Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-15T12:05:19.902Z Has data issue: false hasContentIssue false

6 - Ideal quantum electrical properties

Published online by Cambridge University Press:  05 June 2012

H.-S. Philip Wong
Affiliation:
Stanford University
Deji Akinwande
Affiliation:
University of Texas, Austin
Get access

Summary

It seems that the fundamental idea pertaining to quanta is the impossibility to consider an isolated quantity of energy without associating a particular frequency to it.

Louis de Broglie (postulated electron waves)

Introduction

The goal of this chapter is to explore the excitation and motion of electron waves under ideal conditions in a metallic conductor. By ideal conditions, we mean that electrons can be excited and transported without any scattering or collision involved. The excitation of electrons can be achieved by applying an external potential to energize the electron waves to oscillate more frequently, which can result in a net electron motion in the presence of a driving electric field, say between two ends of a metallic conductor. It is advisable to commit to memory that the absence of electron scattering is technically called ballistic transport; as such, the metallic conductor in this case would be referred to as a ballistic conductor.

Electrically, the ideal excitation and motion of electrons in low dimensions, such as in 1D space, is manifest in the form of a quantum conductance, quantum capacitance, and kinetic inductance, which represents a different paradigm from our classical electrostatic and magnetostatic ideas. The conductance and inductance reflect the electrical properties of traveling electron waves which lead to charge transport and energy storage, while the quantum capacitance accounts for the intrinsic charge storage that comes about from exciting electrons with an electric potential. In macroscopic bulk metals, the quantum electrical properties are not readily observable or accessible owing to the large number of mobile electrons at hand and the frequent collisions involved.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×