Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-22T16:33:29.692Z Has data issue: false hasContentIssue false

20 - Creativity in the Distance: The Neurocognition of Semantically Distant Relational Thinking and Reasoning

from Part VI - Reasoning and Intelligence

Published online by Cambridge University Press:  19 January 2018

Rex E. Jung
Affiliation:
University of New Mexico
Oshin Vartanian
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, A. (1999). Two-sided hypotheses generation for abductive analogical reasoning. In Proceedings of the 11th IEEE International Conference, 145152.Google Scholar
Abe, A. (2000). Abductive analogical reasoning. Systems and Computers in Japan, 31, 1119.3.0.CO;2-E>CrossRefGoogle Scholar
Aichelburg, C., Urbanski, M., Thiebaut de Schotten, M., Humbert, F., Levy, R., & Volle, E. (2016). Morphometry of left frontal and temporal poles predicts analogical reasoning abilities. Cerebral Cortex, 26, 915932. doi:10.1093/cercor/bhu254CrossRefGoogle ScholarPubMed
Badre, D., & D’Esposito, M. (2007). Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. Journal of Cognitive Neuroscience, 19, 20822099. doi:10.1162/jocn.2007.91201CrossRefGoogle ScholarPubMed
Badre, D., Poldrack, R. A., Pare-Blagoev, E. J., Insler, R. Z., & Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47, 907918. doi:S0896-6273(05)00643-4[pii]10.1016/j.neuron.2005.07.023CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 8795. doi:10.1016/j.tics.2015.10.004CrossRefGoogle ScholarPubMed
Braver, T. S., & Bongiolatti, S. R. (2002). The role of frontopolar cortex in subgoal processing during working memory. NeuroImage, 15, 523536. doi:10.1006/nimg.2001.1019S1053811901910195[pii]CrossRefGoogle ScholarPubMed
Brunye, T. T., Moran, J. M., Cantelon, J., Holmes, A., Eddy, M. D., Mahoney, C. R., & Taylor, H. A. (2015). Increasing breadth of semantic associations with left frontopolar direct current brain stimulation: A role for individual differences. Neuroreport, 26, 296301. doi:10.1097/WNR.0000000000000348CrossRefGoogle ScholarPubMed
Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies: New York, NY: WW Norton & Company.Google Scholar
Bunge, S. A., Helskog, E. H., & Wendelken, C. (2009). Left, but not right, rostrolateral prefrontal cortex meets a stringent test of the relational integration hypothesis. NeuroImage, 46, 338342. doi:10.1016/j.neuroimage.2009.01.064CrossRefGoogle Scholar
Bunge, S. A., Kahn, I., Wallis, J. D., Miller, E. K., & Wagner, A. D. (2003). Neural circuits subserving the retrieval and maintenance of abstract rules. Journal of Neurophysiology, 90, 34193428. doi:10.1152/jn.00910.200200910.2002 [pii]CrossRefGoogle ScholarPubMed
Bunge, S. A., Wendelken, C., Badre, D., & Wagner, A. D. (2005). Analogical reasoning and prefrontal cortex: Evidence for separable retrieval and integration mechanisms. Cerebral Cortex, 15, 239249. doi:10.1093/cercor/bhh126bhh126 [pii]CrossRefGoogle ScholarPubMed
Burgess, P. W., Dumontheil, I., & Gilbert, S. J. (2007). The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends in Cognitive Sciences, 11, 290298.CrossRefGoogle ScholarPubMed
Cerruti, C., & Schlaug, G. (2009). Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. Journal of Cognitive Neuroscience, 21, 19801987. doi:10.1162/jocn.2008.21143CrossRefGoogle ScholarPubMed
Chi, R. P., & Snyder, A. W. (2011). Facilitate insight by non-invasive brain stimulation. PLoS ONE, 6, e16655. doi:10.1371/journal.pone.0016655CrossRefGoogle ScholarPubMed
Chi, R. P., & Snyder, A. W. (2012). Brain stimulation enables the solution of an inherently difficult problem. Neuroscience Letters, 515, 121124. doi:10.1016/j.neulet.2012.03.012CrossRefGoogle ScholarPubMed
Christoff, K., & Gabrieli, J. D. (2000). The frontopolar cortex and human cognition: Evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology, 28, 168186.CrossRefGoogle Scholar
Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J., & Gabrieli, J. D. (2001). Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage, 14, 11361149. doi:10.1006/nimg.2001.0922S1053-8119(01)90922-X [pii]CrossRefGoogle ScholarPubMed
Chrysikou, E. G., Hamilton, R. H., Coslett, H. B., Datta, A., Bikson, M., & Thompson-Schill, S. L. (2013). Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use. Cognitive Neuroscience, 4, 8189. doi:10.1080/17588928.2013.768221CrossRefGoogle ScholarPubMed
Colombo, B., Bartesaghi, N., Simonelli, L., & Antonietti, A. (2015). The combined effects of neurostimulation and priming on creative thinking. A preliminary tDCS study on dorsolateral prefrontal cortex. Frontiers in Human Neuroscience, 9, Article 403. doi:10.3389/fnhum.2015.00403CrossRefGoogle Scholar
De Neys, W., Vartanian, O., & Goel, V. (2008). Smarter than we think: When our brains detect that we are biased. Psychological Science, 19, 483489. doi:10.1111/j.1467-9280.2008.02113.xCrossRefGoogle ScholarPubMed
De Pisapia, N., Slomski, J. A., & Braver, T. S. (2007). Functional specializations in lateral prefrontal cortex associated with the integration and segregation of information in working memory. Cerebral Cortex, 17, 9931006. doi:10.1093/cercor/bhl010CrossRefGoogle ScholarPubMed
de Souza, L. C., Volle, E., Bertoux, M., Czernecki, V., Funkiewiez, A., Allali, G., … Levy, R. (2010). Poor creativity in frontotemporal dementia: A window into the neural bases of the creative mind. Neuropsychologia, 48, 37333742. doi:10.1016/j.neuropsychologia.2010.09.010CrossRefGoogle ScholarPubMed
Dunbar, K., & Blanchette, I. (2001). The in vivo/in vitro approach to cognition: The case of analogy. Trends in Cognitive Sciences, 5, 334339. doi:S1364-6613(00)01698-3 [pii]CrossRefGoogle ScholarPubMed
Fincham, J. M., Carter, C. S., van Veen, V., Stenger, V. A., & Anderson, J. R. (2002). Neural mechanisms of planning: A computational analysis using event-related fMRI. Proceedings of the National Academy of Sciences of the United States of America, 99, 33463351. doi:10.1073/pnas.052703399CrossRefGoogle ScholarPubMed
Fink, A., & Benedek, M. (2014). EEG alpha power and creative ideation. Neuroscience and Biobehavioral Reviews, 44, 111123. doi:10.1016/j.neubiorev.2012.12.002CrossRefGoogle ScholarPubMed
Fink, A., Benedek, M., Grabner, R. H., Staudt, B., & Neubauer, A. C. (2007). Creativity meets neuroscience: Experimental tasks for the neuroscientific study of creative thinking. Methods, 42, 6876. doi:10.1016/j.ymeth.2006.12.001CrossRefGoogle ScholarPubMed
Fregni, F., Boggio, P. S., Santos, M. C., Lima, M., Vieira, A. L., Rigonatti, S. P., … Pascual-Leone, A. ( 2006 ). Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Movement Disorders, 21, 16931702. doi:10.1002/mds.21012CrossRefGoogle ScholarPubMed
Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7, 155170.Google Scholar
Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12, 306355.CrossRefGoogle Scholar
Gilbert, S. J., Spengler, S., Simons, J. S., Frith, C. D., & Burgess, P. W. (2006). Differential functions of lateral and medial rostral prefrontal cortex (area 10) revealed by brain–behavior associations. Cerebral Cortex, 16, 17831789. doi:bhj113 [pii]10.1093/cercor/bhj113CrossRefGoogle ScholarPubMed
Gilchrist, M. B., & Taft, R. (1972). Originality on demand. Psychological Reports, 31, 579582.CrossRefGoogle ScholarPubMed
Global Chief Executive Officer Study. (2010). Somers, NY: IBM Institute for Business Value.Google Scholar
Goel, V., Eimontaite, I., Goel, A., & Schindler, I. (2015). Differential modulation of performance in insight and divergent thinking tasks with tDCS. Journal of Problem Solving, 8, Article 2.CrossRefGoogle Scholar
Gonen-Yaacovi, G., de Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, Article 465. doi:10.3389/fnhum.2013.00465CrossRefGoogle ScholarPubMed
Green, A. E., Cohen, M. S., Kim, J. U., & Gray, J. R. (2012). An explicit cue improves creative analogical reasoning. Intelligence, 40, 598603.CrossRefGoogle Scholar
Green, A. E., Cohen, M. S., Raab, H. A., Yedibalian, C. G., & Gray, J. R. (2015). Frontopolar activity and connectivity support dynamic conscious augmentation of creative state. Human Brain Mapping, 36, 923934. doi:10.1002/hbm.22676CrossRefGoogle ScholarPubMed
Green, A. E., Fugelsang, J. A., Kraemer, D. J., & Dunbar, K. N. (2008). The micro-category account of analogy. Cognition, 106, 10041016. doi:S0010-0277(07)00094-7 [pii]10.1016/j.cognition.2007.03.015CrossRefGoogle ScholarPubMed
Green, A. E., Fugelsang, J. A., Kraemer, D. J., Shamosh, N. A., & Dunbar, K. N. (2006). Frontopolar cortex mediates abstract integration in analogy. Brain Research, 1096, 125137. doi:S0006-8993(06)01027-4 [pii]10.1016/j.brainres.2006.04.024CrossRefGoogle ScholarPubMed
Green, A. E., Kraemer, D. J., Deyoung, C. G., Fossella, J. A., & Gray, J. R. (2013). A gene–brain–cognition pathway: Prefrontal activity mediates the effect of COMT on cognitive control and IQ. Cerebral Cortex, 23, 552559. doi:10.1093/cercor/bhs035CrossRefGoogle ScholarPubMed
Green, A. E., Kraemer, D. J., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2010). Connecting long distance: semantic distance in analogical reasoning modulates frontopolar cortex activity. Cerebral Cortex, 20, 7076. doi:bhp081 [pii]10.1093/cercor/bhp081CrossRefGoogle ScholarPubMed
Green, A. E., Kraemer, D. J., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2012). Neural correlates of creativity in analogical reasoning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38, 264272. doi:10.1037/a0025764CrossRefGoogle ScholarPubMed
Green, A. E., Spiegel, K. A., Giangrande, E. J., Weinberger, A. B., Gallagher, N. M., & Turkeltaub, P. E. (2017). Thinking cap plus thinking zap: tDCS of frontopolar cortex improves creative analogical reasoning and facilitates conscious augmentation of state creativity in verb generation. Cerebral Cortex, 27, 26282639. doi:10.1093/cercor/bhw080Google ScholarPubMed
Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444454.CrossRefGoogle ScholarPubMed
Hampshire, A., Thompson, R., Duncan, J., & Owen, A. M. (2011). Lateral prefrontal cortex subregions make dissociable contributions during fluid reasoning. Cerebral Cortex, 21, 110.CrossRefGoogle ScholarPubMed
Hobeika, L., Diard-Detoeuf, C., Garcin, B., Levy, R., & Volle, E. (2016). General and specialized brain correlates for analogical reasoning: A meta-analysis of functional imaging studies. Human Brain Mapping, 37, 19531969. doi:10.1002/hbm.23149CrossRefGoogle ScholarPubMed
Hofstadter, D. R. (2001). Analogy as the core of cognition. In Gentner, D., Holyoak, K. J., & Kokinov, B. N. (Eds.), The analogical mind: Perspectives from cognitive science (pp. 499538). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Holyoak, K. J., & Thagard, P. (1995). Mental leaps. Cambridge, MA: MIT Press.Google Scholar
Jacobs, B., Schall, M., Prather, M., Kapler, E., Driscoll, L., Baca, S., … Treml, M. (2001). Regional dendritic and spine variation in human cerebral cortex: A quantitative Golgi study. Cerebral Cortex, 11, 558571.CrossRefGoogle ScholarPubMed
Jauk, E., Benedek, M., & Neubauer, A. C. (2012). Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing. International Journal of Psychophysiology, 84, 219225. doi:10.1016/j.ijpsycho.2012.02.012CrossRefGoogle ScholarPubMed
Jung, R. E., & Haier, R. J. (2013). Creativity and intelligence: Brain networks that link and differentiate the expression of genius. In Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.), Neuroscience of creativity (pp. 233254). Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
Jung, R. E., Segall, J. M., Jeremy Bockholt, H., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2010). Neuroanatomy of creativity. Human Brain Mapping, 31, 398409. doi:10.1002/hbm.20874CrossRefGoogle ScholarPubMed
Knowlton, B. J., Morrison, R. G., Hummel, J. E., & Holyoak, K. J. (2012). A neurocomputational system for relational reasoning. Trends in Cognitive Sciences, 16, 373381. doi:10.1016/j.tics.2012.06.002CrossRefGoogle ScholarPubMed
Koechlin, E., & Hyafil, A. (2007). Anterior prefrontal function and the limits of human decision-making. Science, 318, 594598.CrossRefGoogle ScholarPubMed
Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302, 11811185. doi:10.1126/science.1088545302/5648/1181 [pii]CrossRefGoogle ScholarPubMed
Krawczyk, D. C., McClelland, M. M., Donovan, C. M., Tillman, G. D., & Maguire, M. J. (2010). An fMRI investigation of cognitive stages in reasoning by analogy. Brain Research, 1342, 6373. doi:10.1016/j.brainres.2010.04.039CrossRefGoogle ScholarPubMed
Krawczyk, D. C., Michelle McClelland, M., & Donovan, C. M. (2011). A hierarchy for relational reasoning in the prefrontal cortex. Cortex, 47, 588597. doi:10.1016/j.cortex.2010.04.008CrossRefGoogle ScholarPubMed
Lagarde, J., Valabregue, R., Corvol, J. C., Garcin, B., Volle, E., Le Ber, I., … Levy, R. (2015). Why do patients with neurodegenerative frontal syndrome fail to answer: “In what way are an orange and a banana alike?” Brain, 138, 456471. doi:10.1093/brain/awu359CrossRefGoogle Scholar
Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago, IL: University of Chicago Press.Google Scholar
Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104, 211240.CrossRefGoogle Scholar
Landauer, T. K., Foltz, P. W., & Laham, D. (1998). Introduction to Latent Semantic Analysis. Discourse Processes, 25, 259284.CrossRefGoogle Scholar
Lustenberger, C., Boyle, M. R., Foulser, A. A., Mellin, J. M., & Frohlich, F. (2015). Functional role of frontal alpha oscillations in creativity. Cortex, 67, 7482. doi:10.1016/j.cortex.2015.03.012CrossRefGoogle ScholarPubMed
Maguire, M. J., McClelland, M. M., Donovan, C. M., Tillman, G. D., & Krawczyk, D. C. (2012). Tracking cognitive phases in analogical reasoning with event-related potentials. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38, 273281. doi:10.1037/a0025485CrossRefGoogle ScholarPubMed
Mayer, R. E. (1999). Fifty years of creativity research. In Sternberg, R. J. (Ed.), Handbook of creativity (pp. 449460). Cambridge, UK: Cambridge University Press.Google Scholar
Mayseless, N., & Shamay-Tsoory, S. G. (2015). Enhancing verbal creativity: Modulating creativity by altering the balance between right and left inferior frontal gyrus with tDCS. Neuroscience, 291, 167176. doi:10.1016/j.neuroscience.2015.01.061CrossRefGoogle ScholarPubMed
Metuki, N., Sela, T., & Lavidor, M. (2012). Enhancing cognitive control components of insight problems solving by anodal tDCS of the left dorsolateral prefrontal cortex. Brain Stimulation, 5, 110115. doi:10.1016/j.brs.2012.03.002CrossRefGoogle ScholarPubMed
Morrison, R. G., Krawczyk, D. C., Holyoak, K. J., Hummel, J. E., Chow, T. W., Miller, B. L., & Knowlton, B. J. (2004). A neurocomputational model of analogical reasoning and its breakdown in frontotemporal lobar degeneration. Journal of Cognitive Neuroscience, 16, 260271. doi:10.1162/089892904322984553CrossRefGoogle ScholarPubMed
Nitsche, M. A., Boggio, P. S., Fregni, F., & Pascual-Leone, A. (2009). Treatment of depression with transcranial direct current stimulation (tDCS): A review. Experimental Neurology, 219, 1419. doi:10.1016/j.expneurol.2009.03.038CrossRefGoogle ScholarPubMed
Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., … Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1, 206223. doi:10.1016/j.brs.2008.06.004CrossRefGoogle ScholarPubMed
NSF (Producer). (2011). Empowering the nation through discovery and innovation: NSF strategic plan for fiscal years 2011–2016. [Press Release] Retrieved from www.nsf.gov/news/strategicplan/nsfstrategicplan_2011_2016.pdfGoogle Scholar
Nusbaum, E. C., Silvia, P. J., & Beaty, R. E. (2014). Ready, set, create: What instructing people to “be creative” reveals about the meaning and mechanisms of divergent thinking. Psychology of Aesthetics, Creativity, and the Arts, 8, 423432.CrossRefGoogle Scholar
O’Hara, L. A., & Sternberg, R. J. (2001). It doesn’t hurt to ask: Effects of instructions to be creative, practical, or analytical on essay-writing performance and their interaction with students’ thinking styles. Creativity Research Journal, 13, 197210.CrossRefGoogle Scholar
Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. Paper presented at the Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014).CrossRefGoogle Scholar
Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1989). Positron emission tomographic studies of the processing of single words. Journal of Cognitive Neuroscience, 1, 153170.CrossRefGoogle Scholar
Poldrack, R. A. (2015). Is “efficiency” a useful concept in cognitive neuroscience? Developmental Cognitive Neuroscience, 11, 1217.CrossRefGoogle Scholar
Prabhakaran, R., Green, A. E., & Gray, J. R. (2014). Thin slices of creativity: Using single-word utterances to assess creative cognition. Behavior Research Methods, 46, 641659. doi:10.3758/s13428-013-0401-7CrossRefGoogle ScholarPubMed
Qiu, J., Li, H., Chen, A., & Zhang, Q. (2008). The neural basis of analogical reasoning: An event-related potential study. Neuropsychologia, 46, 30063013. doi:10.1016/j.neuropsychologia.2008.06.008CrossRefGoogle ScholarPubMed
Ramnani, N., & Owen, A. M. (2004). Anterior prefrontal cortex: Insights into function from anatomy and neuroimaging. Nature Reviews Neuroscience, 5, 184194. doi:10.1038/nrn1343nrn1343 [pii]CrossRefGoogle ScholarPubMed
Reilly, J. P. (2012). Applied bioelectricity: From electrical stimulation to electropathology. New York, NY: Springer Science & Business Media.Google Scholar
Reynolds, J. R., McDermott, K. B., & Braver, T. S. (2006). A direct comparison of anterior prefrontal cortex involvement in episodic retrieval and integration. Cerebral Cortex, 16, 519528. doi:10.1093/cercor/bhi131CrossRefGoogle ScholarPubMed
Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24, 9296.CrossRefGoogle Scholar
Shamosh, N., DeYoung, C., Green, A., Reis, D., Conway, A. R. A., Johnson, R., … Gray, J. R. (2008). Individual differences in delay discounting: Relation to intelligence, working memory, and frontopolar cortex. Psychological Science, 19, 904911.CrossRefGoogle Scholar
Simis, M., Bravo, G. L., Boggio, P. S., Devido, M., Gagliardi, R. J., & Fregni, F. (2014). Transcranial direct current stimulation in de novo artistic ability after stroke. Neuromodulation, 17, 497501. doi:10.1111/ner.12140CrossRefGoogle ScholarPubMed
Sternberg, R. J. (1977). Component processes in analogical reasoning. Psychological Review, 84(4), 353378.CrossRefGoogle Scholar
Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proceedings of the National Academy of Sciences of the United States of America, 94, 1479214797.CrossRefGoogle ScholarPubMed
Torrance, E. P. (1974). Norms technical manual: Torrance Tests of Creative Thinking. Lexington, MA: Ginn and Co.Google Scholar
Vartanian, O. (2012). Dissociable neural systems for analogy and metaphor: Implications for the neuroscience of creativity. British Journal of Psychology, 103, 302316. doi:10.1111/j.2044-8295.2011.02073.xCrossRefGoogle ScholarPubMed
Volle, E., Gilbert, S. J., Benoit, R. G., & Burgess, P. W. (2010). Specialization of the rostral prefrontal cortex for distinct analogy processes. Cerebral Cortex, 20, 26472659. doi:bhq012 [pii]10.1093/cercor/bhq012CrossRefGoogle ScholarPubMed
Wagner, A. D., Schacter, D. L., Rotte, M., Koutstaal, W., Maril, A., Dale, A. M., … Buckner, R. L. (1998). Building memories: Remembering and forgetting of verbal experiences as predicted by brain activity. Science, 281, 11881191.CrossRefGoogle ScholarPubMed
Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Back-Madruga, C., McPherson, S., … Miller, B. L. (2004). Relational integration and executive function in Alzheimer’s disease. Neuropsychology, 18, 296305. doi:10.1037/0894-4105.18.2.2962004-12990-011 [pii]CrossRefGoogle ScholarPubMed
Ward, T. B., Finke, R. A., & Smith, S. M. (1995). Problem solving and reasoning. In Creativity and the mind (pp. 89120). New York, NY: Springer.CrossRefGoogle Scholar
Weinberger, A. B., Iyer, H., & Green, A. E. (2016). Conscious augmentation of creative state enhances “real” creativity in open-ended analogical reasoning. PLoS ONE, 11(3), e0150773. doi:10.1371/journal.pone.0150773CrossRefGoogle ScholarPubMed
Wendelken, C., Nakhabenko, D., Donohue, S. E., Carter, C. S., & Bunge, S. A. (2008). “Brain is to thought as stomach is to??”: Investigating the role of rostrolateral prefrontal cortex in relational reasoning. Journal of Cognitive Neuroscience, 20, 682693. doi:10.1162/jocn.2008.20055CrossRefGoogle ScholarPubMed
Wig, G. S., Miller, M. B., Kingstone, A., & Kelley, W. M. (2004). Separable routes to human memory formation: Dissociating task and material contributions in the prefrontal cortex. Journal of Cognitive Neuroscience, 16, 139148. doi:10.1162/089892904322755629CrossRefGoogle ScholarPubMed
Wolfe, M. B., & Goldman, S. R. (2003). Use of latent semantic analysis for predicting psychological phenomena: Two issues and proposed solutions. Behavior Research Methods, Instruments, & Computers, 35, 2231.CrossRefGoogle ScholarPubMed
Zabelina, D., & Robinson, M. D. (2010). Creativity as flexible cognitive control. Psychology of Aesthetics, Creativity, and the Arts, 4, 136143.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×