Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-16T07:07:10.041Z Has data issue: false hasContentIssue false

7 - Carbon nanotube interconnects

Published online by Cambridge University Press:  05 June 2012

H.-S. Philip Wong
Affiliation:
Stanford University
Deji Akinwande
Affiliation:
University of Texas, Austin
Get access

Summary

If you build a ‘better’ mousetrap, you'd better know what the existing mousetrap can do.

Introduction

This chapter explores electron transport in metallic nanotubes as it relates to interconnect applications. Both single-wall and multi-wall CNTs are considered. The reader will find it beneficial to be familiar with Chapter 4, which discusses the structure of nanotubes, and Chapter 6, which explores ideal nanotube electrical properties, such as the quantum conductance, quantum capacitance, and the kinetic inductance. Employing CNTs as metallic wires to route direct-current (DC) and high-speed signals in an integrated circuit was one of the earliest application ideas promoting nanotubes because of their high current-carrying capability and ballistic transport over relatively long lengths. In this light, we will examine both the low-frequency (lossy) and high-frequency (lossless) transmission line models for single-wall and multi-wall nanotubes in order to elucidate their interconnect properties. These models include bias or field-dependent electron scattering in the nanotube vis-á-vis the mean free path. As such, electron scattering and mean free path will be discussed, although at a somewhat elementary level. Additionally, the temperature and diameter dependence of the electron mean free path and resistance will be highlighted.

At the end of the day, future nanomaterials such asCNTs have to be benchmarked against existing materials to quantify any performance benefits over conventional approaches. For this purpose, we will discuss the performance of CNTs compared with copper, which is the standard metal used in nanoscale integrated circuits today.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×