Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-21T18:16:50.789Z Has data issue: false hasContentIssue false

8 - Introduction to Probability Theory

Published online by Cambridge University Press:  06 July 2010

R. M. Dudley
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Probabilities are easiest to define on finite sets. For example, consider a toss of a fair coin. Here “fair” means that heads and tails are equally likely. The situation may be represented by a set with two points H and T where H= “heads” and T= “tails.” The total probability of all possible outcomes is set equal to 1. Let “P(…)” denote “the probability of.…” If two possible outcomes cannot both happen, then one assumes that their probabilities add. Thus P(H) + P(T) = 1. By assumption P(H) = P(T), so P(H) = P(T)= 1/2.

Now suppose the coin is tossed twice. There are then four possible outcomes of the two tosses: HH, HT, TH, and TT. Considering these four as equally likely, they must each have probability 1/4. Likewise, if the coin is tossed n times, we have 2n possible strings of n letters H and T, where each string has probability 1/2n.

Next let n go to infinity. Then we have all possible infinite sequences of H's and T's. Each individual sequence has probability 0, but this does not determine the probabilities of other interesting sets of possible outcomes, as it did when n was finite. To consider such sets, first let us replace H by 1 and T by 0, precede the sequence by a “binary point” (as in decimal point), and regard the sequence as a binary expansion.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, Eric Sparre, and Jessen, Borge (1946). Some limit theorems on integrals in an abstract set.Danske Vid. Selsk. Mat.-Fys. Medd. 22, no. 14. 29 pp.Google Scholar
Andersen, Eric Sparre, and Jessen, Borge (1948). On the introduction of measures in infinite product sets.Danske Vid. Selsk. Mat.-Fys. Medd. 25, no. 4. 8 pp.Google Scholar
Banach, Stefan (1923). Sur le problème de la mesure.Fundamenta Mathematicae 4: 7–33CrossRefGoogle Scholar
Barone, Jack, and Novikoff, Albert (1978). A history of the axiomatic formulation of probability from Borel to Kolmogorov: Part I.Arch. Hist. Exact Sci. 18: 123-190Google Scholar
Benzi, Margherita (1988). A “neoclassical probability theorist:” Francesco Paolo Cantelli (in Italian). Historia Math. 15: 53–72CrossRef
Bernoulli, Jakob (1713, posth.). Ars Conjectandi. Thurnisiorum, Basel. Repr. in Die Werke von Jakob Bernoulli 3 (1975), pp. 107–286. Birkhäuser, Basel
Bienaymé, Irenée-Jules (1853). Considérations a l'appui de la découverte de Laplace sur la loi de probabilité dans la méthode des moindres carrés. C.R. Acad. Sci. Paris 37: 309–324. Repr. in J. math. pures appl. (Ser. 2) 12 (1867): 158–276
Billingsley, Patrick (1965). Ergodic Theory and Information. Wiley, New York
Bingham, N. H. (2000). Studies in the history of probability and statistics XⅬVI. Measure into probability: From Lebesgue to Kolmogorov.Biometrika 87: 145–156CrossRefGoogle Scholar
Birkhoff, George D. (1932). Proof of the ergodic theorem. Proc. Nat. Acad. Sci. USA 17: 656–660
Boltzmann, Ludwig (1887). Ueber die mechanischen Analogien des zweiten Hauptsatzes der Thermodynamik.J. für die reine und angew. Math. 100: 201-212Google Scholar
Borel, Émile (1903). Contribution à 1'analyse arithmétique du continu.J. math. pures appl. (Ser. 2) 9: 329–375Google Scholar
Borel, Émile (1909). Les probabilités dénombrables et leurs applications arithmétiques.Rendiconti Circolo Mat. Palermo 27: 247–271CrossRefGoogle Scholar
Brunel, Antoine (1963). Sur un lemme ergodique voisin du lemme de E. Hopf, et sur une de ses applications. C. R. Acad. Sci. Paris 256: 5481–5484
Brush, Stephen G. (1976). The Kind of Motion We Call Heat. 2 vols. North-Holland, Amsterdam
*Buffon, Georges L. L. (1733). Histoire de l' Académie. Paris
*Buffon, Georges L. L. (1778). X Essai d'Arithmétique Morale. In Histoire Naturelle, pp. 67–216. Paris
*Cantelli, Francesco Paolo (1917a). Sulla probabilità come limite della frequenza.Accad. Lincei, Roma, Cl. Sci. Fis., Mat., Nat., Rendiconti (Ser. 5) 26: 39–45Google Scholar
*Cantelli, Francesco Paolo (1917b). Su due applicazione di un teorema di G. Boole alla statistica matematica.Ibid., pp. 295–302Google Scholar
Chacon, Rafael V. (1961). On the ergodic theorem without assumption of positivity.Bull. Amer. Math. Soc. 67: 186–190CrossRefGoogle Scholar
Chacon, Rafael V. and Ornstein, Donald S. (1960). A general ergodic theorem.Illinois J. Math. 4: 153–160Google Scholar
Chebyshev, Pafnuti Lvovich (1867). Des valeurs moyennes. J. math. pures appl. 12 (1867): 177–184. Transl. from Mat. Sbornik 2 (1867): 1–9. Repr. in Oeuvres de P. L. Tchebychef 1, pp. 687–694. Acad. Sci. St. Petersburg (1899–1907)
Chung, Kai Lai (1974). A Course in Probability Theory. 2d ed. Academic Press, New York
Cohn, Harry (1972). On the Borel-Cantelli Lemma. Israel J. Math. 12: 11–16CrossRef
Daniell, Percy J. (1919). Integrals in an infinite number of dimensions.Ann. Math. 20: 281–288CrossRefGoogle Scholar
Day, Mahlon M. (1942). Ergodic theorems for Abelian semi-groups.Trans. Amer. Math. Soc. 51: 399–412Google Scholar
Dubins, Lester E., and Leonard Jimmie Savage (1965). How to Gamble If You Must; Inequalities for Stochastic Processes. McGraw-Hill, New York
Dugac, P. (1976). Notes et documents sur la vie et l'oeuvre de René Baire.Arch. Hist. Exact Sci. 15: 297–383CrossRefGoogle Scholar
Dunford, Nelson, and Schwartz, Jacob T. (1956). Convergence almost everywhere of operator averages.J. Rat. Mech. Anal. (Indiana Univ.) 5: 129–178Google Scholar
Ehrenfeucht, Andrzej, and Fisz, Marek (1960). A necessary and sufficient condition for the validity of the weak law of large numbers.Bull. Acad. Polon. Sci. Ser. Math. Astron. Phys. 8: 583–585Google Scholar
*Erdös, Paul, and Rényi, Alfréd (1959). On Cantor's series with divergent Σ 1\qn.Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 2: 93–109Google Scholar
Etemadi, Nasrollah (1981). An elementary proof of the strong law of large numbers.Z. Wahrsch. verw. Geb. 55: 119–122CrossRefGoogle Scholar
Feller, William (1968). An Introduction to Probability Theory and Its Applications. Vol. 1, 3d ed. Wiley, New York
Garsia, Adriano M. (1965). A simple proof of E. Hopf's maximal ergodic theorem.J. Math. and Mech. (Indiana Univ.) 14: 381–382Google Scholar
Garsia, Adriano M. (1967). More about the maximal ergodic lemma of Brunel. Proc. Nat. Acad. Sci. USA 57: 21–24CrossRef
Gnedenko, Boris V. (1973). Andrei Nikolaevich Kolmogorov (On his 70th birthday). Russian Math. Surveys 28, no. 5: 5–17. Transl. from Uspekhi Mat. Nauk 28, no. 5: 5–15CrossRef
Gnedenko, Boris V. and Andrei Nikolaevich Kolmogorov (1949). Limit Distributions for Sums of Independent Random Variables. Translated, annotated, and revised by Kai Lai Chung, with appendices by Joseph L. Doob and Pao Lo Hsu. Addison-Wesley, Reading, Mass. 1st ed. 1954, 2d ed. 1968
Gnedenko, Boris V. and Smirnov, N. V. (1963). On the work of A. N. Kolmogorov in the theory of probability.Theory Probability Appls. 8: 157–164CrossRefGoogle Scholar
Godwin, H. J. (1955). On generalizations of Tchebychef's inequality.J. Amer. Statist. Assoc. 50: 923–945CrossRefGoogle Scholar
Godwin, H. J. (1964). Inequalities on Distribution Functions. Griffin, London
Greenleaf, Frederick P. (1969). Invariant Means on Topological Groups and their Applications. Van Nostrand, New York
ter Haar, D. (1954). Elements of Statistical Mechanics. Rinehart, New York
Halmos, Paul R. (1953). Lectures on Ergodic Theory. Math. Soc. of Japan, Tokyo
Hausdorff, Felix (1914). Grundzüge der Mengenlehre, 1st ed. Von Veit, Leipzig, repr. Chelsea, New York, 1949
Hewitt, Edwin, and Savage, Leonard Jimmie (1955). Symmetric measures on Cartesian products.Trans. Amer. Math. Soc. 80: 470–501CrossRefGoogle Scholar
Heyde, Christopher C., and Eugene Seneta (1977). I. J. Bienaymé: Statistical Theory Anticipated. Springer, New YorkCrossRef
Hopf, Eberhard (1937). Ergodentheorie. Springer, Berlin
Hopf, Eberhard (1954). The general temporally discrete Markoff process.J. Rat. Mech. Anal. (Indiana Univ.) 3: 13–45Google Scholar
Ionescu Tulcea, Cassius (1949–1950). Mesures dans les espaces produits.Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (Ser. 8) 7: 208–211Google Scholar
Jacobs, Konrad (1963). Lecture Notes on Ergodic Theory. Aarhus Universitet, Matematisk Institut
Jessen, Borge (1939). Abstrakt Maalog Integralteori 4. Mat. Tidsskrift (B) 1939, pp. 7–21Google Scholar
Jordan, Kàroly (1972). Chapters on the Classical Calculus of Probability. Akadémiai Kiadó, Budapest
Kakutani, Shizuo (1943). Notes on infinite product measures, I. Proc. Imp. Acad. Tokyo (became Japan Academy Proceedings)19: 148–151CrossRef
Khinchin, A. Ya. (1933). Zu Birkhoffs Lösung des Ergodenproblems.Math. Ann. 107: 485–488CrossRefGoogle Scholar
Kolmogorov, Andrei Nikolaevich (1929a). Bemerkungen zu meiner Arbeit “Über die Summen zufälliger Grössen.”Math. Ann. 102: 484–488CrossRefGoogle Scholar
Kolmogorov, Andrei Nikolaevich (1929b). The general theory of measure and the calculus of probability (in Russian). In Coll. Works, Math. Sect. (Communist Acad., Sect. Nat. Exact Sci.) 1, 8–21. Izd. Komm. Akad., Moscow. Repr. in Kolmogorov (1986), pp. 48–58
Kolmogorov, Andrei Nikolaevich (1930). Sur la loi forte des grandes nombres. Comptes Rendus Acad. Sci. Paris 191: 910–912
Kolmogorov, Andrei Nikolaevich (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergebnisse der Math., Springer, Berlin. English transl. Foundations of the Theory of Probability, Chelsea, New York, 1956
Kolmogorov, Andrei Nikolaevich (1986). Probability Theory and Mathematical Statistics [in Russian; selected works], ed. Yu. V. Prohorov. Nauka, Moscow
Łomnicki, Z., and Ulam, Stanisław (1934). Sur la théorie de la mesure dans les espaces combinatoires et son application au calcul des probabilités: I. Variables indépendantes.Fund. Math. 23: 237–278CrossRefGoogle Scholar
*Markov, Andrei Andreevich (1899). The law of large numbers and the method of least squares (in Russian). Izv. Fiz.-Mat. Obshch. Kazan Univ. (Ser. 2) 8: 110–128
Móri, T. F., and , G. J. Székely (1983). On the Erdös-Rényi generalization of the Borel-Cantelli lemma.Stud. Sci. Math. Hungar. 18: 173–182Google Scholar
Neumann, Johann (1929). Zur allgemeinen Theorie des Masses.Fund. Math. 13: 73–116CrossRefGoogle Scholar
von Neumann, Johann (1935). Functional Operators. Mimeographed lecture notes. Institute for Advanced Study, Princeton, N. J. Published in Ann. Math. Studies no. 21, Functional Operators, vol. I, Measures and Integrals. Princeton University Press, 1950
Notices, Amer. Math. Soc. 28 (1981, p. 84; unsigned). 1980 Wolf Prize
Ornstein, Donald S., D. J. Rudolph, and B. Weiss (1982). Equivalence of measure preserving transformations. Amer. Math. Soc. Memoirs 262CrossRef
Plancherel, Michel (1912). Sur l'incompatibilité de l'hypothèse ergodique et des équations d'Hamilton.Archives sci. phys. nat. (Ser. 4) 33: 254–255Google Scholar
Plancherel, Michel (1913). Beweis der Unmöglichkeit ergodischer mechanischer Systeme.Ann. Phys. (Ser. 4) 42: 1061–1063CrossRefGoogle Scholar
Révész, Pal (1968). The Laws of Large Numbers. Academic Press, New York
Rosenthal, Arthur (1913). Beweis der Unmöglichkeit ergodischer Gassysteme.Ann. Phys. (Ser. 4) 42: 796–806CrossRefGoogle Scholar
Savage, I. Richard (1961). Probability inequalities of the Tchebycheff type.J. Research Nat. Bur. Standards 65B, pp. 211–222CrossRefGoogle Scholar
Seneta, Eugene (1992). On the history of the strong law of large numbers and Boole's inequality.Historia Mathematica 19: 24–39CrossRefGoogle Scholar
Sheynin, O. B. (1968). On the early history of the law of large numbers.Biometrika 55, pp. 459–467Google Scholar
Shiryayev, A. N. (1989). Kolmogorov: Life and creative activities.Ann. Probab. 17: 866–944CrossRefGoogle Scholar
The Times [London, unsigned] (26 October 1987). Andrei Nikolaevich Kolmogorov: 1903–1987. Repr. in Inst. Math. Statist. Bulletin 16: 324–325
Ulam, Stanisław (1932). Zum Massbegriffe in Produkträumen.Proc. International Cong. of Mathematicians (Zürich), 2, pp. 118–119Google Scholar
Yosida, Kosaku, and Shizuo Kakutani (1939). Birkhoff's ergodic theorem and the maximal ergodic theorem. Proc. Imp. Acad. (Tokyo)15: 165–168CrossRef
Youschkevitch [Yushkevich], Alexander A. (1974). Markov, Andrei Andreevich.Dictionary of Scientific Biography, 9, pp. 124–130Google Scholar
Youschkevitch, A. P. (1971). Chebyshev, Pafnuti Lvovich.Dictionary of Scientific Biography, 3, pp. 222–232Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×