Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T05:51:59.324Z Has data issue: false hasContentIssue false

Part III - Attention and Imagination

Published online by Cambridge University Press:  19 January 2018

Rex E. Jung
Affiliation:
University of New Mexico
Oshin Vartanian
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abraham, A., Beudt, S., Ott, D. V. M., & von Cramon, D. R. (2012). Creative cognition and the brain: Dissociations between frontal, parietal–temporal and basal ganglia groups. Brain Research, 1482, 5570.CrossRefGoogle ScholarPubMed
Aiello, J., De Risi, D., Epstein, Y., & Katin, R. (1977). Crowding and the role of interpersonal distance preference. Sociometry, 40, 271282.CrossRefGoogle Scholar
Amabile, T. M. (1985). Motivation and creativity: Effects of motivational orientation on creative writers. Journal of Personality and Social Psychology, 48, 393399.CrossRefGoogle Scholar
Amabile, T. M., Goldfarb, P., & Brackfield, S. (1990). Social influences on creativity: Evaluation, coaction, and surveillance. Creativity Research Journal, 3, 621.CrossRefGoogle Scholar
Andrews, F. M., & Farris, G. F. (1972). Time pressure and performance of scientists and engineers: A five-year panel study. Organizational Behavior and Human Performance, 8, 185200.CrossRefGoogle Scholar
Ansburg, P. I., & Hill, K. (2003). Creative and analytic thinkers differ in their use of attentional resources. Personality and Individual Differences, 34, 11411152.CrossRefGoogle Scholar
Baas, M., De Dreu, C. K. W., & Nijstad, B. A. (2008). A meta-analysis of 25 years of mood-creativity research: Hedonic tone, activation, or regulatory focus? Psychological Bulletin, 134, 779806.CrossRefGoogle ScholarPubMed
Banich, M. T. (2004). Cognitive neuroscience and neuropsychology. New York, NY: Houghton Mufflin Company.Google Scholar
Beaty, R. E., & Silvia, P. J. (2012). Why do ideas get more creative across time? An executive interpretation of the serial order effect in divergent thinking tasks. Psychology of Aesthetics, Creativity, and the Arts, 6, 309319.CrossRefGoogle Scholar
Beaty, R. E., Silvia, P. J., Nusbaum, E. C., Jauk, E., & Benedek, M. (2014). The role of associative and executive processes in creative cognition. Memory & Cognition, 42, 11861197.CrossRefGoogle Scholar
Benedek, M., Franz, F., Heene, M., & Neubauer, A. C. (2012). Differential effects of cognitive inhibition and intelligence on creativity. Personality and Individual Differences, 53, 480485.CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Fink, A., Koschutnig, K., Reishofer, G., Ebner, F., & Neubauer, A. C. (2014). To create or to recall? Neural mechanisms underlying the generation of creative new ideas. NeuroImage, 88, 125133.CrossRefGoogle ScholarPubMed
Benedek, M., Könen, T., & Neubauer, A. C. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity, and the Arts, 6, 273281.CrossRefGoogle Scholar
Bond, C. F., & Titus, L. J. (1983). Social facilitation: A meta-analysis of 241 studies. Psychological Bulletin, 94, 265292.CrossRefGoogle ScholarPubMed
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624652.CrossRefGoogle ScholarPubMed
Bowden, E., & Beeman, M. (1998). Getting the right idea: Semantic activation in the right hemisphere may help solve insight problems. Psychological Science, 9, 435440.CrossRefGoogle Scholar
Carson, S. H. (2011). Creativity and psychopathology: A shared vulnerability model. Canadian Journal of Psychiatry, 56, 144153.CrossRefGoogle ScholarPubMed
Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology, 85, 499506.CrossRefGoogle ScholarPubMed
Chrysikou, E. G., & Thompson- Schill, S. L. (2011). Dissociable brain states linked to common and creative object use. Human Brain Mapping, 32, 665675.CrossRefGoogle ScholarPubMed
Cornish, K. M., Manly, T., Savage, R., Swanson, J., Morisano, D., Butler, N., … Hollis, C. P. (2005). Association of the dopamine transporter (DAT1) 10/10-repeat genotype with ADHD symptoms and response inhibition in a general population sample. Molecular Psychiatry, 10, 686698.CrossRefGoogle Scholar
Cottrell, N. B., Wack, D. L., Sekerak, G. J., & Rittle, R. H. (1968). Social facilitation of dominant responses by the presence of an audience and the mere presence of others. Journal of Personality and Social Psychology, 9, 245250.CrossRefGoogle Scholar
Curie, E., & Sheean, V. (2001). Madame Curie: A biography. New York, NY: Da Capo Press.Google Scholar
De Dreu, C. K. W., Nijstad, B. A., Baas, M., Wosink, I., & Roskes, M. (2012). Working memory benefits creative insight, musical improvisation, and original ideation through maintained task-focused attention. Personality and Social Psychology Bulletin, 38, 656669.CrossRefGoogle ScholarPubMed
Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136, 822848.CrossRefGoogle ScholarPubMed
Easterbrook, J. A. (1959). The effect of emotion on cue utilization and the organization of behavior. Psychological Review, 74, 1628.Google Scholar
Evans, G. W. (1979). Behavioral and physical consequences of crowding in humans. Journal of Applied Social Psychology, 9, 2746.CrossRefGoogle Scholar
Feist, G. J. (1999). The influence of personality on artistic and scientific creativity. In Sternberg, R. J. (Ed.), Handbook of creativity (pp. 273296). New York, NY: Cambridge University Press.Google Scholar
Fink, A., & Benedek, M. (2014). EEG alpha power and creative ideation. Neuroscience and Biobehavioral Reviews, 44, 111123.CrossRefGoogle ScholarPubMed
Fink, A, Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., … & Neubauer, A. C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human Brain Mapping, 30, 734748.CrossRefGoogle ScholarPubMed
Fink, A., Grabner, R. H., Gebauer, D., Reishofer, G., Koschutnig, K., & Ebner, F. (2010). Enhancing creativity by means of cognitive stimulation: Evidence from an fMRI study. NeuroImage, 52, 16871695.CrossRefGoogle ScholarPubMed
Fink, A., Koschutnig, K., Hutterer, L., Steiner, E., Benedek, M., Weber, B., … & Weiss, E. M. (2014). Gray matter density in relation to different facets of verbal creativity. Brain Structure and Function, 219, 12631269.CrossRefGoogle ScholarPubMed
Fink, A., Weber, B., Koschutnig, K., Benedek, M., Reishofer, G., Ebner, F., … & Weiss, E. M. (2014). Creativity and schizotypy from the neuroscience perspective. Cognitive, Affective, & Behavioral Neuroscience, 14, 378387.CrossRefGoogle ScholarPubMed
Folstein, J. R., & van Pettern, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45, 152170.CrossRefGoogle ScholarPubMed
Fukuda, K., & Vogel, E. K. (2011). Individual differences in recovery time from attention capture. Psychological Science, 22, 361368.CrossRefGoogle Scholar
Gabora, L. (2010). Revenge of the “Neurds:” Characterizing creative thought in terms of the structure and dynamics of memory. Creativity Research Journal, 22, 113.CrossRefGoogle Scholar
Garcia-Garcia, M., Barceló, F., Clemente, , , I. C., & Escera, C. (2010). The role of the dopamine transporter DAT1 genotype on the neural correlates of cognitive flexibility. European Journal of Neuroscience, 31, 754760.CrossRefGoogle ScholarPubMed
Gjini, K., Burroughs, S., & Boutros, N. N. (2011). Relevance of attention in auditory sensory gating paradigm in schizophrenia. Journal of Psychophysiology, 25, 6066.CrossRefGoogle ScholarPubMed
Gilhooly, K. J., Fioratou, E., Anthony, S. H., & Wynn, V. (2007). Divergent thinking: Strategies and executive involvement in generating novel uses for familiar objects. British Journal of Psychology, 98, 611625.CrossRefGoogle ScholarPubMed
Gonen-Yaacovi, G., de Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contributions to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, 465.CrossRefGoogle ScholarPubMed
Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444454.CrossRefGoogle ScholarPubMed
Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: Functional imaging and the resting human brain. Nature Reviews Neuroscience, 2, 685694.CrossRefGoogle ScholarPubMed
Jauk, E., Neubauer, A. C., Dunst, B., Fink, A., & Benedek, M. (2015). Gray matter correlates of creative potential: A latent variable voxel-based morphometry study. NeuroImage, 111, 312320.CrossRefGoogle ScholarPubMed
Jung, R. E., Segall, J. M., Bockholt, H. J., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. (2010). Neuroanatomy of creativity. Human Brain Mapping, 31, 398409.CrossRefGoogle ScholarPubMed
Karau, S. J., & Kelly, J. R. (1992). The effects of time scarcity and time abundance on group performance quality and interaction process. Journal of Experimental Psychology, 28, 542572.Google Scholar
Kasof, J. (1997). Creativity and breadth of attention. Creativity Research Journal, 10, 303315.CrossRefGoogle Scholar
Kozbelt, A. (2008). Hierarchical liner modeling of creative artists’ problem solving behaviors. Journal of Creative Behavior, 42, 181200.CrossRefGoogle Scholar
Lee, C. S., & Therriault, D. J. (2013). The cognitive underpinnings of creative thought: A latent variable analysis exploring the roles of intelligence and working memory in three creative thinking processes. Intelligence, 41, 306320.CrossRefGoogle Scholar
Lester, T. (2012). Da Vinci’s ghost: Genius, obsession, and how Leonardo created the world in his own image. New York, NY: Free Press.Google Scholar
Martindale, C. (1995). Creativity and connectionism. In Smith, S. M., Ward, T. B., & Finke, R. A. (Eds.), The creative cognition approach (pp. 249268). Cambridge, MA: MIT Press.Google Scholar
Martindale, C. (2001). Oscillations and analogies: Thomas Young, MD, FRS, genius. American Psychologist, 56, 342345.CrossRefGoogle Scholar
Martindale, C., Anderson, K., Moore, K., & West, A. N. (1996). Creativity, oversensitivity, and rate of habituation. Personality and Individual Differences, 4, 423427.CrossRefGoogle Scholar
Martindale, C., & Armstrong, J. (1974). The relationship of creativity to cortical activation and its operant control. The Journal of Genetic Psychology, 124, 311320.CrossRefGoogle ScholarPubMed
Matlin, M, & Zajonc, R. (1968). Social facilitation of word associates. Journal of Personality and Social Psychology, 10, 455460.CrossRefGoogle Scholar
Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220232.CrossRefGoogle ScholarPubMed
Mendelsohn, G., & Griswold, B. (1964). Differential use of incidental stimuli in problem solving as a function of creativity. Journal of Abnormal and Social Psychology, 68, 431436.CrossRefGoogle ScholarPubMed
Milgram, R. M., & Miigram, N. A. (1976). Group versus individual administration in the measurement of creative thinking in gifted and nongifted children. Child Development, 47, 563565.CrossRefGoogle Scholar
Miyake, A., & Friedman, N. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21, 814.CrossRefGoogle ScholarPubMed
Nagar, D., & Pandey, I. (1987). Affect and performance on cognitive task as a function of crowding and noise. Journal of Applied Social Psychology, 17, 147157.CrossRefGoogle Scholar
Nijstad, B. A., De Dreu, C. K. W., Rietzchel, E. F., & Baas, M. (2010). The dual pathway to creativity model: Creative ideation as a function of flexibility and persistence. European Review of Social Psychology, 21, 3477.CrossRefGoogle Scholar
Nusbaum, E. C., & Silvia, P. J. (2011). Are intelligence and creativity really so different? Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39, 3645.CrossRefGoogle Scholar
Olincy, A., Braff, D. L., Adler, L. E., Cadenhead, K. S., Calkins, M. E., Dobie, D. J., … Freedman, R. (2010). Inhibition of the P50 cerebral evoked response to repeated auditory stimuli: Results from the Consortium on Genetics of Schizophrenia. Schizophrenia Research, 119, 175182.CrossRefGoogle Scholar
Patterson, J. V., Hetrick, W. P., Boutros, N. N., Jin, Y., Sandman, C., Stern, H., … Bunney Jr., W. E. (2008). P50 sensory gating ratios in schizophrenics and controls: A review and data analysis. Psychiatry Research, 158, 226247.CrossRefGoogle ScholarPubMed
Posner, M. I. (1988). Structures and functions of selective attention. In Boll, T. & Bryant, B. (Eds.), Master lectures in clinical neuropsychology and brain function: Research, measurement, and practice (pp. 171202). Washington, DC: American Psychological Association.Google Scholar
Rawlings, D. (1985). Psychoticism, creativity, and dichotic listening. Personality and Individual Differences, 6, 737742.CrossRefGoogle Scholar
Richards, R., Kinney, D.K., Binet, M., & Merzel, A.P. (1988). Assessing everyday creativity: Characteristics of the Lifetime Creativity Scales and validation with three large samples. Journal of Personality and Social Psychology, 54, 476485.CrossRefGoogle Scholar
Runco, M. A. (2005). Motivation, competence, and creativity. In Elliot, A. J. & Dweck, C. S. (Eds.), Handbook of competence and motivation (pp. 609623). New York, NY: Guilford Publications.Google Scholar
Runco, M. A., & Acar, S. (2012). Divergent thinking as an indicator of creative achievement. Creativity Research Journal, 24, 6675.CrossRefGoogle Scholar
Russell, J. (1976). Utilization of irrelevant information by high and low creatives. Psychological Reports, 39, 105106.CrossRefGoogle ScholarPubMed
Sawyer, R. K. (2011). The cognitive neuroscience of creativity: A critical review. Creativity Research Journal, 23, 137154.CrossRefGoogle Scholar
Silvia, P. J., Beaty, R. E., & Nusbaum, E. C. (2013). Verbal fluency and creativity: General and specific contributions of broad retrieval ability (Gr) factors to divergent thinking. Intelligence, 41, 328340.CrossRefGoogle Scholar
Silvia, P. J., Beaty, R. E., Nusbaum, E. C., Eddington, K. M., & Kwapil, T. R. (2014). Creative motivation: Creative achievement predicts cardiac autonomic markers of effort during divergent thinking. Biological Psychology, 102, 3037.CrossRefGoogle ScholarPubMed
Sternberg, R. J., & Lubart, T. I. (2002). The concept of creativity: Prospects and paradigms. In Sternberg, R. J. (Ed.), Handbook of creativity (pp. 315). New York, NY: Cambridge University Press.Google Scholar
Süß, H. M., Oberauer, , Wittman, K., Wilhelm, W. W., , O., & Schulze, R. (2002). Working-memory capacity explains reasoning ability – And a little bit more. Intelligence, 30, 261288.CrossRefGoogle Scholar
Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2011). Failing to deactivate: The association between brain activity during a working memory task and creativity. NeuroImage, 55, 681687.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010). Regional gray matter volume of dopaminergic system associate with creativity: Evidence from voxel-based morphometry. NeuroImage, 51, 578585.CrossRefGoogle ScholarPubMed
Torrance, E. P. (1969). Creativity. What research says to the teacher. Washington, DC: National Education Association.Google Scholar
Torrance, E. P. (1974). The Torrance Tests of Creative Thinking-Norms – Technical manual research edition, figural tests, Forms A and B. Princeton, NJ: Personnel Press.Google Scholar
van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: A review of resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20, 519534.CrossRefGoogle ScholarPubMed
Vartanian, O. (2009). Variable attention facilitates creative problem solving. Psychology of Aesthetics, Creativity, and the Arts, 3, 5759.CrossRefGoogle Scholar
Vartanian, O., Martindale, C., & Kwiatkowski, J. (2007). Creative potential, attention, and speed of information processing. Personality and Individual Differences, 43, 14701480.CrossRefGoogle Scholar
Wallach, M. A., & Kogan, N. (1965). Modes of thinking in young children: A study of the creativity–intelligence distinction. New York, NY: Holt, Rinehart, & Winston.Google Scholar
Wallas, G (1926) The art of thought. New York, NY: Harcourt Brace.Google Scholar
Wiley, J., & Jarosz, A. (2012). Working memory capacity, attentional focus, and problem solving. Psychological Science, 21, 258262.Google Scholar
Zabelina, D. L., & Andrews-Hanna, J. (2016). Dynamic network interactions supporting internally oriented cognition. Current Opinion in Neurobiology, 40, 8693.CrossRefGoogle ScholarPubMed
Zabelina, D. L., Colzato, L., Beeman, M., & Hommel, B. (2016). Dopamine and the creative mind: Individual differences in everyday creative performance are predicted by interactions between dopamine genes DAT and COMT. PLoS ONE, 11, e0146768.CrossRefGoogle Scholar
Zabelina, D. L., Condon, D., & Beeman, M. (2014). Do dimensional psychopathology measures relate to divergent thinking or creative achievement? Frontiers in Psychology, 5, 111.CrossRefGoogle ScholarPubMed
Zabelina, D. L., & Ganis, G. (2017). Divergent thinking, but not real-life creative achievement, relates to better cognitive control, as reflected in the N2 ERP. Manuscript submitted for publication.Google Scholar
Zabelina, D. L., O’Leary, D., Pornpattananangkul, N., Nusslock, R., & Beeman, M. (2015). Creativity and sensory gating indexed by the P50: Selective versus leaky sensory gating in divergent thinkers and creative achievers. Neuropsychologia, 69, 7784.CrossRefGoogle ScholarPubMed
Zabelina, D. L., & Robinson, M. D. (2010). Creativity as flexible cognitive control. Psychology of Aesthetics, Creativity, and the Arts, 4, 136143.CrossRefGoogle Scholar
Zabelina, D. L., Saporta, A., & Beeman, M. (2016). Flexible or leaky attention in creative people? Distinct patterns of attention for different types of creative thinking. Memory & Cognition, 44, 488498.CrossRefGoogle ScholarPubMed

References

Addis, D. R., Pan, L., Musicaro, R., & Schacter, D. L. (2016). Divergent thinking and constructing episodic simulations. Memory, 24, 8997.CrossRefGoogle ScholarPubMed
Addis, D. R., Wong, A. T., & Schacter, D. L. (2007). Remembering the past and imagining the future: Common and distinct neural substrates during event construction and elaboration. Neuropsychologia, 45, 13631377.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annuals of the New York Academy of Sciences, 1316, 2952.CrossRefGoogle ScholarPubMed
Arden, R., Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: A psychometric review. Behavioral Brain Research, 214, 143156.CrossRefGoogle Scholar
Baird, B., Smallwood, J., & Schooler, J. W. (2011). Back to the future: Autobiographical planning and the functionality of mind-wandering. Consciousness and Cognition, 20, 16041611.CrossRefGoogle Scholar
Beaty, R. E. (2015). The neuroscience of musical improvisation. Neuroscience & Biobehavioral Reviews, 51, 108117.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964.CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 8795.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 9298.CrossRefGoogle ScholarPubMed
Beaty, R. E., Burgin, C. J., Nusbaum, E. C., Kwapil, T. R., Hodges, D. A., & Silvia, P. J. (2013). Music to the inner ears: Exploring individual differences in musical imagery. Consciousness and Cognition, 22, 11631173.CrossRefGoogle Scholar
Beaty, R. E., & Silvia, P. J. (2013). Metaphorically speaking: Cognitive abilities and the production of figurative speech. Memory and Cognition, 41, 255267.CrossRefGoogle Scholar
Beaty, R. E., Silvia, P. J., Nusbaum, E. C., Jauk, E., & Benedek, M. (2014). The role of associative and executive processes in creative cognition. Memory & Cognition, 42, 11861195.CrossRefGoogle Scholar
Benedek, M., Beaty, R., Jauk, E., Koschutnig, K., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creating metaphors: The neural basis of figurative language production. NeuroImage, 90, 99106.CrossRefGoogle ScholarPubMed
Benedek, M., Bergner, S., Könen, T., Fink, A., & Neubauer, A. C. (2011). EEG alpha synchronization is related to top-down processing in convergent and divergent thinking. Neuropsychologia, 49, 35053511.CrossRefGoogle ScholarPubMed
Benedek, M., Franz, F., Heene, M., & Neubauer, A. C. (2012). Differential effects of cognitive inhibition and intelligence on creativity. Personality and Individual Differences, 53(4), 480485. doi:10.1016/j.paid.2012.04.014CrossRefGoogle ScholarPubMed
Benedek, M., & Jauk, E. (in press). Spontaneous and controlled processes in creative cognition. In Fox, K. C. R., & Christoff, K. (Eds.), The Oxford handbook of spontaneous thought: Mind wandering, creativity, dreaming, and clinical disorders. Oxford: Oxford University Press.Google Scholar
Benedek, M., Jauk, E., Beaty, R. E., Fink, A., Koschutnig, K., & Neubauer, A. C. (2016). Brain mechanisms associated with internally directed attention and self-generated thought. Scientific Reports, 6, 22959.CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 7383.CrossRefGoogle ScholarPubMed
Benedek, M., Könen, T., & Neubauer, A. C. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity, and the Arts, 6, 273281.CrossRefGoogle Scholar
Benedek, M., Mühlmann, C., Jauk, , , E., & Neubauer, A. C. (2013). Assessment of divergent thinking by means of the subjective top-scoring method: Effects of the number of top-ideas and time-on-task on reliability and validity. Psychology of Aesthetics, Creativity, and the Arts, 7, 341349.CrossRefGoogle ScholarPubMed
Benedek, M., Schickel, R. J., Jauk, E., Fink, A., & Neubauer, A. C. (2014). Alpha power increases in right parietal cortex reflects focused internal attention. Neuropsychologia, 56, 393400.CrossRefGoogle ScholarPubMed
Benedek, M., Stoiser, R., Walcher, S., & Körner, C. (2017). Eye behavior associated with internally versus externally directed cognition. Frontiers in Psychology, 8, 1092. doi:10.3389/fpsyg.2017.01092CrossRefGoogle ScholarPubMed
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network. Annals of the New York Academy of Sciences, 1124, 138.CrossRefGoogle ScholarPubMed
Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology, 85, 499506.CrossRefGoogle ScholarPubMed
Christoff, K. (2013). Thinking. In Ochsner, K. N. & Kosslyn, S. M. (Eds.), The Oxford handbook of cognitive neuroscience (Vol. 2, pp. 318333). Oxford: Oxford University Press.Google Scholar
Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review Psychology, 62, 73101.CrossRefGoogle ScholarPubMed
Cooper, N. R., Croft, R. J., Dominey, S. J. J., Burgess, A. P., & Gruzelier, J. H. (2003). Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. International Journal of Psychophysiology, 47, 6574.CrossRefGoogle ScholarPubMed
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201215.CrossRefGoogle ScholarPubMed
Dietrich, A. (2003). Functional neuroanatomy of altered states of consciousness: The transient hypofrontality hypothesis. Consciousness and Cognition, 12, 231256.CrossRefGoogle ScholarPubMed
Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136, 822848.CrossRefGoogle ScholarPubMed
Dixon, M. L., Fox, K. C. R., & Christoff, K. (2014). A framework for understanding the relationship between externally and internally directed cognition. Neuropsychologia, 62, 321330.CrossRefGoogle ScholarPubMed
Dubé, C., Payne, , Sekuler, L., , R., & Rotello, C. M. (2013). Paying attention to attention in recognition memory. Insights from models and electrophysiology. Psychological Science, 24, 23982408.CrossRefGoogle ScholarPubMed
Engle, R. W. (2002). Working memory capacity as executive attention. Current directions in Psychological Science, 11, 1923.CrossRefGoogle Scholar
Fink, A., & Benedek, M. (2013). The creative brain: Brain correlates underlying the generation of original ideas. In Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.), Neuroscience of creativity (pp. 207232). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Fink, A., & Benedek, M. (2014). EEG alpha power and creative ideation. Neuroscience and Biobehavioral Reviews, 44, 111123.CrossRefGoogle ScholarPubMed
Fink, A., Benedek, M., Grabner, R. H., Staudt, B., & Neubauer, A. C. (2007). Creativity meets neuroscience: Experimental tasks for the neuroscientific study of creative thinking. Methods, 42, 6876.CrossRefGoogle ScholarPubMed
Fink, A., Grabner, R. H., Benedek, M., & Neubauer, A. C. (2006). Divergent thinking training is related to frontal electroencephalogram alpha synchronization. European Journal of Neuroscience, 23, 22412246.CrossRefGoogle ScholarPubMed
Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., … Neubauer, A. C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human Brain Mapping, 30, 734748.CrossRefGoogle ScholarPubMed
Fink, A., Graif, B., & Neubauer, A. C. (2009). Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers. NeuroImage, 46, 854862.CrossRefGoogle ScholarPubMed
Fink, A., Koschutnig, K., Hutterer, L., Steiner, E., Benedek, M., Weber, B., … Weiss, E. M. (2014). Gray matter density in relation to different facets of verbal creativity. Brain Structure and Function, 219, 12631269.CrossRefGoogle ScholarPubMed
Fink, A., & Neubauer, A. C. (2006). EEG alpha oscillations during the performance of verbal creativity tasks: Differential effects of sex and verbal intelligence. International Journal of Psychophysiology, 62, 4653.CrossRefGoogle ScholarPubMed
Fink, A., & Neubauer, A. C. (2008). Eysenck meets Martindale: The relationship between extraversion and originality from the neuroscientific perspective. Personality and Individual Differences, 44, 299310.CrossRefGoogle Scholar
Fink, A., Schwab, D., & Papousek, I. (2011). Sensitivity of EEG upper alpha activity to cognitive and affective creativity interventions. International Journal of Psychophysiology, 82, 233239.CrossRefGoogle ScholarPubMed
Finke, R. A. (1996). Imagery, creativity, and emergent structure. Consciousness and Cognition, 5, 381393.CrossRefGoogle ScholarPubMed
Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K. (2015). The wandering brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage, 111, 611621.CrossRefGoogle ScholarPubMed
Gabora, L. (2002). Cognitive mechanisms underlying the creative process. In Hewett, T. & Kavanagh, T. (Eds.), Proceedings of the Fourth International Conference on Creativity and Cognition (pp. 126133). Loughborough: Loughborough University.CrossRefGoogle Scholar
Gonen-Yaacovi, G., de Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, 465.CrossRefGoogle ScholarPubMed
Grabner, R. H., Fink, A., & Neubauer, A. C. (2007). Brain correlates of self-rated originality of ideas: Evidence from event-related power and phase-locking changes in the EEG. Behavioral Neuroscience, 121, 224230.CrossRefGoogle ScholarPubMed
Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: Functional imaging and the resting human brain. Nature Reviews Neuroscience, 2, 685694.CrossRefGoogle ScholarPubMed
Händel, B. F., Haarmeier, , , T., & Jensen, O. (2011). Alpha oscillations correlate with the successful inhibition of unattended stimuli. Journal of Cognitive Neuroscience, 23, 24942502.CrossRefGoogle ScholarPubMed
Jaarsveld, S., Fink, A., Rinner, M., Schwab, D., Benedek, M., & Lachmann, T. (2015). Intelligence in creative processes: An EEG study. Intelligence, 49, 171178.CrossRefGoogle Scholar
Jauk, E., Benedek, M., & Neubauer, A. C. (2012). Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing. International Journal of Psychophysiology, 84, 219225.CrossRefGoogle ScholarPubMed
Jauk, E., Neubauer, A. C., Dunst, B., Fink, A., & Benedek, M. (2015). Gray matter correlates of creative potential: A latent variable voxel-based morphometry study. NeuroImage, 111, 312320.CrossRefGoogle ScholarPubMed
Jaušovec, N., 2000. Differences in cognitive processes between gifted, intelligent, creative, and average individuals while solving complex problems: An EEG study. Intelligence, 28, 213237.CrossRefGoogle Scholar
Jensen, O., Bonnefond, M., & VanRullen, R. (2012). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16, 200206.CrossRefGoogle ScholarPubMed
Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E. (2002). Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12, 877882.CrossRefGoogle Scholar
Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4, 186.CrossRefGoogle ScholarPubMed
Jung, R. E., Flores, R. A., & Hunter, D. (2016). A new measure of imagination ability: Anatomical brain imaging correlates. Frontiers in Psychology, 7, 496.CrossRefGoogle ScholarPubMed
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7, 330.CrossRefGoogle ScholarPubMed
Jung, R. E., Segall, J. M., Bockholt, H. J., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2010). Neuoroanatomy of creativity. Human Brain Mapping, 31, 398409.CrossRefGoogle ScholarPubMed
Jung-Beeman, M. (2005). Bilateral brain processes for comprehending natural language. Trends in Cognitive Sciences, 9, 512518.CrossRefGoogle ScholarPubMed
Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., … Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2, 500510.CrossRefGoogle ScholarPubMed
Kane, M. J., Bleckley, K. M., Conway, A. R., & Engle, R. W. (2001). A controlled-attention view of working-memory capacity. Journal of Experimental Psychology: General, 130, 169183.CrossRefGoogle ScholarPubMed
Kane, M. J., Brown, L. H., McVay, J. C., Silvia, P. J., Myin-Germeys, I., & Kwapil, T. R. (2007). For whom the mind wanders, and when an experience-sampling study of working memory and executive control in daily life. Psychological Science, 18, 614621.CrossRefGoogle ScholarPubMed
Kasof, J. (1997). Creativity and breadth of attention. Creativity Research Journal, 10, 303315.CrossRefGoogle Scholar
Kellner, R., & Benedek, M. (2017). The role of creative potential and intelligence for humor production. Psychology of Aesthetics, Creativity, and the Arts, 11, 5258. doi:10.1037/aca0000065CrossRefGoogle Scholar
Killingsworth, M. A., & Gilbert, D. T. (2010). A wandering mind is an unhappy mind. Science, 330, 932932.CrossRefGoogle ScholarPubMed
Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16, 606617.CrossRefGoogle ScholarPubMed
Klimesch, W., Doppelmayr, M., Schwaiger, J., Auinger, P., & Winkler, T. (1999). “Paradoxical” alpha synchronization in a memory task. Cognitive Brain Research, 7, 493501.CrossRefGoogle Scholar
Koestler, A. (1964). The act of creation. New York, NY: Macmillan.Google Scholar
Kosslyn, S. M., Ganis, G., & Thompson, W. L. (2001). Neural foundations of imagery. Nature Reviews Neuroscience, 2, 635642.CrossRefGoogle ScholarPubMed
Kosslyn, S. M., Pascual-Leone, A., Felician, O., Camposano, S., Keenan, J. P., Ganis, G., … Alpert, N. M. (1999). The role of area 17 in visual imagery: Convergent evidence from PET and rTMS. Science, 284, 167170.CrossRefGoogle ScholarPubMed
Kosslyn, S. M., Thompson, W. L., & Alpert, N. M. (1997). Neural systems shared by visual imagery and visual perception: A positron emission tomography study. NeuroImage, 6, 320334.CrossRefGoogle ScholarPubMed
Kounios, J., & Beeman, M. (2009). The Aha! moment: The cognitive neuroscience of insight. Current Directions in Psychological Science, 18, 210216.CrossRefGoogle Scholar
Kris, E. (1952). Psychoanalytic explorations in art. New York, NY: International Universities Press.Google Scholar
Martindale, C. (1999). Biological bases of creativity. In Sternberg, R. (Ed.), Handbook of creativity (pp. 137152). Cambridge: Cambridge University Press.Google Scholar
Martindale, C., & Armstrong, J. (1974). The relationship of creativity to cortical activation and its operant control. Journal of Genetic Psychology, 124, 311320.CrossRefGoogle ScholarPubMed
Martindale, C., & Hasenfus, N. (1978). EEG differences as a function of creativity, stage of the creative process, and effort to be original. Biological Psychology, 6, 157167.CrossRefGoogle Scholar
Martindale, C., & Hines, D. (1975). Creativity and cortical activation during creative, intellectual, and EEG feedback tasks. Biological Psychology, 3, 7180.CrossRefGoogle ScholarPubMed
Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220232.CrossRefGoogle ScholarPubMed
Mendelsohn, G. A. (1976). Associative and attentional processes in creative performance. Journal of Personality, 44, 341369.CrossRefGoogle Scholar
Mok, L. W. (2014). The interplay between spontaneous and controlled processing in creative cognition. Frontiers in Human Neuroscience, 8, 663.CrossRefGoogle ScholarPubMed
Nusbaum, E. C., & Silvia, P. J. (2011). Are intelligence and creativity really so different? Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39, 3645.CrossRefGoogle Scholar
Palva, S., & Palva, J. M. (2007). New vistas for α-frequency band oscillations. Trends in Neurosciences, 30, 150158.CrossRefGoogle ScholarPubMed
Pearson, J., Naselaris, T., Holmes, E. A., & Kosslyn, S. M. (2015). Mental imagery: Functional mechanisms and clinical applications. Trends in Cognitive Sciences, 19, 590602.CrossRefGoogle ScholarPubMed
Pfurtscheller, G. (1999). Quantification of ERD and ERS in the time domain. In Pfurtscheller, G., & Lopes da Silva, F. H. (Eds.), Event-related desynchronization. Handbook of electroencephalography and clinical neurophysiology (Vol. 6, pp. 89105). Amsterdam: Elsevier.Google Scholar
Pfurtscheller, G., StancákJr., A., & Neuper, A. C. (1996). Event-related synchronization (ERS) in the alpha band – An electrophysiological correlate of cortical idling: A review. International Journal of Psychophysiology, 24, 3946.CrossRefGoogle ScholarPubMed
Pinho, A. L., Ullén, F., Castelo-Brancod, M., Fransson, P., & de Manzano, Ö. (2015). Addressing a paradox: dual strategies for creative performance in introspective and extrospective networks. Cerebral Cortex, 26, 30523063. doi:10.1093/cercor/bhv130CrossRefGoogle ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98, 676682.CrossRefGoogle ScholarPubMed
Ray, W. J., & Cole, H. W. (1985). EEG alpha reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science, 228, 750752.CrossRefGoogle ScholarPubMed
Rihs, T. A., Michel, C. M., & Thut, G. (2007). Mechanisms of selective inhibition in visual spatial attention are indexed by α-band EEG synchronization. European Journal of Neuroscience, 25, 603610.CrossRefGoogle ScholarPubMed
Rowe, G., Hirsh, J. B., & Anderson, A. K. (2007). Positive affect increases the breadth of attentional selection. Proceedings of the National Academy of Sciences, 104, 383388.CrossRefGoogle ScholarPubMed
Salvi, C., Bricolo, E., Franconeri, S. L., Kounios, J., & Beeman, M. (2015). Sudden insight is associated with shutting out visual inputs. Psychonomic Bulletin & Review, 22, 18141819.CrossRefGoogle ScholarPubMed
Sarter, M., Givens, B., & Bruno, J. P. (2001). The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Brain Research Reviews, 35, 146160.CrossRefGoogle ScholarPubMed
Sauseng, P., Klimesch, W., Doppelmayr, M., Pecherstorfer, T., Freunberger, R., & Hanslmayr, S. (2005). EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Human Brain Mapping, 26, 148155.CrossRefGoogle Scholar
Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: Remembering, imagining, and the brain. Neuron, 76, 677694.CrossRefGoogle ScholarPubMed
Schwab, D., Benedek, M., Papousek, I., Weiss, E. M., & Fink, A. (2014). The time-course of EEG alpha power changes in creative ideation. Frontiers in Human Neuroscience, 8, 310.CrossRefGoogle ScholarPubMed
Silvia, P. J. (2015). Intelligence and creativity are pretty similar after all. Educational Psychology Review, 27, 599606.CrossRefGoogle Scholar
Smallwood, J., Brown, K. S., Tipper, C., Giesbrecht, B., Franklin, M. S., Mrazek, M. D., … Schooler, J. W. (2011). Pupillometric evidence for the decoupling of attention from perceptual input during offline thought. PLoS ONE, 6, e18298.CrossRefGoogle ScholarPubMed
Smallwood, J., & Schooler, J. W. (2015). The science of mind wandering: Empirically navigating the stream of consciousness. Annual Review of Psychology, 66, 487518.CrossRefGoogle ScholarPubMed
Spreng, R. N., Mar, R. A., & Kim, A. S. N. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21, 489510.CrossRefGoogle Scholar
Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage, 53, 303317.CrossRefGoogle ScholarPubMed
Supp, G. G., Siegel, M., Hipp, J. F., & Engel, A. K. (2011). Cortical hypersynchrony predicts breakdown of sensory processing during loss of consciousness. Current Biology, 21, 19881993.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2011). Failing to deactivate: The association between brain activity during a working memory task and creativity. NeuroImage, 55, 681687.CrossRefGoogle ScholarPubMed
Vartanian, O. (2009). Variable attention facilitates creative problem solving. Psychology of Aesthetics, Creativity, and the Arts, 3, 5759.CrossRefGoogle Scholar
Von Stein, A., Chiang, C., & König, P. (2000). Top-down processing mediated by interareal synchronization. Proceedings of the National Academy of Sciences, 97, 1474814753.CrossRefGoogle ScholarPubMed
Von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: From local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology, 38, 301313.CrossRefGoogle Scholar
Walcher, S., Körner, C., & Benedek, M. (2017). Looking for ideas: Eye behavior during goal-directed internally-focused cognition. Consciousness and Cognition, 53, 165175. doi:10.1016/j.concog.2017.06.009CrossRefGoogle ScholarPubMed
Wiley, J., & Jarosz, A. F. (2012). Working memory capacity, attentional focus, and problem solving. Current Directions in Psychological Science, 21, 258262.CrossRefGoogle Scholar
Worden, M., Foxe, J. J., Wang, N., & Simpson, G. V. (2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific α-band electroencephalography increases over occipital cortex. Journal of Neuroscience, 20(6), RC63.CrossRefGoogle ScholarPubMed
Zabelina, D. L., O’Leary, D., Pornpattananangkul, N., Nusslock, R., & Beeman, M. (2015). Creativity and sensory gating indexed by the P50: Selective versus leaky sensory gating in divergent thinkers and creative achievers. Neuropsychologia, 69, 7784.CrossRefGoogle ScholarPubMed
Zabelina, D. L., & Robinson, M. D. (2010). Creativity as flexible cognitive control. Psychology of Aesthetics, Creativity, and the Arts, 4, 136143.CrossRefGoogle Scholar
Zabelina, D., Saporta, A., & Beeman, M. (2015). Flexible or leaky attention in creative people? Distinct patterns of attention for different types of creative thinking. Memory & Cognition, 144, 488498.Google Scholar
Zanto, T. P., Rubens, M. T., Thangavel, A., & Gazzaley, A. (2011). Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nature Neuroscience, 14, 656663.CrossRefGoogle ScholarPubMed
Zatorre, R. J., Halpern, A. R., Perry, D. W., Meyer, E., & Evans, A. C. (1996). Hearing in the mind’s ear: A PET investigation of musical imagery and perception. Journal of Cognitive Neuroscience, 8, 2946.CrossRefGoogle Scholar

References

Abraham, A. (2013). The promises and perils of the neuroscience of creativity. Frontiers in Human Neuroscience, 7, 246. http://doi.org/10.3389/fnhum.2013.00246CrossRefGoogle ScholarPubMed
Abraham, A. (2014). Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks. Frontiers in Human Neuroscience, 8, 95. http://doi.org/10.3389/fnhum.2014.00095CrossRefGoogle ScholarPubMed
Abraham, A. (2016). The imaginative mind. Human Brain Mapping, 37, 41974211.CrossRefGoogle ScholarPubMed
Abraham, A., Beudt, S., Ott, D. V. M., & von Cramon, D. Y. (2012). Creative cognition and the brain: Dissociations between frontal, parietal–temporal and basal ganglia groups. Brain Research, 1482, 5570. http://doi.org/10.1016/j.brainres.2012.09.007CrossRefGoogle ScholarPubMed
Abraham, A., & Bubic, A. (2015). Semantic memory as the root of imagination. Cognitive Science, 6, 325. http://doi.org/10.3389/fpsyg.2015.00325Google ScholarPubMed
Abraham, A., Pieritz, K., Thybusch, K., Rutter, B., Kröger, S., Schweckendiek, J., … Hermann, C. (2012). Creativity and the brain: Uncovering the neural signature of conceptual expansion. Neuropsychologia, 50(8), 19061917. http://doi.org/10.1016/j.neuropsychologia.2012.04.015CrossRefGoogle ScholarPubMed
Abraham, A., Schubotz, R. I., & von Cramon, D. Y. (2008). Thinking about the future versus the past in personal and non-personal contexts. Brain Research, 1233, 106119. http://doi.org/10.1016/j.brainres.2008.07.084CrossRefGoogle ScholarPubMed
Abraham, A., & Windmann, S. (2007). Creative cognition: The diverse operations and the prospect of applying a cognitive neuroscience perspective. Methods (San Diego, California), 42(1), 3848. http://doi.org/10.1016/j.ymeth.2006.12.007CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Reidler, J. S., Huang, C., & Buckner, R. L. (2010). Evidence for the default network’s role in spontaneous cognition. Journal of Neurophysiology, 104(1), 322335. http://doi.org/10.1152/jn.00830.2009CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316, 2952. http://doi.org/10.1111/nyas.12360CrossRefGoogle ScholarPubMed
Aziz-Zadeh, L., Kaplan, J. T., & Iacoboni, M. (2009). “Aha!”: The neural correlates of verbal insight solutions. Human Brain Mapping, 30(3), 908916. http://doi.org/10.1002/hbm.20554CrossRefGoogle ScholarPubMed
Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12(5), 193200. http://doi.org/10.1016/j.tics.2008.02.004CrossRefGoogle ScholarPubMed
Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia, 45(13), 28832901. http://doi.org/10.1016/j.neuropsychologia.2007.06.015CrossRefGoogle ScholarPubMed
Bar, M. (2007). The proactive brain: Using analogies and associations to generate predictions. Trends in Cognitive Sciences, 11(7), 280289. http://doi.org/10.1016/j.tics.2007.05.005CrossRefGoogle ScholarPubMed
Bartolomeo, P. (2008). The neural correlates of visual mental imagery: An ongoing debate. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 44(2), 107108. http://doi.org/10.1016/j.cortex.2006.07.001CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Barry Kaufman, S., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964. http://doi.org/10.1038/srep10964CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20(2), 8795. http://doi.org/10.1016/j.tics.2015.10.004CrossRefGoogle ScholarPubMed
Beaty, R. E., Silvia, P. J., Nusbaum, E. C., Jauk, E., & Benedek, M. (2014). The roles of associative and executive processes in creative cognition. Memory & Cognition, 42(7), 11861197. http://doi.org/10.3758/s13421-014-0428-8CrossRefGoogle ScholarPubMed
Blasi, G., Goldberg, T. E., Weickert, T., Das, S., Kohn, P., Zoltick, B., … Mattay, V. S. (2006). Brain regions underlying response inhibition and interference monitoring and suppression. The European Journal of Neuroscience, 23(6), 16581664. http://doi.org/10.1111/j.1460-9568.2006.04680.xCrossRefGoogle Scholar
Boccia, M., Piccardi, L., Palermo, L., Nori, R., & Palmiero, M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Frontiers in Psychology, 6, 1195. http://doi.org/10.3389/fpsyg.2015.01195CrossRefGoogle ScholarPubMed
Bubić, A., & Abraham, A. (2014). Neurocognitive bases of future oriented cognition. Review of Psychology, 21(1), 315.Google Scholar
Bubic, A., von Cramon, D. Y., & Schubotz, R. I. (2010). Prediction, cognition and the brain. Frontiers in Human Neuroscience, 4, 25. http://doi.org/10.3389/fnhum.2010.00025Google ScholarPubMed
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 138. http://doi.org/10.1196/annals.1440.011CrossRefGoogle ScholarPubMed
Chand, G., & Dhamala, M. (2015). Interactions among the brain default-mode, salience and central-executive networks during perceptual decision-making of moving dots. Brain Connectivity. http://doi.org/10.1089/brain.2015.0379Google Scholar
Chen, A. C., Oathes, D. J., Chang, C., Bradley, T., Zhou, Z.-W., Williams, L. M., … Etkin, A. (2013). Causal interactions between frontoparietal central executive and default-mode networks in humans. Proceedings of the National Academy of Sciences of the United States of America, 110(49), 1994419949. http://doi.org/10.1073/pnas.1311772110CrossRefGoogle ScholarPubMed
Chi, R. P., & Snyder, A. W. (2011). Facilitate insight by non-invasive brain stimulation. PLoS ONE, 6(2), e16655. http://doi.org/10.1371/journal.pone.0016655CrossRefGoogle ScholarPubMed
Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. NeuroImage, 37(1), 343360. http://doi.org/10.1016/j.neuroimage.2007.03.071CrossRefGoogle ScholarPubMed
Corbett, F., Jefferies, E., & Ralph, M. A. L. (2009). Exploring multimodal semantic control impairments in semantic aphasia: Evidence from naturalistic object use. Neuropsychologia, 47(13), 27212731. http://doi.org/10.1016/j.neuropsychologia.2009.05.020CrossRefGoogle ScholarPubMed
Corbett, F., Jefferies, E., & Ralph, M. A. L. (2011). Deregulated semantic cognition follows prefrontal and temporo-parietal damage: Evidence from the impact of task constraint on nonverbal object use. Journal of Cognitive Neuroscience, 23(5), 11251135. http://doi.org/10.1162/jocn.2010.21539CrossRefGoogle ScholarPubMed
Daselaar, S. M., Porat, Y., Huijbers, W., & Pennartz, C. M. A. (2010). Modality-specific and modality-independent components of the human imagery system. NeuroImage, 52(2), 677685. http://doi.org/10.1016/j.neuroimage.2010.04.239CrossRefGoogle ScholarPubMed
Dietrich, A. (2015). How creativity happens in the brain. Houndmills: Palgrave Macmillan.CrossRefGoogle Scholar
Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136(5), 822848. http://doi.org/10.1037/a0019749CrossRefGoogle ScholarPubMed
Dixon, M. L., Fox, K. C. R., & Christoff, K. (2014). A framework for understanding the relationship between externally and internally directed cognition. Neuropsychologia, 62, 321330. http://doi.org/10.1016/j.neuropsychologia.2014.05.024CrossRefGoogle ScholarPubMed
Donoso, M., Collins, A. G. E., & Koechlin, E. (2014). Foundations of human reasoning in the prefrontal cortex. Science, 344(6191), 14811486. http://doi.org/10.1126/science.1252254CrossRefGoogle ScholarPubMed
du Boisgueheneuc, F., Levy, R., Volle, E., Seassau, M., Duffau, H., Kinkingnehun, S., … Dubois, B. (2006). Functions of the left superior frontal gyrus in humans: A lesion study. Brain: A Journal of Neurology, 129(Pt 12), 33153328. http://doi.org/10.1093/brain/awl244CrossRefGoogle ScholarPubMed
Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59(2), 17831794. http://doi.org/10.1016/j.neuroimage.2011.08.008CrossRefGoogle ScholarPubMed
Eriksson, J., Vogel, E. K., Lansner, A., Bergström, F., & Nyberg, L. (2015). Neurocognitive architecture of working memory. Neuron, 88(1), 3346. http://doi.org/10.1016/j.neuron.2015.09.020CrossRefGoogle ScholarPubMed
Evans, J. S. B. T. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59, 255278. http://doi.org/10.1146/annurev.psych.59.103006.093629CrossRefGoogle ScholarPubMed
Evans, J. S. B. T., & Stanovich, K. E. (2013). Dual-process theories of higher cognition: Advancing the debate. Perspectives on Psychological Science, 8(3), 223241. http://doi.org/10.1177/1745691612460685CrossRefGoogle ScholarPubMed
Farah, M. J., & Hook, C. J. (2013). The seductive allure of “seductive allure.” Perspectives on Psychological Science, 8(1), 8890. http://doi.org/10.1177/1745691612469035CrossRefGoogle ScholarPubMed
Faust, M., & Kenett, Y. N. (2014). Rigidity, chaos and integration: Hemispheric interaction and individual differences in metaphor comprehension. Frontiers in Human Neuroscience, 8, 511. http://doi.org/10.3389/fnhum.2014.00511CrossRefGoogle ScholarPubMed
Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., … Neubauer, A. C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and FMRI. Human Brain Mapping, 30(3), 734748. http://doi.org/10.1002/hbm.20538CrossRefGoogle ScholarPubMed
Finke, R. A. (1990). Creative imagery: Discoveries and inventions in visualization. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Finke, R. A., Ward, T. B., & Smith, S. M. (1996). Creative cognition: Theory, research, and applications (1st pbk. ed.). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K. (2015). The wandering brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage, 111, 611621. http://doi.org/10.1016/j.neuroimage.2015.02.039CrossRefGoogle ScholarPubMed
Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 96739678. http://doi.org/10.1073/pnas.0504136102CrossRefGoogle ScholarPubMed
Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology, 101(6), 32703283. http://doi.org/10.1152/jn.90777.2008CrossRefGoogle ScholarPubMed
Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., & Mullins, P. G. (2014). The salience network is responsible for switching between the default mode network and the central executive network: Replication from DCM. NeuroImage, 99, 180190. http://doi.org/10.1016/j.neuroimage.2014.05.052CrossRefGoogle Scholar
Green, A. E. (2016). Creativity, within reason semantic distance and dynamic state creativity in relational thinking and reasoning. Current Directions in Psychological Science, 25(1), 2835. http://doi.org/10.1177/0963721415618485CrossRefGoogle Scholar
Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2010). Connecting long distance: Semantic distance in analogical reasoning modulates frontopolar cortex activity. Cerebral Cortex, 20(1), 7076. http://doi.org/10.1093/cercor/bhp081CrossRefGoogle ScholarPubMed
Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2012). Neural correlates of creativity in analogical reasoning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38(2), 264272. http://doi.org/10.1037/a0025764CrossRefGoogle ScholarPubMed
Ioannides, A. A. (2007). Dynamic functional connectivity. Current Opinion in Neurobiology, 17(2), 161170. http://doi.org/10.1016/j.conb.2007.03.008CrossRefGoogle ScholarPubMed
Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Med, 2(8), e124. http://doi.org/10.1371/journal.pmed.0020124CrossRefGoogle ScholarPubMed
Irish, M., & Piguet, O. (2013). The pivotal role of semantic memory in remembering the past and imagining the future. Frontiers in Behavioral Neuroscience, 7, 27. http://doi.org/10.3389/fnbeh.2013.00027CrossRefGoogle ScholarPubMed
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7. http://doi.org/10.3389/fnhum.2013.00330CrossRefGoogle ScholarPubMed
Jung, R. E., Segall, J. M., Jeremy Bockholt, H., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2010). Neuroanatomy of creativity. Human Brain Mapping, 31(3), 398409. http://doi.org/10.1002/hbm.20874CrossRefGoogle ScholarPubMed
Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., … Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2(4), E97. http://doi.org/10.1371/journal.pbio.0020097CrossRefGoogle ScholarPubMed
Kenett, Y. N., Anaki, D., & Faust, M. (2014). Investigating the structure of semantic networks in low and high creative persons. Frontiers in Human Neuroscience, 8, 407. http://doi.org/10.3389/fnhum.2014.00407CrossRefGoogle ScholarPubMed
Koechlin, E. (2015). Prefrontal executive function and adaptive behavior in complex environments. Current Opinion in Neurobiology, 37, 16. http://doi.org/10.1016/j.conb.2015.11.004CrossRefGoogle ScholarPubMed
Kounios, J., & Beeman, M. (2014). The cognitive neuroscience of insight. Annual Review of Psychology, 65, 7193. http://doi.org/10.1146/annurev-psych-010213-115154CrossRefGoogle ScholarPubMed
Kröger, S., Rutter, , Hill, B., Windmann, H., Hermann, S., , C., & Abraham, A. (2013). An ERP study of passive creative conceptual expansion using a modified alternate uses task. Brain Research, 1527, 189198. http://doi.org/10.1016/j.brainres.2013.07.007CrossRefGoogle ScholarPubMed
Kröger, S., Rutter, , Stark, B., Windmann, R., Hermann, S, , C., & Abraham, A. (2012). Using a shoe as a plant pot: Neural correlates of passive conceptual expansion. Brain Research, 1430, 5261. http://doi.org/10.1016/j.brainres.2011.10.031CrossRefGoogle ScholarPubMed
Levens, S. M., Larsen, J. T., Bruss, J., Tranel, D., Bechara, A., & Mellers, B. A. (2014). What might have been? The role of the ventromedial prefrontal cortex and lateral orbitofrontal cortex in counterfactual emotions and choice. Neuropsychologia, 54, 7786. http://doi.org/10.1016/j.neuropsychologia.2013.10.026CrossRefGoogle ScholarPubMed
Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: An FMRI study of jazz improvisation. PLoS ONE, 3(2), e1679. http://doi.org/10.1371/journal.pone.0001679CrossRefGoogle ScholarPubMed
Liu, S., Chow, H. M., Xu, Y., Erkkinen, M. G., Swett, K. E., Eagle, M. W., … Braun, A. R. (2012). Neural correlates of lyrical improvisation: An fMRI study of freestyle rap. Scientific Reports, 2. http://doi.org/10.1038/srep00834CrossRefGoogle ScholarPubMed
Liu, S., Erkkinen, M. G., Healey, M. L., Xu, Y., Swett, K. E., Chow, H. M., & Braun, A. R. (2015). Brain activity and connectivity during poetry composition: Toward a multidimensional model of the creative process. Human Brain Mapping, 36, 33513372. http://doi.org/10.1002/hbm.22849CrossRefGoogle Scholar
Martindale, C. (1999). Biological bases of creativity. In Sternberg, R. J. (Ed.), Handbook of creativity (pp. 137152). Cambridge: Cambridge University Press.Google Scholar
Mashal, N., Faust, M., Hendler, T., & Jung-Beeman, M. (2007). An fMRI investigation of the neural correlates underlying the processing of novel metaphoric expressions. Brain and Language, 100(2), 115126. http://doi.org/10.1016/j.bandl.2005.10.005CrossRefGoogle ScholarPubMed
Mather, M., Cacioppo, J. T., & Kanwisher, N. (2013). How fMRI can inform cognitive theories. Perspectives on Psychological Science, 8(1), 108113. http://doi.org/10.1177/1745691612469037CrossRefGoogle ScholarPubMed
Medaglia, J. D., Lynall, M.-E., & Bassett, D. S. (2015). Cognitive network neuroscience. Journal of Cognitive Neuroscience, 27(8), 14711491. http://doi.org/10.1162/jocn_a_00810CrossRefGoogle ScholarPubMed
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214(5–6), 655667. http://doi.org/10.1007/s00429-010-0262-0CrossRefGoogle ScholarPubMed
Miran, M., & Miran, E. (1984). Cerebral asymmetries: Neuropsychological measurement and theoretical issues. Biological Psychology, 19(3–4), 295304.CrossRefGoogle ScholarPubMed
Mullally, S. L., & Maguire, E. A. (2013). Memory, imagination, and predicting the future: A common brain mechanism? The Neuroscientist, 20(3), 220234. http://doi.org/10.1177/1073858413495091CrossRefGoogle ScholarPubMed
Nee, D. E., & D’Esposito, M. (2016). The hierarchical organization of the lateral prefrontal cortex. eLife, 5. http://doi.org/10.7554/eLife.12112CrossRefGoogle ScholarPubMed
Nicholls, J. G. (1972). Creativity in the person who will never produce anything original and useful: The concept of creativity as a normally distributed trait. The American Psychologist, 27(8), 717727.CrossRefGoogle ScholarPubMed
Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology, 2(2), 175220. http://doi.org/10.1037/1089-2680.2.2.175CrossRefGoogle Scholar
Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective & Behavioral Neuroscience, 12(2), 241268. http://doi.org/10.3758/s13415-011-0083-5CrossRefGoogle ScholarPubMed
Pearson, J., & Kosslyn, S. M. (2015). The heterogeneity of mental representation: Ending the imagery debate. Proceedings of the National Academy of Sciences of the United States of America, 112(33), 1008910092. http://doi.org/10.1073/pnas.1504933112CrossRefGoogle ScholarPubMed
Petersen, S. E., & Sporns, O. (2015). Brain networks and cognitive architectures. Neuron, 88(1), 207219. http://doi.org/10.1016/j.neuron.2015.09.027CrossRefGoogle ScholarPubMed
Petrides, M. (2005). Lateral prefrontal cortex: Architectonic and functional organization. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1456), 781795. http://doi.org/10.1098/rstb.2005.1631CrossRefGoogle ScholarPubMed
Poldrack, R. A. (2012). The future of fMRI in cognitive neuroscience. NeuroImage, 62(2), 12161220. http://doi.org/10.1016/j.neuroimage.2011.08.007CrossRefGoogle ScholarPubMed
Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433447. http://doi.org/10.1146/annurev-neuro-071013-014030CrossRefGoogle ScholarPubMed
Ramnani, N., & Owen, A. M. (2004). Anterior prefrontal cortex: Insights into function from anatomy and neuroimaging. Nature Reviews. Neuroscience, 5(3), 184194. http://doi.org/10.1038/nrn1343CrossRefGoogle ScholarPubMed
Reverberi, C., Toraldo, A., D’Agostini, S., & Skrap, M. (2005). Better without (lateral) frontal cortex? Insight problems solved by frontal patients. Brain: A Journal of Neurology, 128(Pt 12), 28822890. http://doi.org/10.1093/brain/awh577CrossRefGoogle ScholarPubMed
Robbins, T. W., Gillan, C. M., Smith, D. G., de Wit, S., & Ersche, K. D. (2012). Neurocognitive endophenotypes of impulsivity and compulsivity: Towards dimensional psychiatry. Trends in Cognitive Sciences, 16(1), 8191. http://doi.org/10.1016/j.tics.2011.11.009CrossRefGoogle ScholarPubMed
Rutter, B., Kröger, S., Hill, , Windmann, H., Hermann, S., , C., & Abraham, A. (2012). Can clouds dance? Part 2: An ERP investigation of passive conceptual expansion. Brain and Cognition, 80(3), 301310. http://doi.org/10.1016/j.bandc.2012.08.003CrossRefGoogle ScholarPubMed
Rutter, B., Kröger, S., Stark, , Schweckendiek, R., Windmann, J., Hermann, S., , C., & Abraham, A. (2012). Can clouds dance? Neural correlates of passive conceptual expansion using a metaphor processing task: Implications for creative cognition. Brain and Cognition, 78(2), 114122. http://doi.org/10.1016/j.bandc.2011.11.002CrossRefGoogle ScholarPubMed
Sawyer, K. (2011). The cognitive neuroscience of creativity: A critical review. Creativity Research Journal, 23(2), 137154. http://doi.org/10.1080/10400419.2011.571191CrossRefGoogle Scholar
Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: Remembering, imagining, and the brain. Neuron, 76(4), 677694. http://doi.org/10.1016/j.neuron.2012.11.001CrossRefGoogle ScholarPubMed
Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84(1), 166. http://doi.org/10.1037/0033-295X.84.1.1CrossRefGoogle Scholar
Scurich, N., & Shniderman, A. (2014). The selective allure of neuroscientific explanations. PLoS ONE, 9(9), e107529. http://doi.org/10.1371/journal.pone.0107529CrossRefGoogle ScholarPubMed
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 23492356. http://doi.org/10.1523/JNEUROSCI.5587-06.2007CrossRefGoogle ScholarPubMed
Sepulcre, J., Sabuncu, M. R., & Johnson, K. A. (2012). Network assemblies in the functional brain. Current Opinion in Neurology, 25(4), 384391. http://doi.org/10.1097/WCO.0b013e328355a8e8Google ScholarPubMed
Shah, C., Erhard, K., Ortheil, H.-J., Kaza, E., Kessler, C., & Lotze, M. (2013). Neural correlates of creative writing: An fMRI Study. Human Brain Mapping, 34, 10881101. http://doi.org/10.1002/hbm.21493CrossRefGoogle ScholarPubMed
Smith, S. M. (2012). The future of FMRI connectivity. NeuroImage, 62(2), 12571266. http://doi.org/10.1016/j.neuroimage.2012.01.022CrossRefGoogle ScholarPubMed
Smith, S. M., Ward, T. B., & Schumacher, J. S. (1993). Constraining effects of examples in a creative generation task. Memory & Cognition, 21(6), 837845.CrossRefGoogle Scholar
Spreng, R. N., Mar, R. A., & Kim, A. S. N. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489510. http://doi.org/10.1162/jocn.2008.21029CrossRefGoogle Scholar
Spreng, R. N., Sepulcre, J., Turner, G. R., Stevens, W. D., & Schacter, D. L. (2013). Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. Journal of Cognitive Neuroscience, 25(1), 7486. http://doi.org/10.1162/jocn_a_00281CrossRefGoogle ScholarPubMed
Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right frontoinsular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 1256912574. http://doi.org/10.1073/pnas.0800005105CrossRefGoogle ScholarPubMed
Stocker, K. (2012). The time machine in our mind. Cognitive Science, 36(3), 385420. http://doi.org/10.1111/j.1551-6709.2011.01225.xCrossRefGoogle ScholarPubMed
Stuss, D. T. (2011). Functions of the frontal lobes: Relation to executive functions. Journal of the International Neuropsychological Society, 17(5), 759765. http://doi.org/10.1017/S1355617711000695CrossRefGoogle ScholarPubMed
Taft, R., & Rossiter, J. R. (1966). The Remote Associates Test: Divergent or convergent thinking? Psychological Reports, 19(3), 13131314. http://doi.org/10.2466/pr0.1966.19.3f.1313CrossRefGoogle ScholarPubMed
Thompson-Schill, S. L. (2003). Neuroimaging studies of semantic memory: Inferring “how” from “where.” Neuropsychologia, 41(3), 280292.CrossRefGoogle Scholar
Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience, 16(1), 5561. http://doi.org/10.1038/nrn3857CrossRefGoogle ScholarPubMed
Uttal, W. R. (2011). Mind and brain: A critical appraisal of cognitive neuroscience. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Vartanian, O. (2012). Dissociable neural systems for analogy and metaphor: Implications for the neuroscience of creativity. British Journal of Psychology, 103(3), 302316. http://doi.org/10.1111/j.2044-8295.2011.02073.xCrossRefGoogle ScholarPubMed
Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive, Affective & Behavioral Neuroscience, 3(4), 255274.CrossRefGoogle ScholarPubMed
Ward, T. B. (1994). Structured imagination: The role of category structure in exemplar generation. Cognitive Psychology, 27, 140.CrossRefGoogle Scholar
Weisberg, D. S., Keil, F. C., Goodstein, J., Rawson, E., & Gray, J. R. (2008). The seductive allure of neuroscience explanations. Journal of Cognitive Neuroscience, 20(3), 470477. http://doi.org/10.1162/jocn.2008.20040CrossRefGoogle ScholarPubMed
Wilson, R. C., Guilford, J. P., Christensen, P. R., & Lewis, D. J. (1954). A factor-analytic study of creative-thinking abilities. Psychometrika, 19(4), 297311. http://doi.org/10.1007/BF02289230CrossRefGoogle Scholar
Zabelina, D. L., O’Leary, D., Pornpattananangkul, N., Nusslock, R., & Beeman, M. (2015). Creativity and sensory gating indexed by the P50: Selective versus leaky sensory gating in divergent thinkers and creative achievers. Neuropsychologia, 69, 7784. http://doi.org/10.1016/j.neuropsychologia.2015.01.034CrossRefGoogle ScholarPubMed

References

Abraham, A. (2014). Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00095CrossRefGoogle ScholarPubMed
Abraham, A., Pieritz, K., Thybusch, K., Rutter, B., Kröger, S., Schweckendiek, J., … Hermann, C. (2012). Creativity and the brain: Uncovering the neural signature of conceptual expansion. Neuropsychologia, 50, 19061917. https://doi.org/10.1016/j.neuropsychologia.2012.04.015CrossRefGoogle ScholarPubMed
Addis, D. R., Cheng, T., Roberts, R. P., & Schacter, D. L. (2011). Hippocampal contributions to the episodic simulation of specific and general future events. Hippocampus, 21, 10451052. https://doi.org/10.1002/hipo.20870CrossRefGoogle Scholar
Addis, D. R., Hach, S., & Tippett, L. J. (2016). Do strategic processes contribute to the specificity of future simulation in depression? The British Journal of Clinical Psychology, 55, 167186. https://doi.org/10.1111/bjc.12103CrossRefGoogle Scholar
Addis, D. R., Musicaro, R., Pan, L., & Schacter, D. L. (2010). Episodic simulation of past and future events in older adults: Evidence from an experimental recombination task. Psychology and Aging, 25, 369376. https://doi.org/10.1037/a0017280CrossRefGoogle ScholarPubMed
Addis, D. R., Pan, L., Musicaro, R., & Schacter, D. L. (2016). Divergent thinking and constructing episodic simulations. Memory (Hove, England), 24, 8997. https://doi.org/10.1080/09658211.2014.985591CrossRefGoogle ScholarPubMed
Addis, D. R., Pan, L., Vu, M.-A., Laiser, N., & Schacter, D. L. (2009). Constructive episodic simulation of the future and the past: Distinct subsystems of a core brain network mediate imagining and remembering. Neuropsychologia, 47, 22222238. https://doi.org/10.1016/j.neuropsychologia.2008.10.026CrossRefGoogle ScholarPubMed
Addis, D. R., Roberts, R. P., & Schacter, D. L. (2011). Age-related neural changes in autobiographical remembering and imagining. Neuropsychologia, 49, 36563669. https://doi.org/10.1016/j.neuropsychologia.2011.09.021CrossRefGoogle ScholarPubMed
Addis, D. R., & Schacter, D. L. (2008). Effects of detail and temporal distance of past and future events on the engagement of a common neural network. Hippocampus, 18, 227237.CrossRefGoogle Scholar
Addis, D. R., & Schacter, D. L. (2012). The hippocampus and imagining the future: Where do we stand? Frontiers in Human Neuroscience, 5, 173. https://doi.org/10.3389/fnhum.2011.00173CrossRefGoogle ScholarPubMed
Addis, D. R., Wong, A. T., & Schacter, D. L. (2007). Remembering the past and imagining the future: Common and distinct neural substrates during event construction and elaboration. Neuropsychologia, 45, 13631377. https://doi.org/10.1016/j.neuropsychologia.2006.10.016CrossRefGoogle ScholarPubMed
Addis, D. R., Wong, A. T., & Schacter, D. L. (2008). Age-related changes in the episodic simulation of future events. Psychological Science, 19, 3341. https://doi.org/10.1111/j.1467-9280.2008.02043.xCrossRefGoogle ScholarPubMed
Allen, A. P., & Thomas, K. E. (2011). A dual process account of creative thinking. Creativity Research Journal, 23, 109118. https://doi.org/10.1080/10400419.2011.571183CrossRefGoogle Scholar
Anderson, R. J., Dewhurst, S. A., & Nash, R. A. (2012). Shared cognitive processes underlying past and future thinking: The impact of imagery and concurrent task demands on event specificity. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38, 356365. https://doi.org/10.1037/a0025451CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R. (2012). The brain’s default network and its adaptive role in internal mentation. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 18, 251270. https://doi.org/10.1177/1073858411403316CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Reidler, J. S., Huang, C., & Buckner, R. L. (2010). Evidence for the default network’s role in spontaneous cognition. Journal of Neurophysiology, 104, 322335. https://doi.org/10.1152/jn.00830.2009CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316, 2952. https://doi.org/10.1111/nyas.12360CrossRefGoogle ScholarPubMed
Arden, R., Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: A psychometric view. Behavioural Brain Research, 214, 143156. https://doi.org/10.1016/j.bbr.2010.05.015CrossRefGoogle ScholarPubMed
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170177. https://doi.org/10.1016/j.tics.2004.02.010CrossRefGoogle ScholarPubMed
Barbas, H., & Blatt, G. J. (1995). Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus, 5, 511533. https://doi.org/10.1002/hipo.450050604CrossRefGoogle ScholarPubMed
Barr, N., Pennycook, G., Stolz, J. A., & Fugelsang, J. A. (2015). Reasoned connections: A dual-process perspective on creative thought. Thinking & Reasoning, 21, 6175. https://doi.org/10.1080/13546783.2014.895915CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964. https://doi.org/10.1038/srep10964CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 8795. https://doi.org/10.1016/j.tics.2015.10.004CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 9298. https://doi.org/10.1016/j.neuropsychologia.2014.09.019CrossRefGoogle ScholarPubMed
Beaty, R. E., & Silvia, P. J. (2012). Why do ideas get more creative across time? An executive interpretation of the serial order effect in divergent thinking tasks. Psychology of Aesthetics, Creativity, and the Arts, 6, 309319. https://doi.org/10.1037/a0029171CrossRefGoogle Scholar
Beaty, R. E., Silvia, P. J., Nusbaum, E. C., Jauk, E., & Benedek, M. (2014). The roles of associative and executive processes in creative cognition. Memory & Cognition, 42, 11861197. https://doi.org/10.3758/s13421-014-0428-8CrossRefGoogle ScholarPubMed
Benedek, M., Franz, F., Heene, M., & Neubauer, A. C. (2012). Differential effects of cognitive inhibition and intelligence on creativity. Personality and Individual Differences, 53, 480485. https://doi.org/10.1016/j.paid.2012.04.014CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Fink, A., Koschutnig, K., Reishofer, G., Ebner, F., & Neubauer, A. C. (2014). To create or to recall? Neural mechanisms underlying the generation of creative new ideas. NeuroImage, 88, 125133. https://doi.org/10.1016/j.neuroimage.2013.11.021CrossRefGoogle ScholarPubMed
Benedek, M., Könen, T., & Neubauer, A. C. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity, and the Arts, 6, 273281. https://doi.org/10.1037/a0027059CrossRefGoogle Scholar
Benoit, R. G., & Schacter, D. L. (2015). Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia, 75, 450457. https://doi.org/10.1016/j.neuropsychologia.2015.06.034CrossRefGoogle ScholarPubMed
Benoit, R. G., Szpunar, K. K., & Schacter, D. L. (2014). Ventromedial prefrontal cortex supports affective future simulation by integrating distributed knowledge. Proceedings of the National Academy of Sciences, 111, 1655016555. https://doi.org/10.1073/pnas.1419274111CrossRefGoogle ScholarPubMed
Berryhill, M. E., Picasso, L., Arnold, R., Drowos, D., & Olson, I. R. (2010). Similarities and differences between parietal and frontal patients in autobiographical and constructed experience tasks. Neuropsychologia, 48, 13851393. https://doi.org/10.1016/j.neuropsychologia.2010.01.004CrossRefGoogle ScholarPubMed
Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15, 527536. https://doi.org/10.1016/j.tics.2011.10.001CrossRefGoogle ScholarPubMed
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the Ssmantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 27672796. https://doi.org/10.1093/cercor/bhp055CrossRefGoogle ScholarPubMed
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 138. https://doi.org/10.1196/annals.1440.011CrossRefGoogle ScholarPubMed
Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11, 4957. https://doi.org/10.1016/j.tics.2006.11.004CrossRefGoogle ScholarPubMed
Burianova, H., McIntosh, A. R., & Grady, C. L. (2010). A common functional brain network for autobiographical, episodic, and semantic memory retrieval. NeuroImage, 49, 865874. https://doi.org/10.1016/j.neuroimage.2009.08.066CrossRefGoogle Scholar
Campbell, K. L., Grady, C. L., Ng, C., & Hasher, L. (2012). Age differences in the frontoparietal cognitive control network: Implications for distractibility. Neuropsychologia, 50, 22122223.CrossRefGoogle ScholarPubMed
Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology, 85, 499506. https://doi.org/10.1037/0022-3514.85.3.499CrossRefGoogle ScholarPubMed
Chao, O. Y., Huston, J. P., Li, J.-S., Wang, A.-L., & de Souza Silva, M. A. (2016). The medial prefrontal cortex–lateral entorhinal cortex circuit is essential for episodic-like memory and associative object-recognition. Hippocampus, 26, 633645. https://doi.org/10.1002/hipo.22547CrossRefGoogle ScholarPubMed
Christoff, K., Irving, Z. C., Fox, K. C. R., Spreng, R. N., & Andrews-Hanna, J. R. (2016). Mind-wandering as spontaneous thought: A dynamic framework. Nature Reviews Neuroscience, advance online publication. https://doi.org/10.1038/nrn.2016.113CrossRefGoogle ScholarPubMed
Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J., & Gabrieli, J. D. E. (2001). Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage, 14, 11361149. https://doi.org/10.1006/nimg.2001.0922CrossRefGoogle ScholarPubMed
Cocchi, L., Zalesky, A., Fornito, A., & Mattingley, J. B. (2013). Dynamic cooperation and competition between brain systems during cognitive control. Trends in Cognitive Sciences, 17, 493501. https://doi.org/10.1016/j.tics.2013.08.006CrossRefGoogle ScholarPubMed
Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7, 547552.CrossRefGoogle ScholarPubMed
Conway, M. A., & Pleydell-Pearce, C. W. (2000). The construction of autobiographical memories in the self-memory system. Psychological Review, 107, 261288.CrossRefGoogle ScholarPubMed
D’Argembeau, A., Lardi, C., & Linden, M. V. der. (2012). Self-defining future projections: Exploring the identity function of thinking about the future. Memory, 20, 110120. https://doi.org/10.1080/09658211.2011.647697CrossRefGoogle ScholarPubMed
D’Argembeau, A., Ortoleva, C., Jumentier, S., & Linden, M. V. der. (2010). Component processes underlying future thinking. Memory & Cognition, 38, 809819. https://doi.org/10.3758/MC.38.6.809CrossRefGoogle ScholarPubMed
De Brigard, F., Addis, D. R., Ford, J. H., Schacter, D. L., & Giovanello, K. S. (2013). Remembering what could have happened: Neural correlates of episodic counterfactual thinking. Neuropsychologia, 51, 24012414. https://doi.org/10.1016/j.neuropsychologia.2013.01.015CrossRefGoogle ScholarPubMed
de Vito, S., Gamboz, N., Brandimonte, M. A., Barone, P., Amboni, M., & Della Sala, S. (2012). Future thinking in Parkinson’s disease: An executive function? Neuropsychologia, 50, 14941501. https://doi.org/10.1016/j.neuropsychologia.2012.03.001CrossRefGoogle ScholarPubMed
Demblon, J., Bahri, M. A., & D’Argembeau, A. (2016). Neural correlates of event clusters in past and future thoughts: How the brain integrates specific episodes with autobiographical knowledge. NeuroImage, 127, 257266. https://doi.org/10.1016/j.neuroimage.2015.11.062CrossRefGoogle ScholarPubMed
Duff, M. C., Kurczek, J., Rubin, R., Cohen, N. J., & Tranel, D. (2013). Hippocampal amnesia disrupts creative thinking. Hippocampus, 23, 11431149. https://doi.org/10.1002/hipo.22208CrossRefGoogle ScholarPubMed
Eichenbaum, H., & Cohen, N. J. (2004). From conditioning to conscious recollection. Oxford: Oxford University Press. Retrieved from www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195178043.001.0001/acprof-9780195178043CrossRefGoogle Scholar
Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59, 17831794. https://doi.org/10.1016/j.neuroimage.2011.08.008CrossRefGoogle ScholarPubMed
Erika-Florence, M., Leech, R., & Hampshire, A. (2014). A functional network perspective on response inhibition and attentional control. Nature Communications, 5, 4073. https://doi.org/10.1038/ncomms5073CrossRefGoogle ScholarPubMed
Gaesser, B., Sacchetti, D. C., Addis, D. R., & Schacter, D. L. (2011). Characterizing age-related changes in remembering the past and imagining the future. Psychology and Aging, 26, 8084. https://doi.org/10.1037/a0021054CrossRefGoogle ScholarPubMed
Gaesser, B., Spreng, R. N., McLelland, V. C., Addis, D. R., & Schacter, D. L. (2013). Imagining the future: Evidence for a hippocampal contribution to constructive processing. Hippocampus, 23, 11501161. https://doi.org/10.1002/hipo.22152CrossRefGoogle ScholarPubMed
Gao, W., & Lin, W. (2012). Frontal parietal control network regulates the anti-correlated default and dorsal attention networks. Human Brain Mapping, 33, 192202. https://doi.org/10.1002/hbm.21204CrossRefGoogle ScholarPubMed
Gerlach, K. D., Spreng, R. N., Gilmore, A. W., & Schacter, D. L. (2011). Solving future problems: Default network and executive activity associated with goal-directed mental simulations. NeuroImage, 55, 18161824. https://doi.org/10.1016/j.neuroimage.2011.01.030CrossRefGoogle ScholarPubMed
Gerlach, K. D., Spreng, R. N., Madore, K. P., & Schacter, D. L. (2014). Future planning: Default network activity couples with frontoparietal control network and reward-processing regions during process and outcome simulations. Social Cognitive and Affective Neuroscience, 9, 19421951. https://doi.org/10.1093/scan/nsu001CrossRefGoogle ScholarPubMed
Gilhooly, K. J., Fioratou, E., Anthony, S. H., & Wynn, V. (2007). Divergent thinking: Strategies and executive involvement in generating novel uses for familiar objects. British Journal of Psychology, 98, 611625. https://doi.org/10.1111/j.2044-8295.2007.tb00467.xCrossRefGoogle ScholarPubMed
Guilford, J. P. (1967). The nature of human intelligence. New York, NY: McGraw-Hill.Google Scholar
Hach, S., Tippett, L. J., & Addis, D. R. (2014). Neural changes associated with the generation of specific past and future events in depression. Neuropsychologia, 65, 4155. https://doi.org/10.1016/j.neuropsychologia.2014.10.003CrossRefGoogle ScholarPubMed
Hassabis, D., Kumaran, D., & Maguire, E. A. (2007). Using imagination to understand the neural basis of episodic memory. The Journal of Neuroscience, 27, 1436514374. https://doi.org/10.1523/JNEUROSCI.4549-07.2007CrossRefGoogle ScholarPubMed
Hassabis, D., Kumaran, D., Vann, S. D., & Maguire, E. A. (2007). Patients with hippocampal amnesia cannot imagine new experiences. Proceedings of the National Academy of Sciences of the United States of America, 104, 17261731. https://doi.org/10.1073/pnas.0610561104CrossRefGoogle ScholarPubMed
Hassabis, D., & Maguire, E. A. (2007). Deconstructing episodic memory with construction. Trends in Cognitive Sciences, 11, 299306. https://doi.org/10.1016/j.tics.2007.05.001CrossRefGoogle ScholarPubMed
Irish, M. (2016). Semantic memory as the essential scaffold for future-oriented mental time travel. In Michaelian, K., Klein, S. B., & Szpunar, K. K. (Eds.), Seeing the future: Theoretical perspectives on future-oriented mental time travel (pp. 389408). New York, NY: Oxford University Press.CrossRefGoogle Scholar
Irish, M., Addis, D. R., Hodges, J. R., & Piguet, O. (2012). Considering the role of semantic memory in episodic future thinking: Evidence from semantic dementia. Brain, 135, 21782191. https://doi.org/10.1093/brain/aws119CrossRefGoogle ScholarPubMed
Irish, M., & Piguet, O. (2013). The pivotal role of semantic memory in remembering the past and imagining the future. Frontiers in Behavioral Neuroscience, 7, 27. https://doi.org/10.3389/fnbeh.2013.00027CrossRefGoogle ScholarPubMed
Jauk, E., Benedek, M., & Neubauer, A. C. (2012). Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing. International Journal of Psychophysiology, 84, 219225. https://doi.org/10.1016/j.ijpsycho.2012.02.012CrossRefGoogle ScholarPubMed
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7, 330. https://doi.org/10.3389/fnhum.2013.00330CrossRefGoogle ScholarPubMed
Jung, R. E., Segall, J. M., Jeremy Bockholt, H., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2009). Neuroanatomy of creativity. Human Brain Mapping. https://doi.org/10.1002/hbm.20874Google Scholar
Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9, 637671.CrossRefGoogle ScholarPubMed
Kesner, R. P. (2013). A process analysis of the CA3 subregion of the hippocampus. Frontiers in Cellular Neuroscience, 7, 78. https://doi.org/10.3389/fncel.2013.00078CrossRefGoogle ScholarPubMed
Knyazev, G. G., Slobodskoj-Plusnin, J. Y., Bocharov, A. V., & Pylkova, L. V. (2011). The default mode network and EEG α oscillations: An independent component analysis. Brain Research, 1402, 6779. https://doi.org/10.1016/j.brainres.2011.05.052CrossRefGoogle ScholarPubMed
Kröger, S., Rutter, , Stark, B., Windmann, R., Hermann, S., , C., & Abraham, A. (2012). Using a shoe as a plant pot: Neural correlates of passive conceptual expansion. Brain Research, 1430, 5261. https://doi.org/10.1016/j.brainres.2011.10.031CrossRefGoogle ScholarPubMed
Kühn, S., Ritter, S. M., Müller, B. C. N., van Baaren, , Brass, R. B., , M., & Dijksterhuis, A. (2014). The importance of the default mode network in creativity – A structural MRI study. The Journal of Creative Behavior, 48, 152163. https://doi.org/10.1002/jocb.45CrossRefGoogle Scholar
Levine, B., Svoboda, E., Hay, J. F., Winocur, G., & Moscovitch, M. (2002). Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17, 677689.CrossRefGoogle ScholarPubMed
Madore, K. P., Addis, D. R., & Schacter, D. L. (2015). Creativity and memory effects of an episodic-specificity induction on divergent thinking. Psychological Science, 26, 14611468. https://doi.org/10.1177/0956797615591863CrossRefGoogle ScholarPubMed
Madore, K. P., Jing, H. G., & Schacter, D. L. (2016). Divergent creative thinking in young and older adults: Extending the effects of an episodic specificity induction. Memory & Cognition, 44, 974988. https://doi.org/10.3758/s13421-016-0605-zCrossRefGoogle Scholar
Madore, K. P., Szpunar, K. K., Addis, D. R., & Schacter, D. L. (2016). Episodic specificity induction impacts activity in a core brain network during construction of imagined future experiences. Proceedings of the National Academy of Sciences of the United States of America, 113, 1069610701. https://doi.org/10.1073/pnas.1612278113CrossRefGoogle Scholar
Maguire, E. A., Vargha-Khadem, F., & Hassabis, D. (2010). Imagining fictitious and future experiences: Evidence from developmental amnesia. Neuropsychologia, 48, 31873192. https://doi.org/10.1016/j.neuropsychologia.2010.06.037CrossRefGoogle ScholarPubMed
Martin, V. C., Schacter, D. L., Corballis, M. C., & Addis, D. R. (2011). A role for the hippocampus in encoding simulations of future events. Proceedings of the National Academy of Sciences, 108, 1385813863. https://doi.org/10.1073/pnas.1105816108CrossRefGoogle ScholarPubMed
Mayseless, N., Eran, A., & Shamay-Tsoory, S. G. (2015). Generating original ideas: The neural underpinning of originality. NeuroImage, 116, 232239. https://doi.org/10.1016/j.neuroimage.2015.05.030CrossRefGoogle ScholarPubMed
Mayseless, N., & Shamay-Tsoory, S. G. (2015). Enhancing verbal creativity: Modulating creativity by altering the balance between right and left inferior frontal gyrus with tDCS. Neuroscience, 291, 167176. https://doi.org/10.1016/j.neuroscience.2015.01.061CrossRefGoogle ScholarPubMed
Mednick, S. (1962). The associative basis of the creative process. Psychological Review, 69, 220232. https://doi.org/10.1037/h0048850CrossRefGoogle ScholarPubMed
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214, 655667. https://doi.org/10.1007/s00429-010-0262-0CrossRefGoogle ScholarPubMed
Milgram, R. M., & Rabkin, L. (1980). Developmental test of Mednick’s associative hierarchies of original thinking. Developmental Psychology, 16, 157158. https://doi.org/10.1037/0012-1649.16.2.157CrossRefGoogle Scholar
Mok, L. W. (2014). The interplay between spontaneous and controlled processing in creative cognition. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00663CrossRefGoogle ScholarPubMed
Morcom, A. M., & Rugg, M. D. (2012). Retrieval orientation and the control of recollection: An fMRI study. Journal of Cognitive Neuroscience, 24, 23722384. https://doi.org/10.1162/jocn_a_00299CrossRefGoogle ScholarPubMed
Morgan, H. M., Jackson, M. C., van Koningsbruggen, M. G., Shapiro, K. L., & Linden, D. E. J. (2012). Frontal and parietal theta burst TMS impairs working memory for visual–spatial conjunctions. Brain Stimulation, 6, 122129. https://doi.org/10.1016/j.brs.2012.03.001CrossRefGoogle ScholarPubMed
Moscovitch, M. (1992). Memory and working-with-memory: A component process model based on modules and central systems. Journal of Cognitive Neuroscience, 4 257267. https://doi.org/10.1162/jocn.1992.4.3.257CrossRefGoogle ScholarPubMed
Mumford, M. D. (2003). Where have we been, where are we going? Taking stock in creativity research. Creativity Research Journal, 15, 107120. https://doi.org/10.1080/10400419.2003.9651403CrossRefGoogle Scholar
Nusbaum, E. C., & Silvia, P. J. (2011). Are intelligence and creativity really so different? Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39, 3645. https://doi.org/10.1016/j.intell.2010.11.002CrossRefGoogle Scholar
Okuda, J., Fujii, T., Ohtake, H., Tsukiura, T., Tanji, K., Suzuki, K., … Yamadori, A. (2003). Thinking of the future and past: The roles of the frontal pole and the medial temporal lobes. NeuroImage, 19, 13691380.CrossRefGoogle ScholarPubMed
Park, H. R. P., Kirk, I. J., & Waldie, K. E. (2015). Neural correlates of creative thinking and schizotypy. Neuropsychologia, 73, 94107. https://doi.org/10.1016/j.neuropsychologia.2015.05.007CrossRefGoogle ScholarPubMed
Renoult, L., Davidson, P. S. R., Palombo, D. J., Moscovitch, M., & Levine, B. (2012). Personal semantics: At the crossroads of semantic and episodic memory. Trends in Cognitive Sciences, 16, 550558. https://doi.org/10.1016/j.tics.2012.09.003CrossRefGoogle ScholarPubMed
Roberts, R. P., Hach, S., Tippett, L. J., & Addis, D. R. (2016). The Simpson’s paradox and fMRI: Similarities and differences between functional connectivity measures derived from within-subject and across-subject correlations. NeuroImage. https://doi.org/10.1016/j.neuroimage.2016.04.028CrossRefGoogle ScholarPubMed
Roberts, R. P., Wiebels, K., Sumner, R. L., van Mulukom, V., Grady, C. L., Schacter, D. L., & Addis, D. R. (2017). An fMRI investigation of the relationship between future imagination and cognitive flexibility. Neuropsychologia, 95, 156172.CrossRefGoogle ScholarPubMed
Rossmann, E., & Fink, A. (2010). Do creative people use shorter associative pathways? Personality and Individual Differences, 49, 891895. https://doi.org/10.1016/j.paid.2010.07.025CrossRefGoogle Scholar
Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24, 9296. https://doi.org/10.1080/10400419.2012.650092CrossRefGoogle Scholar
Schacter, D. L., & Addis, D. R. (2007a). On the constructive episodic simulation of past and future events. Behavioral and Brain Sciences, 30, 331332. https://doi.org/10.1017/S0140525X07002178CrossRefGoogle Scholar
Schacter, D. L., & Addis, D. R. (2007b). The cognitive neuroscience of constructive memory: remembering the past and imagining the future. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 773786. https://doi.org/10.1098/rstb.2007.2087CrossRefGoogle ScholarPubMed
Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: Remembering, imagining, and the brain. Neuron, 76, 677694. https://doi.org/10.1016/j.neuron.2012.11.001CrossRefGoogle ScholarPubMed
Schwab, D., Benedek, M., Papousek, I., Weiss, E. M., & Fink, A. (2014). The time-course of EEG alpha power changes in creative ideation. Frontiers in Human Neuroscience, 8, 310. https://doi.org/10.3389/fnhum.2014.00310CrossRefGoogle ScholarPubMed
Shamay-Tsoory, S. G., Adler, N., Aharon-Peretz, J., Perry, D., & Mayseless, N. (2011). The origins of originality: The neural bases of creative thinking and originality. Neuropsychologia, 49, 178185. https://doi.org/10.1016/j.neuropsychologia.2010.11.020CrossRefGoogle ScholarPubMed
Spreng, R. N., Mar, R. A., & Kim, A. S. N. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21, 489510. https://doi.org/10.1162/jocn.2008.21029CrossRefGoogle Scholar
Spreng, R. N., Sepulcre, J., Turner, G. R., Stevens, W. D., & Schacter, D. L. (2013). Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. Journal of Cognitive Neuroscience, 25, 7486. https://doi.org/10.1162/jocn_a_00281CrossRefGoogle ScholarPubMed
Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage, 53, 303317. https://doi.org/10.1016/j.neuroimage.2010.06.016CrossRefGoogle ScholarPubMed
Stawarczyk, D., & D’Argembeau, A. (2015). Neural correlates of personal goal processing during episodic future thinking and mind-wandering: An ALE meta-analysis. Human Brain Mapping, 36, 29282947. https://doi.org/10.1002/hbm.22818CrossRefGoogle ScholarPubMed
Suddendorf, T., & Corballis, M. C. (1997). Mental time travel and the evolution of the human mind. Genetic, Social, and General Psychology Monographs, 123, 133167.Google ScholarPubMed
Svoboda, E., McKinnon, M. C., & Levine, B. (2006). The functional neuroanatomy of autobiographical memory: A meta-analysis. Neuropsychologia, 44, 21892208. https://doi.org/10.1016/j.neuropsychologia.2006.05.023CrossRefGoogle ScholarPubMed
Szpunar, K. K., Spreng, R. N., & Schacter, D. L. (2014). A taxonomy of prospection: Introducing an organizational framework for future-oriented cognition. Proceedings of the National Academy of Sciences, 111, 1841418421. https://doi.org/10.1073/pnas.1417144111CrossRefGoogle ScholarPubMed
Szpunar, K. K., Watson, J. M., & McDermott, K. B. (2007). Neural substrates of envisioning the future. Proceedings of the National Academy of Sciences of the United States of America, 104, 642647. https://doi.org/10.1073/pnas.0610082104CrossRefGoogle ScholarPubMed
Torrance, E. P. (1962). Guiding creative talent. Englewood Clliffs, NJ: Prentice-Hall.CrossRefGoogle Scholar
Underwood, A. G., Guynn, M. J., & Cohen, A.-L. (2015). The future orientation of past memory: The role of BA 10 in prospective and retrospective retrieval modes. Frontiers in Human Neuroscience, 9, 668. https://doi.org/10.3389/fnhum.2015.00668CrossRefGoogle ScholarPubMed
Van Hoeck, N., Ma, N., Ampe, L., Baetens, K., Vandekerckhove, M., & Van Overwalle, F. (2013). Counterfactual thinking: An fMRI study on changing the past for a better future. Social Cognitive and Affective Neuroscience, 8, 556564. https://doi.org/10.1093/scan/nss031CrossRefGoogle Scholar
van Mulukom, V., Schacter, D. L., Corballis, M. C., & Addis, D. R. (2013). Re-imagining the future: Repetition decreases hippocampal involvement in future simulation. PLoS ONE, 8, e69596. https://doi.org/10.1371/journal.pone.0069596CrossRefGoogle ScholarPubMed
van Mulukom, V., Schacter, D. L., Corballis, M. C., & Addis, D. R. (2016). The degree of disparateness of event details modulates future simulation construction, plausibility and recall. Quarterly Journal of Experimental Psychology, 69, 234242.CrossRefGoogle ScholarPubMed
Ward, T. B., Smith, S. M., & Vaid, J. (Eds.). (1997). Creative thought: An investigation of conceptual structures and processes. Washington, DC: American Psychological Association. Retrieved from http://content.apa.org/books/10227-000CrossRefGoogle Scholar
Wendelken, C., & Bunge, S. A. (2009). Transitive inference: Distinct contributions of rostrolateral prefrontal cortex and the hippocampus. Journal of Cognitive Neuroscience, 22, 837847. https://doi.org/10.1162/jocn.2009.21226CrossRefGoogle Scholar
Wendelken, C., Chung, D., & Bunge, S. A. (2012). Rostrolateral prefrontal cortex: Domain-general or domain-sensitive? Human Brain Mapping, 33, 19521963. https://doi.org/10.1002/hbm.21336CrossRefGoogle ScholarPubMed
Wendelken, C., Nakhabenko, D., Donohue, S. E., Carter, C. S., & Bunge, S. A. (2007). “Brain is to thought as stomach is to??”: Investigating the role of rostrolateral prefrontal cortex in relational reasoning. Journal of Cognitive Neuroscience, 20, 682693. https://doi.org/10.1162/jocn.2008.20055CrossRefGoogle Scholar
Wu, X., Yang, W., Tong, D., Sun, J., Chen, Q., Wei, D., … Qiu, J. (2015). A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation. Human Brain Mapping, 36, 27032718. https://doi.org/10.1002/hbm.22801CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×