Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-18T22:16:29.386Z Has data issue: false hasContentIssue false

Chapter 8 - Surfactant During Lung Development

Published online by Cambridge University Press:  05 April 2016

Alan H. Jobe
Affiliation:
University of Cincinnati
Jeffrey A. Whitsett
Affiliation:
Cincinnati Children’s Hospital
Steven H. Abman
Affiliation:
University of Colorado School of Medicine
Get access

Summary

Abstract

Surfactant is a unique lipid and protein substance made by type II cells in the lung that provides inflation stability, decreases the work of breathing, and has components with innate host defense properties. Surfactant is normally synthesized and secreted into the airspaces of the fetal lung as term approaches, but it can be induced earlier in gestation by fetal exposures to corticosteroids or inflammation. The surfactant deficiency associated with preterm birth can cause severe respiratory failure termed respiratory distress syndrome (RDS), a frequently lethal disease before the availability of clinical surfactants to treat infants. Surfactant components each have complex metabolic characteristics in the premature and mature lung. Term infants can have severe surfactant dysfunction because of rare mutations that disrupt surfactant protein synthesis or processing. The research resulting in the understanding of surfactant metabolism and function and subsequent treatment of RDS is a highlight of progress from science to cure strategies in pulmonary medicine.

Type
Chapter
Information
Fetal and Neonatal Lung Development
Clinical Correlates and Technologies for the Future
, pp. 141 - 163
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Clements, JA. Surfactant tension of lung extracts. Proc Soc Exp Biol Med. 1957;95:170.CrossRefGoogle Scholar
Avery, ME, Mead, J. Surface properties in relation to atelectasis and hyaline membrane disease. AMA J Dis Child. 1959;97:517523.Google ScholarPubMed
Clements, JA, Platzker, AC, Tierney, DF, et al. Assessment of the risk of the respiratory distress syndrome by a rapid test for surfactant in amniotic fluid. New Engl Med. 1972;18:10771081.CrossRefGoogle Scholar
Gluck, L, Kulovich, M, Borer, RC, Brenner, PH, Anderson, GG, Spellacy, WN. Diagnosis of the respiratory distress syndrome by amniocentesis. Am J Ob Gyn. 1971;109:440445.CrossRefGoogle ScholarPubMed
Hallman, M, Kulovich, M, Kirkpatrick, E, Sugarman, RG, Gluck, L. Phosphatidylinositol and phosphatidylglycerol in amniotic fluid: indices of lung maturity. Am J Obstet Gynecol. 1976;125:613617.CrossRefGoogle ScholarPubMed
Liggins, GC, Howie, RN. A controlled trial of antepartium glucocorticoid treatment for prevention of RDS in premature infants. Pediatrics. 1972;50:515525.CrossRefGoogle Scholar
Gregory, GA, Kitterman, JA, Phibbs, RH, Tooley, WA, Hamilton, WK. Treatment of the idiopathic respiratory distress system with continuous positive airway pressure. N Engl J Med. 1971;284:13331340.CrossRefGoogle Scholar
Enhörning, G, Robertson, B. Lung expansion in the premature rabbit fetus after tracheal deposition of surfactant. Pediatr. 1972;50:5866.CrossRefGoogle ScholarPubMed
Fujiwara, T, Chida, S, Watabe, Y, Maeta, H, Morita, Ta, Abe, T. Artificial surfactant therapy in hyaline-membrane disease. Lancet. 1980;1:5559.CrossRefGoogle ScholarPubMed
Whitsett, JA, Wert, SE, Weaver, TE. Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Annu Rev Med. 2010;61:105119.CrossRefGoogle ScholarPubMed
McCormack, FX, Whitsett, JA. The pulmonary collectins, SP-A and SP-D, orchestrate innate immunity in the lung. J Clin Invest. 2002;109:707712.CrossRefGoogle ScholarPubMed
Sano, H, Kuroki, Y. The lung collectins, SP-A and SP-D, modulate pulmonary innate immunity. Mol Immunol. 2005;42:279287.CrossRefGoogle ScholarPubMed
Korfhagen, TR, Bruno, MD, Ross, GF, et al. Altered surfactant function and structure in SP-A gene targeted mice. Proc Natl Acad Sci U S A. 1996;93:95949599.CrossRefGoogle ScholarPubMed
Kingma, PS, Whitsett, JA. In defense of the lung: surfactant protein A and surfactant protein D. Curr Opin Pharmacol. 2006;6:277283.CrossRefGoogle ScholarPubMed
Kuypers, E, Collins, JJ, Kramer, BW, et al. Intra-amniotic LPS and antenatal betamethasone: inflammation and maturation in preterm lamb lungs. Am J Physiol Lung Cell Mol Physiol. 2012;302:L380389.CrossRefGoogle ScholarPubMed
Ikegami, M, Whitsett, JA, Jobe, AH, Ross, G, Fisher, J, Korfhagen, T. Surfactant metabolism in SP-D gene ablated mice. Am J Physiol Lung Cell Mol Physiol. 2000;279:L468L476.CrossRefGoogle Scholar
Sato, A, Whitsett, JA, Scheule, RK, Ikegami, M. Surfactant protein-D inhibits lung inflammation caused by ventilation in premature newborn lambs. Am J Respir Crit Care Med. 2010;181:10981105.CrossRefGoogle ScholarPubMed
Weaver, TE, Conkright, JJ. Function of surfactant proteins B and C. Annu Rev Physiol. 2001;63:555578.CrossRefGoogle ScholarPubMed
Clark, JC, Wert, SE, Bachurski, CJ, et al. Targeted disruption of the surfactant protein B gene disrupts surfactant homeostasis, causing respiratory failure in newborn mice. Proc Natl Acad Sci U S A. 1995;92:77947798.CrossRefGoogle ScholarPubMed
Ikegami, M, Whitsett, JA, Martis, PC, Weaver, TE. Reversibility of lung inflammation caused by SP-B deficiency. Am J Physiol Lung Cell Mol Physiol. 2005;289:L962970.CrossRefGoogle ScholarPubMed
Glasser, SW, Burhans, MS, Korfhagen, TR, et al. Generation of an SP-C deficient mouse by targeted gene inactivation. Am J Respir Crit Care Med. 2000;161:A43.Google Scholar
Ridsdale, R, Na, CL, Xu, Y, Greis, KD, Weaver, T. Comparative proteomic analysis of lung lamellar bodies and lysosome-related organelles. PLoS One. 2011;6:e16482.CrossRefGoogle ScholarPubMed
Wright, JR, Benson, BJ, Williams, MC, Goerke, J, Clements, JA. Protein composition of rabbit alveolar surfactant subfractions. Biochim Biophys Acta. 1984;791:320332.CrossRefGoogle ScholarPubMed
Guilliams, M, De Kleer, I, Henri, S, et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. Exp Med. 2013;210:19771992.CrossRefGoogle ScholarPubMed
Kramer, BW, Joshi, SN, Moss, TJ, et al. Endotoxin-induced maturation of monocytes in preterm fetal sheep lung. Am J Physiol Lung Cell Mol Physiol. 2007;293:L345353.CrossRefGoogle ScholarPubMed
Hillman, N, Polglase, GR, Pillow, JJ, Saito, M, Kallapur, SG, Jobe, AH. Inflammation and lung maturation from stretch injury in fetal preterm sheep. AM J Physiol Lung Cell Mol Physiol. 2011;300:L232L241.CrossRefGoogle Scholar
Young, SL, Fram, EK, Spain, CL, Larson, EW. Development of type-II pneumocytes in rat lung. Am J Physiol. 1991;260:L113L122.Google ScholarPubMed
Rebello, CM, Jobe, AH, Eisele, JW, Ikegami, M. Alveolar and tissue surfactant pool sizes in humans. Am J Respir Crit Care Med. 1996;154:625628.CrossRefGoogle ScholarPubMed
Jacobs, H, Jobe, A, Ikegami, M, Jones, S. Surfactant phosphatidylcholine source, fluxes, and turnover times in 3-day-old, 10-day-old, and adult rabbits. J Biol Chem. 1982;257:18051810.CrossRefGoogle ScholarPubMed
Jacobs, H, Jobe, A, Ikegami, M, Conaway, D. The significance of reutilization of surfactant phosphatidylcholine. J Biol Chem. 1983;258:41564165.CrossRefGoogle ScholarPubMed
Jacobs, H, Jobe, A, Ikegami, M, Miller, D, Jones, S. Reutilization of phosphatidylcholine analogues by the pulmonary surfactant system. The lack of specificity. Biochim Biophys Acta. 1984;793:300309.CrossRefGoogle ScholarPubMed
Yoshida, M, Ikegami, M, Reed, JA, Chroneos, ZC, Whitsett, JA. GM-CSF regulates protein and lipid catabolism by alveolar macrophages. Am J Physiol. 2001;280:L379L386.Google ScholarPubMed
Jobe, AH, Ikegami, M, Jacobs, HC, Jones, SJ. Surfactant pool sizes and severity of respiratory distress syndrome in prematurely delivered lambs. Am Rev Respir Dis. 1983;127:751755.Google ScholarPubMed
Mulrooney, N, Champion, Z, Moss, TJ, Nitsos, I, Ikegami, M, Jobe, AH. Surfactant and physiological responses of preterm lambs to continuous positive airway pressure. Am J Respir Crit Care Med. 2005;171:16.CrossRefGoogle ScholarPubMed
Jobe, AH. Why surfactant works for respiratory distress syndrome. NeoReviews. 7 2006:e95105.CrossRefGoogle Scholar
Jackson, JC, Palmer, S, Truog, WE, Standaert, TA, Murphy, JH, Hodson, WA. Surfactant quantity and composition during recovery from hyaline membrane disease. Pediatr Res. 1986;20:12431247.CrossRefGoogle ScholarPubMed
Hallman, M, Merritt, TA, Akino, T, Bry, K. Surfactant protein-A, phosphatidylcholine, and surfactant inhibitors in epithelial lining fluid – correlation with surface activity, severity of respiratory distress syndrome, and outcome in small premature infants. Am Rev Respir Dis. 1991;144:13761384.CrossRefGoogle ScholarPubMed
Bunt, JE, Zimmerman, LJ, Wattimena, D, Beek, RH, Sauer, PJ, Carmielli, VP. Endogenous surfactant turnover in preterm infants measured with stable isotope. Am J Respir Crit Care Med. 1998;157:810814.CrossRefGoogle Scholar
Torresin, M, Zimmermann, LJ, Cogo, PE, et al. Exogenous surfactant kinetics in infant respiratory distress syndrome: a novel method with stable isotopes. Am J Respir Crit Care Med. 2000;161:15841589.CrossRefGoogle ScholarPubMed
Carnielli, VP, Zimmermann, LJ, Hamvas, A, Cogo, PE. Pulmonary surfactant kinetics of the newborn infant: novel insights from studies with stable isotopes. J Perinatol. 2009;29(suppl 2):S2937.CrossRefGoogle ScholarPubMed
Tomazela, DM, Patterson, BW, Hanson, E, et al. Measurement of human surfactant protein-B turnover in vivo from tracheal aspirates using targeted proteomics. Anal Chem. 2010;82:25612567.CrossRefGoogle ScholarPubMed
Rider, ED, Jobe, AH, Ikegami, M, Sun, B. Different ventilation strategies alter surfactant responses in preterm rabbits. J Appl Physiol. 1992;73:20892096.CrossRefGoogle ScholarPubMed
Bilek, AM, Dee, KC, Gaver, DP. Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. J Appl Physiol. 2003;94:770783.CrossRefGoogle Scholar
Rider, ED, Ikegami, M, Whitsett, JA, Hull, W, Absolom, D, Jobe, AH. Treatment responses to surfactants containing natural surfactant proteins in preterm rabbits. Am Rev Respir Dis. 1993;147:669676.CrossRefGoogle ScholarPubMed
Davis, AJ, Jobe, AH, Häfner, D, Ikegami, M. Lung function in premature lambs and rabbits treated with a recombinant SP-C surfactant. Am J Respir Crit Care Med. 1998;157:553559.CrossRefGoogle ScholarPubMed
Ueda, T, Ikegami, M. Change in properties of exogenous surfactant in injured rabbit lung. Am J Respir Crit Care Med. 1996;153:18441849.CrossRefGoogle ScholarPubMed
Ueda, T, Ikegami, M, Jobe, AH. Developmental changes of sheep surfactant: in vivo function and in vitro subtype conversion. J Appl Physiol. 1994;76:27012706.CrossRefGoogle ScholarPubMed
Jobe, A, Ikegami, M. Surfactant for the treatment of respiratory distress syndrome. Am Rev Respir Dis. 1987;136:12561275.CrossRefGoogle ScholarPubMed
Pettenazzo, A, Oguchi, K, Seidner, S, Ikegami, M, Berry, D, Jobe, A. Clearance of natural surfactant phosphatidylcholine from 3-day-old rabbit lungs: effects of dose and species. Pediatr Res. 1986;20:11391142.CrossRefGoogle ScholarPubMed
Ikegami, M, Berry, D, Elkady, T, Pettenazzo, A, Seidner, S, Jobe, A. Corticosteroids and surfactant change lung function and protein leaks in the lungs of ventilated premature rabbits. J Clin Invest. 1987;79:13711378.CrossRefGoogle ScholarPubMed
Pinkerton, KE, Lewis, JF, Rider, ED, et al. Lung parenchyma and type II cell morphometrics: effect of surfactant treatment on preterm ventilated lamb lungs. J Appl Physiol. 1994;77:19531960.CrossRefGoogle ScholarPubMed
Fanaroff, AA, Stoll, BJ, Wright, LL, et al. Trends in neonatal morbidity and mortality for very low birthweight infants. Am J Obstet Gynecol. 2007;196:147 e141148.CrossRefGoogle ScholarPubMed
Stoll, BJ, Hansen, NI, Bell, EF, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics. 2010;126:443456.CrossRefGoogle ScholarPubMed
Bancalari, EH, Jobe, AH. The respiratory course of extremely preterm infants: a dilemma for diagnosis and terminology. J Pediatr. 2012;161:585588.CrossRefGoogle ScholarPubMed
Roberts, D, Dalziel, S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006;3:CD004454.Google Scholar
Goldenberg, RL, Culhane, JF, Iams, JD, Romero, R. Epidemiology and causes of preterm birth. Lancet. 2008;371:7584.CrossRefGoogle ScholarPubMed
Jobe, AH, Newnham, JP, Willet, KE, et al. Endotoxin induced lung maturation in preterm lambs is not mediated by cortisol. Am J Respir Crit Care Med. 2000;162:16561661.CrossRefGoogle Scholar
Cole, TJ, Blendy, JA, Monaghan, AP, et al. Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Gene Dev. 1995;9:16081621.CrossRefGoogle ScholarPubMed
Muglia, L, Jacobson, L, Dikkes, P, Majzoub, JA. Corticotropin-releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature. 1995;373:427432.CrossRefGoogle Scholar
Mendelson, CR, Boggaram, V. Hormonal and developmental regulation of pulmonary surfactant synthesis in fetal lung. Baillieres Clin Endocrinol Metab. 1990;4:351378.CrossRefGoogle ScholarPubMed
Jobe, AH. Animal models of antenatal corticosteroids: clinical implications. Clin Obstet Gynecol. 2003;46:174189.CrossRefGoogle ScholarPubMed
Ikegami, M, Polk, D, Jobe, A. Minimum interval from fetal betamethasone treatment to postnatal lung responses in preterm lambs. Am J Obstet Gynecol. 1996;174:14081413.CrossRefGoogle ScholarPubMed
Seidner, S, Pettenazzo, A, Ikegami, M, Jobe, A. Corticosteroid potentiation of surfactant dose response in preterm rabbits. J Appl Physiol. 1988;64:23662371.CrossRefGoogle ScholarPubMed
Ikegami, M, Polk, D, Tabor, B, Lewis, J, Yamada, T, Jobe, A. Corticosteroid and thyrotropin-releasing hormone effects on preterm sheep lung function. J Appl Physiol. 1991;70:22682278.CrossRefGoogle ScholarPubMed
Crowther, CA, Doyle, LW, Haslam, RR, Hiller, JE, Harding, JE, Robinson, JS. Outcomes at 2 years of age after repeat doses of antenatal corticosteroids. New Engl Med. 2007;357:11791189.CrossRefGoogle ScholarPubMed
ACTOBAT. Australian collaborative trial of antenatal thyrotropin-releasing hormone (ACTOBAT) for prevention of neonatal respiratory disease. Lancet. 1995;345:877882.CrossRefGoogle Scholar
Machado, LU, Fiori, HH, Baldisserotto, M, Ramos Garcia, PC, Vieira, AC, Fiori, RM. Surfactant deficiency in transient tachypnea of the newborn. J Pediatr. 2011;159:750754.CrossRefGoogle ScholarPubMed
Nogee, LM. Alterations in SP-B and SP-C expression in neonatal lung disease. Annu Rev Physiol. 2004;66:601623.CrossRefGoogle ScholarPubMed
Nogee, LM, Garnier, G, Dietz, HC, et al. A mutation in the surfactant protein B gene responsible for fatal neonatal respiratory disease in multiple kindreds. J Clin Invest. 1994;93:18601863.CrossRefGoogle ScholarPubMed
Nogee, LM, Wert, SE, Profitt, SA, Hull, WM, Whitsett, JA. Allelic heterogeneity in hereditary SP-B deficiency. Am J Respir Crit Care Med. 2000;161:973981.CrossRefGoogle Scholar
Dunbar, AE, 3rd, Wert, SE, Ikegami, M, et al. Prolonged survival in hereditary surfactant protein B (SP-B) deficiency associated with a novel splicing mutation. Pediatr Res. 2000;48:275282.CrossRefGoogle ScholarPubMed
Ballard, PL, Nogee, LM, Beers, MF, et al. Partial deficiency of surfactant protein B in an infant with chronic lung disease. Pediatrics. 1995;96:10461052.CrossRefGoogle Scholar
Nesslein, LL, Melton, KR, Ikegami, M, et al. Partial SP-B deficiency perturbs lung function and causes airspace abnormalities. AM J Physiol Lung Cell Mol Physiol. 2005;288:L1154L1161.CrossRefGoogle Scholar
Beers, MF, Hamvas, A, Moxley, MA, et al. Pulmonary surfactant metabolism in infants lacking surfactant protein B. Am J Respir Cell Mol Biol. 2000;22:380391.CrossRefGoogle ScholarPubMed
Tredano, M, Cooper, DN, Stuhrmann, M, et al. Origin of the prevalent SFTPB indel g.1549C > GAA (121ins2) mutation causing surfactant protein B (SP-B) deficiency. Am J Med Gen A. 2006;140:6269.CrossRefGoogle ScholarPubMed
Garmany, TH, Wambach, JA, Heins, HB, et al. Population and disease-based prevalence of the common mutations associated with surfactant deficiency. Pediatr Res. 2008;63:645649.CrossRefGoogle ScholarPubMed
Garmany, TH, Moxley, MA, White, FV, et al. Surfactant composition and function in patients with ABCA3 mutations. Pediatr Res. 2006;59:801805.CrossRefGoogle ScholarPubMed
Li, J, Ikegami, M, Na, CL, et al. N-terminally extended surfactant protein (SP) C isolated from SP-B-deficient children has reduced surface activity and inhibited lipopolysaccharide binding. Biochemistry. 2004;43:38913898.CrossRefGoogle Scholar
Dean, M, Rzhetsky, A, Allikmets, R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001;11:11561166.CrossRefGoogle ScholarPubMed
Shulenin, S, Nogee, LM, Annilo, T, Wert, SE, Whitsett, JA, Dean, M. ABCA3 gene mutations in newborns with fatal surfactant deficiency. New Engl J Med. 2004;350:12961303.CrossRefGoogle ScholarPubMed
Fitzgerald, ML, Xavier, R, Haley, KJ, et al. ABCA3 inactivation in mice causes respiratory failure, loss of pulmonary surfactant, and depletion of lung phosphatidylglycerol. J Lipid Res. 2007;48:621632.CrossRefGoogle ScholarPubMed
Cheong, N, Zhang, H, Madesh, M, et al. ABCA3 is critical for lamellar body biogenesis in vivo. J Biol Chem. 2007;282:2381123817.CrossRefGoogle ScholarPubMed
Ban, N, Matsumura, Y, Sakai, H, et al. ABCA3 as a lipid transporter in pulmonary surfactant biogenesis. J Biol Chem. 2007;282:96289634.CrossRefGoogle ScholarPubMed
Bullard, JE, Wert, SE, Whitsett, JA, Dean, M, Nogee, LM. ABCA3 mutations associated with pediatric interstitial lung disease. Am J Respir Crit Care Med. 2005;172:10261031.CrossRefGoogle ScholarPubMed
Wambach, JA, Casey, AM, Fishman, MP, et al. Genotype-phenotype correlations for infants and children with ABCA3 deficiency. Am J Respir Crit Care Med. 2014;189:15381543.CrossRefGoogle ScholarPubMed
Hallik, M, Annilo, T, Ilmoja, ML. Different course of lung disease in two siblings with novel ABCA3 mutations. Eur J Pediatr. 2014;173(12):15531556.CrossRefGoogle ScholarPubMed
Campo, I, Zorzetto, M, Mariani, F, et al. A large kindred of pulmonary fibrosis associated with a novel ABCA3 gene variant. Respir Res. 2014;15:43.CrossRefGoogle ScholarPubMed
Matsumura, Y, Ban, N, Ueda, K, Inagaki, N. Characterization and classification of ATP-binding cassette transporter ABCA3 mutants in fatal surfactant deficiency. J Biol Chem. 2006;281:3450334514.CrossRefGoogle ScholarPubMed
Matsumura, Y, Ban, N, Inagaki, N. Aberrant catalytic cycle and impaired lipid transport into intracellular vesicles in ABCA3 mutants associated with nonfatal pediatric interstitial lung disease. AM J Physiol Lung Cell Mol Physiol. 2008;295:L698707.CrossRefGoogle ScholarPubMed
Cheong, N, Madesh, M, Gonzales, LW, et al. Functional and trafficking defects in ATP binding cassette A3 mutants associated with respiratory distress syndrome. J Biol Chem. 2006;281:97919800.CrossRefGoogle ScholarPubMed
Wambach, JA, Wegner, DJ, Depass, K, et al. Single ABCA3 mutations increase risk for neonatal respiratory distress syndrome. Pediatrics. 2012;130:e15751582.CrossRefGoogle ScholarPubMed
Baekvad-Hansen, M, Nordestgaard, BG, Dahl, M. Heterozygosity for E292V in ABCA3, lung function and COPD in 64,000 individuals. Respir Res. 2012;13:67.CrossRefGoogle Scholar
Thomas, AQ, Lane, K, 3rdPhillips, J, et al. Heterozygosity for a surfactant protein C gene mutation associated with usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis in one kindred. Am J Respir Crit Care Med. 2002;165:13221328.CrossRefGoogle ScholarPubMed
Gower, WA, Nogee, LM. Surfactant dysfunction. Paediat Respir Rev. 2011;12:223229.CrossRefGoogle ScholarPubMed
Cameron, HS, Somaschini, M, Carrera, P, et al. A common mutation in the surfactant protein C gene associated with lung disease. J Pediatr. 2005;146:370375.CrossRefGoogle ScholarPubMed
Mulugeta, S, Maguire, JA, Newitt, JL, Russo, SJ, Kotorashvili, A, Beers, MF. Misfolded BRICHOS SP-C mutant proteins induce apoptosis via caspase-4- and cytochrome c-related mechanisms. AM J Physiol Lung Cell Mol Physiol. 2007;293:L720729.CrossRefGoogle ScholarPubMed
Maguire, JA, Mulugeta, S, Beers, MF. Endoplasmic reticulum stress induced by surfactant protein C BRICHOS mutants promotes proinflammatory signaling by epithelial cells. Am J Respir Cell Mol Biol. 2011;44:404414.CrossRefGoogle ScholarPubMed
Bridges, JP, Xu, Y, Na, CL, Wong, HR, Weaver, TE. Adaptation and increased susceptibility to infection associated with constitutive expression of misfolded SP-C. J Cell Biol. 2006;172:395407.CrossRefGoogle ScholarPubMed
Lawson, WE, Cheng, DS, Degryse, AL, et al. Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs. Proc Natl Acad Sci U S A. 2011;108:1056210567.CrossRefGoogle ScholarPubMed
Stewart, GA, Ridsdale, R, Martin, EP, et al. 4-phenylbutyric acid treatment rescues trafficking and processing of a mutant surfactant protein-C. Am J Respir Cell Mol Biol. 2012;47:324331.CrossRefGoogle ScholarPubMed
Beers, MF, Hawkins, A, Maguire, JA, et al. A nonaggregating surfactant protein C mutant is misdirected to early endosomes and disrupts phospholipid recycling. Traffic. 2011;12:11961210.CrossRefGoogle ScholarPubMed
van Moorsel, CH, van Oosterhout, MF, Barlo, NP, et al. Surfactant protein C mutations are the basis of a significant portion of adult familial pulmonary fibrosis in a Dutch cohort. Am J Respir Crit Care Med. 2010;182:14191425.CrossRefGoogle Scholar
Lawson, WE, Grant, SW, Ambrosini, V, et al. Genetic mutations in surfactant protein C are a rare cause of sporadic cases of IPF. Thorax. 2004;59:977980.CrossRefGoogle ScholarPubMed
Boggaram, V. Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) gene regulation in the lung. Clin Sci. 2009;116:2735.CrossRefGoogle ScholarPubMed
Krude, H, Schutz, B, Biebermann, H, et al. Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2-1 haploinsufficiency. J Clin Invest. 2002;109:475480.CrossRefGoogle ScholarPubMed
Devriendt, K, Vanhole, C, Matthijs, G, de Zegher, F. Deletion of thyroid transcription factor-1 gene in an infant with neonatal thyroid dysfunction and respiratory failure. New Engl J Med. 1998;338:13171318.CrossRefGoogle Scholar
Guillot, L, Carre, A, Szinnai, G, et al. NKX2-1 mutations leading to surfactant protein promoter dysregulation cause interstitial lung disease in “Brain-Lung-Thyroid Syndrome.” Hum Mutat. 2010;31:E11461162.CrossRefGoogle ScholarPubMed
Hamvas, A, Deterding, RR, Wert, SE, et al. Heterogeneous pulmonary phenotypes associated with mutations in the thyroid transcription factor gene NKX2-1. Chest. 2013;144:794804.CrossRefGoogle ScholarPubMed
Wert, SE, Whitsett, JA, Nogee, LM. Genetic disorders of surfactant dysfunction. Pediat Dev Pathol. 2009;12:253274.CrossRefGoogle ScholarPubMed
Maitra, M, Cano, CA, Garcia, CK. Mutant surfactant A2 proteins associated with familial pulmonary fibrosis and lung cancer induce TGF-beta1 secretion. Proc Natl Acad Sci U S A. 2012;109:2106421069.CrossRefGoogle ScholarPubMed
Wang, Y, Kuan, PJ, Xing, C, et al. Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. Am J Hum Gen. 2009;84:5259.CrossRefGoogle ScholarPubMed
Suzuki, T, Sakagami, T, Young, LR, et al. Hereditary pulmonary alveolar proteinosis: pathogenesis, presentation, diagnosis, and therapy. Am J Respir Crit Care Med. 2010;182:12921304.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×