Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-17T17:08:37.589Z Has data issue: false hasContentIssue false

9 - Applications of carbon nanotubes

Published online by Cambridge University Press:  05 June 2012

H.-S. Philip Wong
Affiliation:
Stanford University
Deji Akinwande
Affiliation:
University of Texas, Austin
Get access

Summary

The unbeaten path is where discoveries of great ideas can be found.

Introduction

In contemporary fundamental and applied science research, the potential applications and the perceived broader impacts are undoubtedly the primary drivers for expanding the research enterprise. This has certainly been the case for nanotube research. The unique unprecedented properties of CNT, such as their perfect tubular structure, outstanding electrical and thermal conductance, tunable optical properties, and superior mechanical strength and stiffness, have generated great excitement, leading to the pursuit of both fundamental insights of the beauty of nature in reduced dimensions of condensed matter, and the novel applications and technological breakthroughs that can be developed. In essence, the exploration of nanotubes (and other nanomaterials) is to learn about their nature and their interaction with fields and matter that will allow us to synthesize CNTs, design devices, and develop unique materials for next-generation transformative products. This endeavor has brought together many parties across several boundaries of knowledge, from nanomedicine to nanoscience to nanotechnology.

To put CNT in a broader perspective, over the last decade, nanotube applied research and development in academic and industrial laboratories across the world has enjoyed a substantial rise, reflecting a rise in the deeper understanding of the material. Figure 9.1 shows the increase in CNT patent applications and patents issued in the United States. It is an indicator of the growing effort to employ nanotubes in innovative applications. Invariably, many of the applications of CNTs take advantage of their inherent nanoscale dimension, large surface-to-volume ratio, and unique combination of electrical, optical, thermal, and structural properties.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×