarPubMed
George, DK, Cooney, TP, Chiu, BK, and Thurlbeck, WM. Hypoplasia and immaturity of the terminal lung unit (acinus) in congenital diaphragmatic hernia. Am Rev Respir Dis. 1987;136:947950.CrossRefGoogle ScholarPubMed
Kotecha, S. Lung growth for beginners. Paediatr Respir Rev. 1:308313, 2000.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×