Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T23:58:16.487Z Has data issue: false hasContentIssue false

11 - Biogeographic variations in wood mice: testing for the role of morphological variation as a line of least resistance to evolution

Published online by Cambridge University Press:  05 August 2015

Sabrina Renaud
Affiliation:
Universite Montpellier
Jean-Pierre Quéré
Affiliation:
Campus International de Baillarguet Montferrier-sur-Lez, France
Johan R. Michaux
Affiliation:
Universite Montpellier
Philip G. Cox
Affiliation:
University of York
Lionel Hautier
Affiliation:
Université de Montpellier II
Get access

Summary

Introduction

Morphological variation is an important aspect of biodiversity, in particular because phenotypic variation is an important target of the screening by selection. Its study can bring light onto the adaptive component of morphological diversification, thus constituting a precious complement to the vastly and rapidly developing field of genetic and genomic analyses. Furthermore, morphological evolution can be studied on both modern and fossil species, and can thus help to bridge the gap between different temporal scales, from contemporary evolution to long-term trends along millions of years.

Patterns of morphological evolution have long been studied, including for deciphering rodent evolution (e.g. Misonne 1969; Michaux 1971; Butler 1985). This field of investigation has been renewed by the development of methods allowing the quantification of fine-scale shape variation, namely geometric morphometrics (e.g. Bookstein 1991; Rohlf and Marcus 1993; Mitteroecker and Gunz 2009). Such methods, based on landmarks or outline analyses, have been used to tackle many topics regarding rodent evolution: evolutionary patterns along fossil lineages (Renaud et al. 1996, 2005; Piras et al. 2009; Stoetzel et al. 2013), diversification among species, addressing the respective role of adaptation and neutral evolution (e.g. Cardini 2003; Monteiro et al. 2005; Macholan 2006; Michaux et al. 2007a); differentiation between populations, investigating the role of environmental variations (Renaud 1999; Fadda and Corti 2001; Renaud and Michaux 2003, 2007; McGuire 2010; Helvaci et al. 2012), processes favoring co-occurrence among species (Ledevin et al. 2012), patterns and route of colonization (Valenzuela-Lamas et al. 2011; Siahsarvie et al. 2012; Cucchi et al. 2013). Insular differentiation provided numerous models of pronounced morphological differentiation questioning the respective role of adaptation and random factors (Cardini et al. 2007b; Michaux et al. 2007b; Renaud and Michaux 2007; Renaud and Auffray 2010; Renaud et al. 2013). Even contemporary evolution and response to current anthropic changes can find a morphological signature in rodents (Pergams and Lacy 2008; Renaud et al. 2013).

Type
Chapter
Information
Evolution of the Rodents
Advances in Phylogeny, Functional Morphology and Development
, pp. 300 - 322
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, R. R. and Cheverud, J. M. (2000). Phenotypic covariance structure in tamarins (Genus Saguinus): a comparison of variation patterns using matrix correlation and common principal component analysis. American Journal of Physical Anthropology, 111, 489–501.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Ackermann, R. R. and Cheverud, J. M. (2004). Detecting genetic drift versus selection in human evolution. Proceedings of the National Academy of Sciences, USA, 101, 17 946–17 951.CrossRefGoogle ScholarPubMed
Bégin, M. and Roff, D. A. (2003). The constancy of the G matrix through species divergence and the effects of quantitative genetic constraints on phenotypic evolution: a case study in crickets. Evolution, 57, 1107–1120.CrossRefGoogle Scholar
Bookstein, F. L. (1991). Morphometric Tools for Landmark Data. Geometry and Biology. Cambridge University Press.Google Scholar
Butler, P. M. (1985). Homologies of molar cusps and crests, and their bearing of assessment of rodent phylogeny. In: Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. Plenum Press, pp. 381–401.Google Scholar
Cano, J. M., Laurila, A., Palo, J. and Merilä, J. (2004). Population differentiation in G matrix structure due to natural selection in Rana temporaria. Evolution, 58, 2013–2020.CrossRefGoogle Scholar
Cardini, A. (2003). The geometry of the marmot (Rodentia: Sciuridae) mandible: phylogeny and patterns of morphological evolution. Systematic Biology, 52, 186–205.CrossRefGoogle ScholarPubMed
Cardini, A. and Polly, P. D. (2013). Larger mammals have longer faces because of size-related constraints on skull form. Nature Communications, 4, 2458.CrossRefGoogle ScholarPubMed
Cardini, A. and Thorington, R. W. J. (2006). Postnatal ontogeny of marmot (Rodentia, Sciuridae) crania: allometric trajectories and species divergence. Journal of Mammalogy, 87, 201–215.CrossRefGoogle Scholar
Cardini, A., Jansson, A.-U. and Elton, S. (2007a). A geometric morphometric approach to the study of ecogeographical and clinal variation in vervet monkeys. Journal of Biogeography, 34, 1663–1678.CrossRefGoogle Scholar
Cardini, A., Thorington, R. W. J. and Polly, P. D. (2007b). Evolutionary acceleration in the most endangered mammal of Canada: speciation and divergence in the Vancouver Island marmot (Rodentia, Sciuridae). Journal of Evolutionary Biology, 20, 1833–1846.CrossRefGoogle Scholar
Cucchi, T., Kovács, Z. E., Berthon, R.et al. (2013). On the trail of Neolithic mice and men towards Transcaucasia: zooarchaeological clues from Nakhchivan (Azerbaijan). Biological Journal of the Linnean Society, 108, 917–928.CrossRefGoogle Scholar
Fadda, C. and Corti, M. (2001). Three-dimensional geometric morphometrics of Arvicanthis: implications for systematics and taxonomy. Journal of Zoological Systematics and Evolutionary Research, 39, 235–245.CrossRefGoogle Scholar
Genovesi, P., Bacher, S., Kobelt, M., Pascal, M. and Scalera, R. (2009). Alien mammals of Europe. In: Handbook of Alien Species in Europe: DAISIE, ed., pp. 119–128. Invading Nature: Springer Series in Invasion Ecology, Springer.Google Scholar
Guillaume, F. and Whitlock, M. C. (2007). Effects of migration on the genetic covariance matrix. Evolution, 61, 2398–2409.CrossRefGoogle ScholarPubMed
Helvaci, Z., Renaud, S., Ledevin, R.et al. (2012). Morphometric and genetic structure of the edible dormouse (Glis glis): a consequence of forest fragmentation in Turkey. Biological Journal of the Linnean Society, 107, 611–623.CrossRefGoogle Scholar
Hunt, G. (2007). Evolutionary divergence in directions of high phenotypic variance in the ostracode genus Poseidonamicus. Evolution, 61, 1560–1576.CrossRefGoogle ScholarPubMed
Kassai, Y., Munne, P., Hotta, Y.et al. (2005). Regulation of mammalian tooth cusp patterning by ectodin. Science, 309, 2067–2070.CrossRefGoogle ScholarPubMed
Kavanagh, K. D., Evans, A. R. and Jernvall, J. (2007). Predicting evolutionary patterns of mammalian teeth from development. Nature, 449, 427–432.CrossRefGoogle ScholarPubMed
Klingenberg, C. P., Leamy, L. J., Routman, E. J. and Cheverud, J. M. (2001). Genetic architecture of mandible shape in mice: effects of quantitative trait loci analyzed by geometric morphometrics. Genetics, 157, 785–802.Google ScholarPubMed
Lazzari, V., Tafforeau, P., Aguilar, J.-P. and Michaux, J. (2008). Topographic maps applied to comparative molar morphology: the case of murine and cricetine dental plans (Rodentia, Muroidea). Paleobiology, 34, 46–64.CrossRefGoogle Scholar
Ledevin, R., Quéré, J.-P., Michaux, J. R. and Renaud, S. (2012). Can tooth differentiation help to understand species coexistence? The case of wood mice in China. Journal of Zoological Systematics and Evolutionary Research, 50, 315–327.CrossRefGoogle Scholar
Macholan, M. (2006). A geometric morphometric analysis of the shape of the first upper molar in mice of the genus Mus (Muridae, Rodentia). Journal of Zoology, London, 270, 672–681.CrossRefGoogle Scholar
Marroig, G. and Cheverud, J. M. (2005). Size as line of least evolutionary resistance: diet and adaptive morphological radiation in New World monkeys. Evolution, 59, 1128–1142.CrossRefGoogle ScholarPubMed
Marroig, G. and Cheverud, J. M. (2010). Size as a line of least resistance II: direct selection on size or correlated response due to constraints?Evolution, 64, 1470–1488.Google ScholarPubMed
McGuire, J. L. (2010). Geometric morphometrics of vole (Microtus californicus) dentition as a new paleoclimate proxy: Shape change along geographic and climatic clines. Quaternary International, 212, 198–205.CrossRefGoogle Scholar
Michaux, J. (1971). Muridae (Rodentia) néogènes d'Europe sud-occidentale. Evolution et rapports avec les formes actuelles. Paléobiologie continentale, Montpellier, 2, 1–67.Google Scholar
Michaux, J., Chevret, P. and Renaud, S. (2007a). Morphological diversity of Old World rats and mice (Rodentia, Muridae) mandible in relation with phylogeny and adaptation. Journal of Zoological Systematics and Evolutionary Research, 45, 263–279.CrossRefGoogle Scholar
Michaux, J., Cucchi, T., Renaud, S., Garcia-Talavera, F. and Hutterer, R. (2007b). Evolution of an invasive rodent on an archipelago as revealed by molar shape analysis: the house mouse in the Canary islands. Journal of Biogeography, 34, 1412–1425.CrossRefGoogle Scholar
Michaux, J. R., Libois, R., Ramalhinho, M. G. and Maurois, C. (1998a). On the mtDNA restriction patterns variation of the Iberian wood mouse (Apodemus sylvaticus). Comparison with other west mediterranean populations. Hereditas, 129, 187–194.Google ScholarPubMed
Michaux, J. R., Sara, M., Libois, R. and Matagne, R. (1998b). Is the woodmouse (Apodemus sylvaticus) of Sicily a distinct species?Belgian Journal of Zoology, 128, 211–214.Google Scholar
Michaux, J. R., Goüy de Bellocq, J., Sara, M. and Morand, S. (2002). Body size increase in rodent populations: a role for predators?Global Ecology and Biogeography, 11, 427–436.CrossRefGoogle Scholar
Michaux, J. R., Magnanou, E., Paradis, E., Nieberding, C. and Libois, R. (2003). Mitochondrial phylogeography of the Woodmouse (Apodemus sylvaticus) in the Western Palearctic region. Molecular Ecology, 12, 685–697.CrossRefGoogle ScholarPubMed
Misonne, X. (1969). African and Indo-Australian Muridae. Evolutionary Trends. Musée Royal de l'Afrique Centrale, Tervuren, Belgique.Google Scholar
Mitteroecker, P. and Gunz, P. (2009). Advances in geometric morphometrics. Evolutionary Biology, 36, 235–247.CrossRefGoogle Scholar
Monteiro, L. R., Bonato, V. and Reis, S. F. d. (2005). Evolutionary integration and morphological diversification in complex morphological structures: mandible shape divergence in spiny rats (Rodentia, Echimyidae). Evolution and Development, 7, 429–439.CrossRefGoogle Scholar
Mustonen, T., Pispa, J., Mikkola, M.et al. (2003) Stimulation of ectodermal organ development by Ectodysplasin-A1. Developmental Biology, 259, 123–136.CrossRefGoogle ScholarPubMed
Orsini, P. and Cheylan, G. (1988). Les rongeurs de Corse: modifications de taille en relation avec l'isolement en milieu insulaire. Bulletin d'Ecologie, 19, 411–416.Google Scholar
Pergams, O. R. W. and Lacy, R. C. (2008). Rapid morphological and genetic change in Chicago-area Peromyscus. Molecular Ecology, 17, 450–463.CrossRefGoogle ScholarPubMed
Peterková, R., Lesot, H., Viriot, L. and Peterka, M. (2005). The supernumerary cheek tooth in tabby/EDA mice – a reminiscence of the premolar in mouse ancestors. Archives of Oral Biology, 50, 219–225.CrossRefGoogle ScholarPubMed
Piras, P., Marcolini, F., Raia, P., Curcio, M. T. and Kotsakis, T. (2009). Testing evolutionary stasis and trends in first lower molar shape of extinct Italian populations of Terricola savii (Arvicolidae, Rodentia) by means of geometric morphometrics. Journal of Evolutionary Biology, 22, 179–191.CrossRefGoogle ScholarPubMed
Polly, P. D. (2005). Development and phenotypic correlations: the evolution of tooth shape in Sorex araneus. Evolution and Development, 7, 29–41.CrossRefGoogle ScholarPubMed
Polly, P. D. (2008). Developmental dynamics and G-matrices: can morphometric spaces be used to model phenotypic evolution?Evolutionary Biology, 35, 83–96.CrossRefGoogle Scholar
Prochazka, J., Pantalacci, S., Churava, S.et al. (2010). Patterning by heritage in mouse molar row development. Proceedings of the National Academy of Sciences, USA, 107, 15 497–15 502.CrossRefGoogle ScholarPubMed
Quéré, J.-P. and Le Louarn, H. (2011). Les Rongeurs de France: Faunistique et biologie. Versailles : Editions Quae, pp. 311.Google Scholar
Renaud, S. (1999). Size and shape variability in relation to species differences and climatic gradients in the African rodent Oenomys. Journal of Biogeography, 26, 857–865.CrossRefGoogle Scholar
Renaud, S. (2005). First upper molar and mandible shape of wood mice (Apodemus sylvaticus) from northern Germany: ageing, habitat and insularity. Mammalian Biology, 70, 157–170.CrossRefGoogle Scholar
Renaud, S. and Auffray, J.-C. (2010). Adaptation and plasticity in insular evolution of the house mouse mandible. Journal of Zoological Systematics and Evolutionary Research, 48, 138–150.CrossRefGoogle Scholar
Renaud, S. and Auffray, J.-C. (2013). The direction of main phenotypic variance as a channel to morphological evolution: case studies in murine rodents. Hystrix, The Italian Journal of Mammalogy, 24, 85–93.Google Scholar
Renaud, S. and Michaux, J. R. (2003). Adaptive latitudinal trends in the mandible shape of Apodemus wood mice. Journal of Biogeography, 30, 1617–1628.CrossRefGoogle Scholar
Renaud, S. and Michaux, J. R. (2007). Mandibles and molars of the wood mouse, Apodemus sylvaticus (L.): integrated latitudinal signal and mosaic insular evolution. Journal of Biogeography, 34, 339–355.CrossRefGoogle Scholar
Renaud, S., Michaux, J., Jaeger, J.-J. and Auffray, J.-C. (1996). Fourier analysis applied to Stephanomys (Rodentia, Muridae) molars: nonprogressive evolutionary pattern in a gradual lineage. Paleobiology, 22, 255–265.CrossRefGoogle Scholar
Renaud, S., Michaux, J., Schmidt, D. N.et al. (2005). Morphological evolution, ecological diversification and climate change in rodents. Proceedings of the Royal Society of London, Biological Sciences (series B), 272, 609–617.Google ScholarPubMed
Renaud, S., Auffray, J.-C. and Michaux, J. (2006). Conserved phenotypic variation patterns, evolution along lines of least resistance, and departure due to selection in fossil rodents. Evolution, 60, 1701–1717.CrossRefGoogle ScholarPubMed
Renaud, S., Chevret, P. and Michaux, J. (2007). Morphological vs. molecular evolution: ecology and phylogeny both shape the mandible of rodents. Zoologica Scripta, 36, 525–535.CrossRefGoogle Scholar
Renaud, S., Pantalacci, S. and Auffray, J.-C. (2011). Differential evolvability along lines of least resistance of upper and lower molars in island mouse mice. PLoS ONE, 6, e18951.CrossRefGoogle Scholar
Renaud, S., Hardouin, E. A., Pisanu, B. and Chapuis, J.-L. (2013). Invasive house mice facing a changing environment on the Sub-Antarctic Guillou Island (Kerguelen Archipelago). Journal of Evolutionary Biology, 26, 612–624.CrossRefGoogle Scholar
Roff, D. A. (2000). The evolution of the G matrix: selection or drift?Heredity, 84, 135–142.CrossRefGoogle ScholarPubMed
Roff, D. A. and Mousseau, T. (2005). The evolution of the phenotypic covariance matrix: evidence for selection and drift in Melanoplus. Journal of Evolutionary Biology, 18, 1104–1114.CrossRefGoogle ScholarPubMed
Rohlf, F. J. and Marcus, L. F. (1993). A revolution in morphometrics. Trends in Ecology and Evolution, 8, 129–132.Google Scholar
Schluter, D. (1996). Adaptive radiation along genetic lines of least resistance. Evolution, 50, 1766–1774.CrossRefGoogle ScholarPubMed
Siahsarvie, R. (2012). Comparaison de la divergence morphologique et génétique chez la souris domestique au cours de son expansion géographique. Thèse de doctorat, Université Montpellier 2, pp. 56 (unpublished).
Siahsarvie, R., Auffray, J.-C., Darvish, J.et al. (2012). Patterns of morphological evolution in the mandible of the house mouse Mus musculus (Rodentia: Muridae). Biological Journal of the Linnean Society, 105, 635–647.CrossRefGoogle Scholar
Steppan, S. J., Phillips, P. C. and Houle, D. (2002). Comparative quantitative genetics: evolution of the G matrix. Trends in Ecology and Evolution, 17, 320–327.CrossRefGoogle Scholar
Stoetzel, E., Denys, C., Michaux, J. and Renaud, S. (2013). Mus in Morocco: a quaternary sequence of intraspecific evolution. Biological Journal of the Linnean Society, 109, 599–621.CrossRefGoogle Scholar
Valenzuela-Lamas, S., Baylac, M., Cucchi, T. and Vigne, J.-D. (2011). House mouse dispersal in Iron Age Spain: a geometric morphometrics appraisal. Biological Journal of the Linnean Society, 102, 483–497.CrossRefGoogle Scholar
Vasemägi, A. (2006). The adaptive hypothesis of clinal variation revisited: single-locus clines as a result of spatially restricted gene flow. Genetics, 173, 2411–2414.CrossRefGoogle ScholarPubMed
Vigne, J.-D. and Valladas, H. (1996). Small mammal fossil assemblages as indicators of environmental change in Northern Corsica during the last 2500 years. Journal of Archaeological Science, 23, 199–215.CrossRefGoogle Scholar
Workman, M. S., Leamy, L. J., Routman, E. J. and Cheverud, J. M. (2002). Analysis of quantitative trait locus effects on the size and shape of mandibular molars in mice. Genetics, 160, 1573–1586.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×