Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-06T07:51:28.003Z Has data issue: false hasContentIssue false

21 - Network Dynamics Theory of Human Intelligence

from Part VI - Reasoning and Intelligence

Published online by Cambridge University Press:  19 January 2018

Rex E. Jung
Affiliation:
University of New Mexico
Oshin Vartanian
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., & Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex, 24, 663676. http://doi.org/10.1093/cercor/bhs352CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316, 2952. http://doi.org/10.1111/nyas.12360CrossRefGoogle ScholarPubMed
Asato, M. R., Sweeney, J. A., & Luna, B. (2006). Cognitive processes in the development of TOL performance. Neuropsychologia, 44, 22592269. http://doi.org/10.1016/j.neuropsychologia.2006.05.010CrossRefGoogle ScholarPubMed
Ball, G., Aljabar, P., Zebari, S., Tusor, N., Arichi, T., Merchant, N., … Counsell, S. J. (2014). Rich-club organization of the newborn human brain. Proceedings of the National Academy of Sciences of the United States of America, 111, 74567461. http://doi.org/10.1073/pnas.1324118111CrossRefGoogle ScholarPubMed
Barbey, A. K., Colom, R., & Grafman, J. (2013a). Architecture of cognitive flexibility revealed by lesion mapping. NeuroImage, 82, 547554. http://doi.org/10.1016/j.neuroimage.2013.05.087CrossRefGoogle ScholarPubMed
Barbey, A. K., Colom, R., & Grafman, J. (2013b). Dorsolateral prefrontal contributions to human intelligence. Neuropsychologia, 51, 13611369. http://dx.doi.org/10.1016/j.neuropsychologia.2012.05.017CrossRefGoogle ScholarPubMed
Barbey, A. K., Colom, R., Solomon, J., Krueger, F., Forbes, C., & Grafman, J. (2012). An integrative architecture for general intelligence and executive function revealed by lesion mapping. Brain: A Journal of Neurology, 135, 11541164. http://doi.org/10.1093/brain/aws021CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Barry Kaufman, S., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964. http://doi.org/10.1038/srep10964CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64C, 9298. http://doi.org/10.1016/j.neuropsychologia.2014.09.019CrossRefGoogle Scholar
Beaty, R. E., & Silvia, P. J. (2013). Metaphorically speaking: Cognitive abilities and the production of figurative language. Memory and Cognition, 41, 255267. http://doi.org/10.3758/s13421-012-0258-5CrossRefGoogle ScholarPubMed
Benedek, M., Franz, F., Heene, M., & Neubauer, A. C. (2012). Differential effects of cognitive inhibition and intelligence on creativity. Personality and Individual Differences, 53, 480485. http://doi.org/10.1016/j.paid.2012.04.014CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 7383. http://doi.org/10.1016/j.intell.2014.05.007CrossRefGoogle ScholarPubMed
Braver, T., Cohen, J., Nystrom, L., & Jonides, J. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5, 4962. www.sciencedirect.com/science/article/pii/S1053811996902475CrossRefGoogle ScholarPubMed
Bullmore, E. T., & Bassett, D. S. (2011). Brain graphs: Graphical models of the human brain connectome. Annual Review of Clinical Psychology, 7, 113–40. http://doi.org/10.1146/annurev-clinpsy-040510-143934CrossRefGoogle ScholarPubMed
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186198. http://doi.org/10.1038/nrn2575CrossRefGoogle ScholarPubMed
Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. J., & Gabrieli, J. D. E. (2002). Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI. Neuron, 33, 301311.CrossRefGoogle ScholarPubMed
Byrge, L., Sporns, O., & Smith, L. B. (2014). Developmental process emerges from extended brain–body–behavior networks. Trends in Cognitive Sciences, 18, 395403. http://doi.org/10.1016/j.tics.2014.04.010CrossRefGoogle ScholarPubMed
Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., … Weinberger, D. R. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9, 2026. www.ncbi.nlm.nih.gov/pubmed/10022492CrossRefGoogle ScholarPubMed
Carew, J. V. (1987). Experience and the development of intelligence in young children at home and in day care. Monographs of the Society for Research in Child Development (Vol. 45). Hoboken, NJ: Wiley, on behalf of the Society for Research in Child Development.Google Scholar
Casey, B. J., Castellanos, F. X., Giedd, J. N., Marsh, W. L., Hamburger, S. D., Schubert, A. B., … Rapoport, J. L. (1997). Implication of right frontostriatal circuitry in response inhibition and Attention-Deficit/Hyperactivity Disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 374383. http://doi.org/10.1097/00004583-199703000-00016CrossRefGoogle ScholarPubMed
Casey, B. J., Tottenham, N., Liston, C., & Durston, S. (2005). Imaging the developing brain: What have we learned about cognitive development? Trends in Cognitive Sciences, 9, 104110. http://doi.org/10.1016/j.tics.2005.01.011CrossRefGoogle ScholarPubMed
Christoff, K., Irving, Z. C., Fox, K. C. R., Spreng, R. N., & Andrews-Hanna, J. R. (2016). Mind-wandering as spontaneous thought: A dynamic framework. Nature Reviews Neuroscience, 17, 718731. http://doi.org/10.1038/nrn.2016.113CrossRefGoogle ScholarPubMed
Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16, 13481355. http://doi.org/10.1038/nn.3470CrossRefGoogle ScholarPubMed
Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social – Affective engagement and goal flexibility. Nature, 13, 636650. http://doi.org/10.1038/nrn3313Google ScholarPubMed
Crossley, N. A., Mechelli, A., Scott, J., Carletti, F., Fox, P. T., McGuire, P., & Bullmore, E. T. (2014). The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain, 137, 23822395. http://doi.org/10.1093/brain/awu132CrossRefGoogle ScholarPubMed
Crossley, N. A., Mechelli, A., Vértes, P. E., Winton-Brown, T. T., Patel, A. X., Ginestet, C. E., … Bullmore, E. T. (2013). Cognitive relevance of the community structure of the human brain functional coactivation network. Proceedings of the National Academy of Sciences of the United States of America, 110, 1158311588. http://doi.org/10.1073/pnas.1220826110CrossRefGoogle ScholarPubMed
De Dreu, C. K. W., Nijstad, B. A., Baas, M., Wolsink, I., & Roskes, M. (2012). Working memory benefits creative insight, musical improvisation, and original ideation through maintained task-focused attention. Personality and Social Psychology Bulletin, 38, 656669. http://doi.org/10.1177/0146167211435795CrossRefGoogle ScholarPubMed
Deco, G., Jirsa, V. K., & McIntosh, A. R. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Reviews. Neuroscience, 12, 4356. http://doi.org/10.1038/nrn2961CrossRefGoogle ScholarPubMed
Dehaene, S., & Changeux, J. P. (2011). Experimental and theoretical approaches to conscious processing. Neuron, 70, 200227. http://doi.org/10.1016/j.neuron.2011.03.018CrossRefGoogle ScholarPubMed
Dehaene, S., Kerszberg, M., & Changeux, J. P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of the National Academy of Sciences of the United States of America, 95, 1452914534. http://doi.org/10.1073/pnas.95.24.14529CrossRefGoogle ScholarPubMed
DiMartino, A., Fair, D. A., Kelly, C., Satterthwaite, T. D., Castellanos, F. X., Thomason, M. E., … Milham, M. P. (2014). Unraveling the miswired connectome: A developmental perspective. Neuron, 83, 13351353. http://doi.org/10.1016/j.neuron.2014.08.050CrossRefGoogle Scholar
Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12, 99105. http://doi.org/10.1016/j.tics.2008.01.001CrossRefGoogle ScholarPubMed
Dosenbach, N. U. F., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K., Kang, H. C., … Petersen, S. E. (2006). A core system for the implementation of task sets. Neuron, 50, 799812. http://doi.org/10.1016/j.neuron.2006.04.031CrossRefGoogle ScholarPubMed
Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14, 172179. http://doi.org/10.1016/j.tics.2010.01.004CrossRefGoogle ScholarPubMed
Durston, S., Thomas, K. M., Yang, Y., Zimmerman, R. D., & Casey, B. J. (2002). A neural basis for the development of inhibitory control. Developmental Science, 4, 916.Google Scholar
Eichele, T., Debener, S., Calhoun, V. D., Specht, K., Engel, A. K., Hugdahl, K., … Ullsperger, M. (2008). Prediction of human errors by maladaptive changes in event-related brain networks. Proceedings of the National Academy of Sciences of the United States of America, 105, 61736178. http://doi.org/10.1073/pnas.0708965105CrossRefGoogle ScholarPubMed
Fair, D. A., Dosenbach, N. U. F., Church, J. A., Cohen, A. L., Brahmbhatt, S., Miezin, F. M., … Schlaggar, B. L. (2007). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Sciences of the United States of America, 104, 1350713512. http://doi.org/10.1073/pnas.0705843104CrossRefGoogle ScholarPubMed
Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., … Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18, 16641671. http://doi.org/10.1038/nn.4135CrossRefGoogle ScholarPubMed
Gazzaniga, M. S. (2000). Cerebral specialization and interhemispheric communication: Does the corpus callosum enable the human condition? Brain: A Journal of Neurology, 123, 12931326. http://doi.org/10.1093/brain/123.7.1293CrossRefGoogle ScholarPubMed
Giessing, C., Thiel, C. M., Alexander-Bloch, A. F., Patel, A. X., & Bullmore, E. T. (2013). Human brain functional network changes associated with enhanced and impaired attentional task performance. Journal of Neuroscience, 33, 59035914. http://doi.org/10.1523/JNEUROSCI.4854-12.2013CrossRefGoogle ScholarPubMed
Gläscher, J., Rudrauf, , Colom, D., Paul, R., Tranel, L. K., Damasio, D., , H., & Adolphs, R. (2010). Distributed neural system for general intelligence revealed by lesion mapping. Proceedings of the National Academy of Sciences, 107, 47054709. http://doi.org/10.1073/pnas.0910397107CrossRefGoogle ScholarPubMed
Graber, J. A., & Petersen, A. C. (1991). Cognitive changes at adolescence: Biological perspectives. Foundations of human behavior. In Gibson, K. R., & Peterson, A. R. (Eds.), Brain maturation and cognitive development: Comparative and cross-cultural perspectives. New Brunswick, NJ: Aldine Transaction. www.sciencedirect.com/science/article/B6WVC-446CXBY-1WY/1/6dab32f6d1b86b9e94ff7d3c6262614cGoogle Scholar
Green, A. E., Cohen, M. S., Raab, H. A., Yedibalian, C. G., & Gray, J. R. (2015). Frontopolar activity and connectivity support dynamic conscious augmentation of creative state. Human Brain Mapping, 36, 923934. http://doi.org/10.1002/hbm.22676CrossRefGoogle ScholarPubMed
Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58, 539559. http://doi.org/10.2307/1130197CrossRefGoogle ScholarPubMed
Güntürkün, O. (2005). Avian and mammalian “prefrontal cortices”: Limited degrees of freedom in the evolution of the neural mechanisms of goal-state maintenance. Brain Research Bulletin, 66, 311316. http://doi.org/10.1016/j.brainresbull.2005.02.004CrossRefGoogle ScholarPubMed
Hampshire, A., Highfield, R. R., Parkin, B. L., & Owen, A. M. (2012). Fractionating human intelligence. Neuron, 76, 12251237. http://doi.org/10.1016/j.neuron.2012.06.022CrossRefGoogle ScholarPubMed
Harriger, L., van den Heuvel, M. P., & Sporns, O. (2012). Rich club organization of macaque cerebral cortex and its role in network communication. PLoS ONE, 7(9), e46497. http://doi.org/10.1371/journal.pone.0046497CrossRefGoogle ScholarPubMed
Hering, H., & Sheng, M. (2001). Dendritic spines: Structure, dynamics and regulation. Nature Reviews. Neuroscience, 2, 880888. http://doi.org/10.1038/35104061CrossRefGoogle ScholarPubMed
Huizinga, M., Dolan, C. V., & van der Molen, M. W. (2006). Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia, 44, 20172036. http://doi.org/10.1016/j.neuropsychologia.2006.01.010CrossRefGoogle Scholar
Hutchison, R. M., & Morton, J. B. (2015). Tracking the brain’s functional coupling dynamics over development. The Journal of Neuroscience, 35, 68496859. http://doi.org/10.1523/JNEUROSCI.4638-14.2015CrossRefGoogle ScholarPubMed
Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., … Chang, C. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. NeuroImage, 80, 360378. http://doi.org/10.1016/j.neuroimage.2013.05.079CrossRefGoogle ScholarPubMed
Jaeggi, S. M., Buschkuehl, M., Etienne, A., Ozdoba, C., Perrig, W. J., & Nirkko, A. C. (2007). On how high performers keep cool brains in situations of cognitive overload. Cognitive, Affective & Behavioral Neuroscience, 7, 7589. http://doi.org/10.3758/CABN.7.2.75CrossRefGoogle ScholarPubMed
Jones, D. T., Vemuri, P., Murphy, M. C., Gunter, J. L., Senjem, M. L., Machulda, M. M., … Jack, C. R. (2012). Non-stationarity in the “resting brain’s” modular architecture. PLoS ONE, 7(6), e39731. http://doi.org/10.1371/journal.pone.0039731CrossRefGoogle ScholarPubMed
Jung, R. E., Brooks, W. M., Yeo, R. A., Chiulli, S. J., Weers, D. C., & Sibbitt, W. L. (1999). Biochemical markers of intelligence: A proton MR spectroscopy study of normal human brain. Proceedings. Biological Sciences/The Royal Society, 266, 13751379. http://doi.org/10.1098/rspb.1999.0790CrossRefGoogle ScholarPubMed
Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30, 135154. http://doi.org/10.1017/S0140525X07001185CrossRefGoogle ScholarPubMed
Jung, R. E., Haier, R. J., Yeo, R. A., Rowland, L. M., Petropoulos, H., Levine, A. S., … Brooks, W. M. (2005). Sex differences in N-acetylaspartate correlates of general intelligence: An 1H-MRS study of normal human brain. NeuroImage, 26, 965972. http://doi.org/10.1016/j.neuroimage.2005.02.039CrossRefGoogle ScholarPubMed
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00330CrossRefGoogle ScholarPubMed
Just, M. A., Carpenter, P. A., Maguire, M., Diwadkar, V., & McMains, S. (2001). Mental rotation of objects retrieved from memory: A functional MRI study of spatial processing. Journal of Experimental Psychology. General, 130, 493504. http://doi.org/10.1037/0096-3445.130.3.493CrossRefGoogle ScholarPubMed
Just, M. A., & Varma, S. (2007). The organization of thinking: What functional brain imaging reveals about the neuroarchitecture of complex cognition. Cognitive, Affective & Behavioral Neuroscience, 7, 153191. http://doi.org/10.3758/CABN.7.3.153CrossRefGoogle ScholarPubMed
Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9, 637671. www.ncbi.nlm.nih.gov/pubmed/12613671CrossRefGoogle ScholarPubMed
Keating, D. P., Lerner, R. M., & Steinberg, L. (2004). Cognitive and brain development. In Lerner, R. M., & Steinberg, L. (Eds.), Handbook of adolescent psychology (2nd ed.). Hoboken, NJ: John Wiley and Sons. http://doi.org/10.4074/S0013754512003035Google Scholar
Kelly, A. M. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. NeuroImage, 39, 527537. http://doi.org/10.1016/j.neuroimage.2007.08.008CrossRefGoogle ScholarPubMed
Kim, K. H. (2005). Can only intelligent people be creative? A meta-analysis. Journal of Secondary Gifted Education, 16, 5766. http://doi.org/10.4219/jsge-2005-473CrossRefGoogle Scholar
Kitzbichler, M. G., Henson, R. N. A., Smith, M. L., Nathan, P. J., & Bullmore, E. T. (2011). Cognitive effort drives workspace configuration of human brain functional networks. Journal of Neuroscience, 31, 82598270. http://doi.org/10.1523/JNEUROSCI.0440-11.2011CrossRefGoogle ScholarPubMed
Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical Experimental Neuropsychology, 24, 781791. http://doi.org/10.1076/jcen.24.6.781.8395CrossRefGoogle ScholarPubMed
Kucyi, A., & Davis, K. D. (2014). Dynamic functional connectivity of the default mode network tracks daydreaming. NeuroImage, 100, 471480. http://doi.org/10.1016/j.neuroimage.2014.06.044CrossRefGoogle ScholarPubMed
Langeslag, S. J. E., Schmidt, M., Ghassabian, A., Jaddoe, V. W., Hofman, A., Lugt, A. Van Der, … White, T. J. H. (2013). Functional connectivity between parietal and frontal brain regions and intelligence in young children: The Generation R Study. Human Brain Mapping, 34, 32993307. http://doi.org/10.1002/hbm.22143CrossRefGoogle ScholarPubMed
Levin, H. S., Culhane, K. A., Hartmann, J., Evankovich, K., Mattson, A. J., Harward, H., … Fletcher, J. M. (1991). Developmental changes in performance on tests of purported frontal lobe functioning. Developmental Neuropsychology, 7, 377395. http://doi.org/10.1080/87565649109540499CrossRefGoogle Scholar
Liu, X., Chang, C., & Duyn, J. H. (2013). Decomposition of spontaneous brain activity into distinct fMRI co-activation patterns. Frontiers in Systems Neuroscience, 7, 101. http://doi.org/10.3389/fnsys.2013.00101CrossRefGoogle ScholarPubMed
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167202. Retrieved from www.ncbi.nlm.nih.gov/pubmed/11283309CrossRefGoogle ScholarPubMed
Moore, D. W., Bhadelia, R. A., Billings, R. L., Fulwiler, C., Heilman, K. M., Rood, K. M. J., & Gansler, D. A. (2009). Hemispheric connectivity and the visual–spatial divergent-thinking component of creativity. Brain and Cognition, 70, 267272. http://doi.org/10.1016/j.bandc.2009.02.011CrossRefGoogle ScholarPubMed
Moussa, M. N. M., Vechlekar, C. D. C., Burdette, J. H., Steen, M. R., Hugenschmidt, C. E., & Laurienti, P. J. (2011). Changes in cognitive state alter human functional brain networks. Frontiers in Human Neuroscience, 5, 115. http://doi.org/10.3389/fnhum.2011.00083XXCrossRefGoogle ScholarPubMed
Nagy, Z., Westerberg, H., & Klingberg, T. (2004). Maturation of white matter is associated with the development of cognitive functions during childhood. Journal of Cognitive Neuroscience, 16, 12271233. http://doi.org/10.1162/0898929041920441 [doi]CrossRefGoogle ScholarPubMed
Newman, S. D., & Just, M. A. (2005). The neural bases of intelligence: A perspective based on functional neuroimaging. In Sternberg, R. J., & Pretz, J. (Eds.), Cognition and intelligence (pp. 88103). New York, NY: Cambridge University Press. http://doi.org/10.1017/CBO9780511607073.006Google Scholar
Nikolaidis, A., Baniqued, P. L., Kranz, M. B., Scavuzzo, C. J., Barbey, A. K., Kramer, A. F., & Larsen, R. J. (2017). Multivariate associations of fluid intelligence and NAA. Cerebral Cortex, 27, 26072616. http://doi.org/10.1093/cercor/bhw070Google ScholarPubMed
Nikolaidis, A., Goatz, D., Smaragdis, P., & Kramer, A. (2015). Predicting skill-based task performance and learning with fMRI motor and subcortical network connectivity. In 2015 International Workshop on Pattern Recognition in NeuroImaging (pp. 9396). Washington, DC: IEEE Computer Society. http://doi.org/10.1109/PRNI.2015.35CrossRefGoogle Scholar
Nikolaidis, A., Voss, M. W., Lee, H., Vo, L. T. K., & Kramer, A. F. (2014). Parietal plasticity after training with a complex video game is associated with individual differences in improvements in an untrained working memory task. Frontiers in Human Neuroscience, 8, 111. http://doi.org/10.3389/fnhum.2014.00169CrossRefGoogle Scholar
Nusbaum, E. C., & Silvia, P. J. (2011). Are intelligence and creativity really so different? Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39, 3645. http://doi.org/10.1016/j.intell.2010.11.002CrossRefGoogle Scholar
Olesen, P. J., Nagy, Z., Westerberg, H., & Klingberg, T. (2003). Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a frontoparietal network. Cognitive Brain Research, 18, 4857. http://doi.org/10.1016/j.cogbrainres.2003.09.003CrossRefGoogle Scholar
Pascual-Leone, A., Amedi, A., Fregni, F., & Merabet, L. B. (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28, 377401. http://doi.org/10.1146/annurev.neuro.27.070203.144216CrossRefGoogle ScholarPubMed
Paul, E. J., Larsen, R. J., Nikolaidis, A., Ward, N., Hillman, C. H., Cohen, N. J., … Barbey, A. K. (2016). Dissociable brain biomarkers of fluid intelligence. NeuroImage, 137, 201211. http://doi.org/10.1016/j.neuroimage.2016.05.037CrossRefGoogle ScholarPubMed
Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9, 6068.CrossRefGoogle ScholarPubMed
Paus, T., Zijdenbos, A., Worsley, K., Collins, D. L., Blumenthal, J., Giedd, J. N., … Evans, A. C. (1999). Structural maturation of neural pathways in children and adolescents: In vivo study. Science, 283, 19081911. http://doi.org/10.1126/science.283.5409.1908CrossRefGoogle ScholarPubMed
Penke, L., Maniega, S. M., Bastin, M. E., Valdés Hernández, M. C., Murray, C., Royle, N. A., … Deary, I. J. (2012). Brain white matter tract integrity as a neural foundation for general intelligence. Molecular Psychiatry, 17, 10261030. http://doi.org/10.1038/mp.2012.66CrossRefGoogle ScholarPubMed
Petanjek, Z., Judas, M., Simic, G., Rasin, M. R., Uylings, H. B. M., Rakic, P., & Kostovic, I. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 108, 1328113286. http://doi.org/10.1073/pnas.1105108108CrossRefGoogle ScholarPubMed
Plucker, J. A., & Kaufman, J. C. (2011). Intelligence and creativity. In Sternberg, R. J., & Kaufman, S. B. (Eds.), The Cambridge handbook of intelligence (pp. 771783). New York, NY: Cambridge University Press. http://doi.org/10.1037/e518652004-001Google Scholar
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59, 21422154. http://doi.org/10.1016/j.neuroimage.2011.10.018CrossRefGoogle ScholarPubMed
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., … Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72, 665678. http://doi.org/10.1016/j.neuron.2011.09.006CrossRefGoogle ScholarPubMed
Power, J. D., & Petersen, S. E. (2013). Control-related systems in the human brain. Current Opinion in Neurobiology, 23, 223228. http://doi.org/10.1016/j.conb.2012.12.009CrossRefGoogle ScholarPubMed
Röder, B., Stock, O., Neville, H., Bien, S., & Rösler, F. (2002). Brain activation modulated by the comprehension of normal and pseudo-word sentences of different processing demands: A functional magnetic resonance imaging study. NeuroImage, 15, 10031014. http://doi.org/10.1006/nimg.2001.1026CrossRefGoogle ScholarPubMed
Ross, A. J., & Sachdev, P. S. (2004). Magnetic resonance spectroscopy in cognitive research. Brain Research. Brain Research Reviews, 44, 83102. http://doi.org/10.1016/j.brainresrev.2003.11.001CrossRefGoogle ScholarPubMed
Roth, G., & Dicke, U. (2005). Evolution of the brain and intelligence. Trends in Cognitive Sciences, 9, 250257. http://doi.org/10.1016/j.tics.2005.03.005CrossRefGoogle ScholarPubMed
Rubinov, M., & Sporns, O. (2009). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52, 10591069. http://doi.org/10.1016/j.neuroimage.2009.10.003CrossRefGoogle ScholarPubMed
Ruff, H. A. (1989). The infant’s use of visual and haptic information in the perception and recognition of objects. Canadian Journal of Psychology, 43, 302319. http://doi.org/10.1037/h0084222CrossRefGoogle ScholarPubMed
Sabaté, M., González, B., & Rodríguez, M. (2004). Brain lateralization of motor imagery: Motor planning asymmetry as a cause of movement lateralization. Neuropsychologia, 42, 10411049. http://doi.org/10.1016/j.neuropsychologia.2003.12.015CrossRefGoogle ScholarPubMed
Sadaghiani, S., Hesselmann, G., Friston, K. J., & Kleinschmidt, A. (2010). The relation of ongoing brain activity, evoked neural responses, and cognition. Frontiers in Systems Neuroscience, 4, 20. http://doi.org/10.3389/fnsys.2010.00020Google ScholarPubMed
Sakoglu, U., Pearlson, G. D., Kiehl, K. A., Wang, Y. M., Michael, A. M., & Calhoun, V. D. (2010). A method for evaluating dynamic functional network connectivity and task-modulation: Application to schizophrenia. Magnetic Resonance Materials in Physics, Biology and Medicine, 23, 351366. http://doi.org/10.1007/s10334-010-0197-8CrossRefGoogle ScholarPubMed
Schwarzer, G. (2014). How motor and visual experiences shape infants’ visual processing of objects and faces. Child Development Perspectives, 8, 213217. http://doi.org/10.1111/cdep.12093CrossRefGoogle Scholar
Silvia, P. J., & Beaty, R. E. (2012). Making creative metaphors: The importance of fluid intelligence for creative thought. Intelligence, 40, 343351. http://doi.org/10.1016/j.intell.2012.02.005CrossRefGoogle Scholar
Soska, K. C., & Johnson, S. P. (2013). Development of three-dimensional completion of complex objects. Infancy, 18, 325344. http://doi.org/10.1111/j.1532-7078.2012.00127.xCrossRefGoogle ScholarPubMed
Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience and Biobehavioral Reviews, 24, 417463. http://doi.org/10.1016/S0149-7634(00)00014-2CrossRefGoogle ScholarPubMed
Starck, T., Nikkinen, J., Remes, J., Rahko, J., Moilanen, I., Tervonen, O., & Kiviniemi, V. (2012). Temporally varying connectivity between ICA default-mode sub-networks – ASD vs. controls. In Organization for human brain mapping. Beijing.Google Scholar
Steinberg, L. (2005). Cognitive and affective development in adolescence. Trends in Cognitive Sciences, 9, 6974. http://doi.org/10.1016/j.tics.2004.12.005CrossRefGoogle ScholarPubMed
Sun, J., Chen, Q., Zhang, Q., Li, Y., Li, H., Wei, D., … Qiu, J. (2016). Training your brain to be more creative: Brain functional and structural changes induced by divergent thinking training. Human Brain Mapping, 37, 33753387. http://doi.org/10.1002/hbm.23246CrossRefGoogle ScholarPubMed
Supekar, K., Musen, M., & Menon, V. (2009). Development of large-scale functional brain networks in children. PLoS Biology, 7(7), e1000157. http://doi.org/10.1371/journal.pbio.1000157CrossRefGoogle ScholarPubMed
Süß, H. M., Oberauer, , Wittmann, K., Wilhelm, W. W., , O., & Schulze, R. (2002). Working-memory capacity explains reasoning ability – And a little bit more. Intelligence, 30, 261288. http://doi.org/10.1016/S0160-2896(01)00100-3CrossRefGoogle Scholar
Thompson, G. J., Magnuson, M. E., Merritt, M. D., Schwarb, H., Pan, W. J., Mckinley, A., … Keilholz, S. D. (2013). Short-time windows of correlation between large-scale functional brain networks predict vigilance intraindividually and interindividually. Human Brain Mapping, 34, 32803298. http://doi.org/10.1002/hbm.22140CrossRefGoogle ScholarPubMed
Todd, J. J., & Marois, R. (2005). Posterior parietal cortex activity predicts individual differences in visual short-term memory capacity. Cognitive, Affective, & Behavioral Neuroscience, 5, 144155. http://doi.org/10.3758/CABN.5.2.144CrossRefGoogle ScholarPubMed
Uddin, L. Q., Kelly, A. M. C., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2009). Functional connectivity of default mode network components: Correlation, anticorrelation, and causality. Human Brain Mapping, 30, 625637. http://doi.org/10.1002/hbm.20531CrossRefGoogle ScholarPubMed
Uddin, L. Q., Supekar, K. S., Ryali, S., & Menon, V. (2011). Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. Journal of Neuroscience, 31, 1857818589. http://doi.org/10.1523/JNEUROSCI.4465-11.2011CrossRefGoogle ScholarPubMed
Vakhtin, A. A., Ryman, S. G., Flores, R. A., & Jung, R. E. (2014). Functional brain networks contributing to the Parieto-Frontal Integration Theory of intelligence. NeuroImage, 103, 349354. http://doi.org/10.1016/j.neuroimage.2014.09.055CrossRefGoogle Scholar
van den Heuvel, M. P., Kahn, R. S., Goñi, J., & Sporns, O. (2012). High-cost, high-capacity backbone for global brain communication. Proceedings of the National Academy of Sciences of the United States of America, 109, 1137211377. http://doi.org/10.1073/pnas.1203593109/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1203593109CrossRefGoogle ScholarPubMed
van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends in Cognitive Sciences, 17, 683696. http://doi.org/10.1016/j.tics.2013.09.012CrossRefGoogle ScholarPubMed
van den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Efficiency of functional brain networks and intellectual performance. The Journal of Neuroscience, 29, 76197624. http://doi.org/10.1523/JNEUROSCI.1443-09.2009CrossRefGoogle ScholarPubMed
Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9, 971978. http://doi.org/10.1038/nn1727CrossRefGoogle ScholarPubMed
Whitaker, K. J., Vértes, P. E., Romero-Garcia, R., Váša, F., Moutoussis, M., Prabhu, G., … Bullmore, E. T. (2016). Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proceedings of the National Academy of Sciences, 113, 91059110. http://doi.org/10.1073/pnas.1601745113CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×