Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-kpmwg Total loading time: 1.314 Render date: 2021-12-02T08:39:55.474Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

23 - Transneptunian objects and Centaurs

from IV - Solar system

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, R., Barbieri, C., Adorf, H.-M.et al. (1994). High-resolution imaging of the Pluto–Charon system with the Faint Object Camera of the Hubble Space Telescope. The Astrophysical Journal, 435, L75L78.CrossRefGoogle Scholar
Alvarez-Candal, A., Barucci, M. A., Merlin, F., Guilbert, A., and de Bergh, C. (2007). A search for rotational variations on trans-Neptunian objects. Astronomy and Astrophysics, 475, 369374.CrossRefGoogle Scholar
Appenzeller, I. (1967). A new polarimeter for faint astronomical objects. Publications of the Astronomical Society, 79, 136139.CrossRefGoogle Scholar
Appenzeller, I., Fricke, K., Fürtig, W.et al. (1998). Successful commissioning of FORS1 − the first optical instrument on the VLT. The Messenger, 94, 16.Google Scholar
Avramchuk, V. V., Rakhimov, V. Iu., Chernova, G. P., and Shavlovskii, V. I. (1992). Photometry and polarimetry of Pluto near its perihelion. Kinematics and Physics of Celestial Bodies, 8, 3037.Google Scholar
Bagnulo, S., Boehnhardt, H., Muinonen, K.et al. (2006). Exploring the surface properties of Transneptunian Objects and Centaurs with polarimetric FORS1/VLT observations. Astronomy and Astrophysics, 450, 12391248.CrossRefGoogle Scholar
Bagnulo, S., Belskaya, I., Muinonen, K.et al. (2008). Discovery of two distinct polarimetric behaviours of trans-Neptunian objects. Astronomy and Astrophysics, 491, L33L36.CrossRefGoogle Scholar
Bagnulo, S., Landolfi, M., Landstreet, J. D.et al. (2009). Stellar spectropolarimetry with retarder waveplate and beam splitter devices. Publications of the Astronomical Society of the Pacific, 121, 9931015.CrossRefGoogle Scholar
Bagnulo, S., Tozzi, G. P., Boehnhardt, H., Vincent, J.-B., and Muinonen, K. (2010). Polarimetry and photometry of the peculiar main-belt object 7968 = 133P/Elst–Pizarro. Astronomy and Astrophysics, 514, A99, pp. 13.CrossRefGoogle Scholar
Bagnulo, S., Belskaya, I., Boehnhardt, H.et al. (2011). Polarimetry of small objects of the solar system with large telescope. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 20592067.CrossRefGoogle Scholar
Barkume, K. M., Brown, M. E., and Schaller, E. L. (2008). Near-infrared spectra of Centaurs and Kuiper Belt objects. The Astronomical Journal, 135, 5567.CrossRefGoogle Scholar
Barucci, M.-A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A., eds. (2008). The Solar System Beyond Neptune. Tucson: University of Arizona Press.Google Scholar
Barucci, M. A., Alvarez-Candal, A., Merlin, F.et al. (2011). New insights on ices in Centaur and Transneptunian populations. Icarus, 214, 297307.CrossRefGoogle Scholar
Belskaya, I. N., ed. (2013). Polarimetry of Transneptunian Objects and Centaurs V3.0. EAR-A-COMPIL-3-TNO-CEN-POLARIM-V3.0. NASA Planetary Data System.
Belskaya, I. N., Ortiz, J. L., Rousselot, P.et al. (2006). Low phase angle effects in photometry of trans-Neptunian objects: 20000 Varuna and 1996 TO66. Icarus, 184, 277284.CrossRefGoogle Scholar
Belskaya, I., Bagnulo, S., Muinonen, K.et al. (2008a). Polarimetry of the dwarf planet (136199) Eris. Astronomy and Astrophysics, 479, 265269.CrossRefGoogle Scholar
Belskaya, I. N., Levasseur-Regourd, A.-C., Shkuratov, Y. G., and Muinonen, K. (2008b). Surface properties of Kuiper Belt objects and Centaurs from photometry and polarimetry. In Barucci, M.-A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A., eds., The Solar System Beyond Neptune. Tucson: University of Arizona Press, pp. 115127.Google Scholar
Belskaya, I. N., Bagnulo, S., Barucci, M. A.et al. (2010). Polarimetry of Centaurs (2060) Chiron, (5145) Pholus and (10199) Chariklo. Icarus, 210, 472479.CrossRefGoogle Scholar
Belskaya, I. N., Bagnulo, S., Stinson, A.et al. (2012). Polarimetry of trans-Neptunian objects (136472) Makemake and (90482) Orcus. Astronomy and Astrophysics, 547, id. A101.CrossRefGoogle Scholar
Boehnhardt, H., Bagnulo, S., Muinonen, K.et al. (2004). Surface characterization of 28978 Ixion (2001 KX76). Astronomy and Astrophysics, 415, L21L25.CrossRefGoogle Scholar
Boehnhardt, H., Tozzi, G. P., Bagnulo, S.et al. (2008). Photometry and polarimetry of the nucleus of comet 2P/Encke. Astronomy and Astrophysics, 489, 13371343.CrossRefGoogle Scholar
Braga-Ribas, F., Sicardy, B., Ortiz, J. L.et al. (2013). The size, shape, albedo, density, and atmospheric limit of transneptunian object (50000) Quaoar from multi-chord stellar occultations. The Astrophysical Journal, 773, id. 26, 13 pp.CrossRefGoogle Scholar
Breger, M. and Cochran, W. D. (1982). Polarimetry of Pluto. Icarus, 49, 120124.CrossRefGoogle Scholar
Brown, M. E. (2008). The largest Kuiper Belt objects. In Barucci, M.-A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A., eds., The Solar System Beyond Neptune. Tucson: University of Arizona Press, pp. 335344.Google Scholar
Brown, M. E., Trujillo, C., and Rabinowitz, D. L. (2005). Discovery of a planetary-sized object in the scattered Kuiper belt. The Astrophysical Journal Letters, 635, L97L100.CrossRefGoogle Scholar
Brown, M. E., Barkume, K. M., Ragozzine, D., andSchaller, E. L. (2007a). A collisional family of icy objects in the Kuiper belt. Nature, 446, 294296.CrossRefGoogle Scholar
Brown, M. E., Barkume, K. M., Blake, G. A. (2007b). Methane and ethane on the bright Kuiper Belt object 2005 FY9. The Astronomical Journal, 133, 284289.CrossRefGoogle Scholar
Brown, M. E., Ragozzine, D., Stansberry, J., and Fraser, W. C. (2010). The size, density, and formation of the Orcus-Vanth system in the Kuiper Belt. The Astronomical Journal, 139, 27002705.CrossRefGoogle Scholar
Buie, M. W., Grundy, W. M., Young, E. F., Young, L. A., and Stern, S. A. (2010). Pluto and Charon with the Hubble Space Telescope. I. Monitoring global change and improved surface properties from light curves. The Astronomical Journal, 139, 11171127.CrossRefGoogle Scholar
Buratti, B. J., Bauer, J. M., Hicks, M. D.et al. (2011). Photometry of Triton 1992–2004: Surface volatile transport and discovery of a remarkable opposition surge. Icarus, 212, 835846.CrossRefGoogle Scholar
Bus, S. J. and Binzel, R. P. (2002). Phase II of the small main-belt asteroid spectroscopic survey: A feature-based taxonomy. Icarus, 158, 146177.CrossRefGoogle Scholar
Carry, B., Hestroffer, D., DeMeo, F. E.et al. (2011). Integral-field spectroscopy of (90482) Orcus-Vanth. Astronomy and Astrophysics, 534, id. A115.CrossRefGoogle Scholar
Choi, Y. J., Brosch, N., and Prialnik, D. (2003). Rotation and cometary activity of KBO (29981) 1999 TD10. Icarus, 165, 101111.CrossRefGoogle Scholar
Cruikshank, D. P., Roush, T. L., Bartholomew, M. J.et al. (1998). The composition of Centaur 5145 Pholus. Icarus, 135, 389407.CrossRefGoogle Scholar
Dalle Ore, C. M., Barucci, M. A., Emery, J. P.et al. (2009). Composition of KBO (50000) Quaoar. Astronomy and Astrophysics, 501, 349357.CrossRefGoogle Scholar
Dougherty, I. M. and Geake, J. E. (1994). Polarization by frost formed at very low temperatures, as relevant to icy planetary surfaces. Monthly Notices of the Royal Astronomical Society, 271, 343354.CrossRefGoogle Scholar
Duffard, R., Lazzaro, D., Pinto, S.et al. (2002). New activity of Chiron: Results from 5 years of photometric monitoring. Icarus, 160, 4451.CrossRefGoogle Scholar
Duffard, R., Pinilla-Alonso, N., Santos-Sanz, P.et al. (2014). TNOs are cool: A survey of the transneptunian region: A Herschel-PACS view of 16 Centaurs. Astronomy and Astrophysics, 564, A92.CrossRefGoogle Scholar
Emel’yanenko, V. V., Asher, D. J., and Bailey, M. E. (2005). Centaurs from the Oort cloud and the origin of Jupiter-family comets. Monthly Notices of the Royal Astronomical Society, 361, 13451351.CrossRefGoogle Scholar
Fornasier, S., Doressoundiram, A., Tozzi, G. P.et al. (2004). ESO Large Program on physical studies of Trans-Neptunian objects and Centaurs: Final results of the visible spectrophotometric observations. Astronomy and Astrophysics, 421, 353363.CrossRefGoogle Scholar
Fornasier, S., Barucci, M. A., de Bergh, C.et al. (2009). Visible spectroscopy of the new ESO large programme on trans-Neptunian objects and Centaurs: Final results. Astronomy and Astrophysics, 508, 457465.CrossRefGoogle Scholar
Fornasier, S., Lellouch, E., Müller, T.et al. (2013). TNOs are cool: A survey of the trans-Neptunian region. VIII. Combined Herschel PACS and SPIRE observations of nine bright targets at 70–500 μm. Astronomy and Astrophysics, 555, A15, 12 pp.CrossRefGoogle Scholar
Fossati, L., Bagnulo, S., Mason, E., and Landi Degl’Innocenti, E. (2007). Standard stars for linear polarization observed with FORS1. In Sterken, C., ed., The Future of Photometric, Spectrophotometric and Polarimetric Standardization. San Francisco: Astronomical Society of Pacific, pp. 503507.Google Scholar
Fraser, W. C., Trujillo, C., Stephens, A. W.et al. (2013). Limits on Quaoar’s atmosphere. The Astrophysical Journal Letters, 774, id. L18, 4 pp.Google Scholar
Fulchignoni, M., Belskaya, I., Barucci, M. A., De Santis, M. C., and Doressoundiram, A. (2008). Transneptunian object taxonomy. In Barucci, M.-A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A., eds., The Solar System Beyond Neptune. Tucson: University of Arizona Press, pp. 181192.Google Scholar
Gladman, B., Marsden, B. G., and Vanlaerhoven, C. (2008). Nomenclature in the Outer Solar System. In: Barucci, M.-A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A., eds., The Solar System Beyond Neptune. Tucson: University of Arizona Press, pp. 4357.Google Scholar
Guilbert, A., Barucci, M. A., Brunetto, R.et al. (2009). A portrait of Centaur 10199 Chariklo. Astronomy and Astrophysics, 501, 777784.CrossRefGoogle Scholar
Jewitt, D. C. and Luu, J. X. (1993). Discovery of the candidate Kuiper belt object 1992 QB1. Nature, 362, 730732.CrossRefGoogle Scholar
Jewitt, D. C. and Luu, J. (2004). Crystalline water ice on the Kuiper belt object (50000) Quaoar. Nature, 432, 731733.CrossRefGoogle ScholarPubMed
Kelsey, J. D. and Fix, L. A. (1973). Polarimetry of Pluto. The Astrophysical Journal, 184, 633636.Google Scholar
Lacerda, P., Jewitt, D., and Peixinho, N. (2008). High-precision photometry of extreme KBO 2003 EL61. The Astronomical Journal, 135, 17491756.CrossRefGoogle Scholar
Lellouch, E., Santos-Sanz, P., Lacerda, P.et al. (2013). TNOs are cool: A survey of the trans-Neptunian region. IX. Thermal properties of Kuiper belt objects and Centaurs from combined Herschel and Spitzer observations. Astronomy and Astrophysics, 557, id. A60, 19 pp.CrossRefGoogle Scholar
Luu, J., Jewitt, D., and Trujillo, C. (2000). Water ice in 2060 Chiron and its implications for Centaurs and Kuiper belt objects. The Astrophysical Journal Letters, 531, L151L154.CrossRefGoogle ScholarPubMed
Merlin, F., Alvarez-Candal, A., Delsanti, A.et al. (2009). Stratification of methane ice on Eris’ surface. The Astronomical Journal, 137, 315328.CrossRefGoogle Scholar
Merlin, F., Barucci, M. A., de Bergh, C.et al. (2010). Chemical and physical properties of the variegated Pluto and Charon surfaces. Icarus, 210, 930943.CrossRefGoogle Scholar
Merlin, F., Quirico, E., Barucci, M. A., and de Bergh, C. (2012). Methanol ice on the surface of minor bodies in the solar system. Astronomy and Astrophysics, 544, A20, 8 pp.CrossRefGoogle Scholar
Muinonen, K. (2004). Coherent backscattering of light by complex random media of spherical scatterers: Numerical solution. Waves in Random Media, 14(3), 365388.CrossRefGoogle Scholar
Noll, K. S., Grundy, W. M., Schlichting, H., Murray-Clay, R., and Benecchi, S. D. (2012). (38628) Huya. International Astronomical Union Circulars, 9253, 2.Google Scholar
Ortiz, J. L., Sicardy, B., Braga-Ribas, F.et al. (2012). Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation. Nature, 491, 566569.CrossRefGoogle ScholarPubMed
Pinilla-Alonso, N., Brunetto, R., Licandro, J.et al. (2009). The surface of (136108) Haumea (2003 EL61), the largest carbon-depleted object in the trans-Neptunian belt. Astronomy and Astrophysics, 496, 547556.CrossRefGoogle Scholar
Rabinowitz, D. L., Schaefer, B. E., and Tourtellotte, S. W. (2007). The diverse solar phase curves of distant icy bodies. I. Photometric observations of 18 trans-Neptunian objects, 7 Centaurs, and Nereid. The Astronomical Journal, 133, 2643.CrossRefGoogle Scholar
Rousselot, P., Levasseur-Regourd, A. C., Muinonen, K., and Petit, J.-M. (2005). Polarimetric and photometric phase effects observed on transneptunian object (29981) 1999 TD10. Earth, Moon, and Planets, 97, 353364.CrossRefGoogle Scholar
Santoz-Sans, P., Lellouch, E., Fornasier, S.et al. (2012). TNOs are cool: A survey of the trans-Neptunian region. IV. Size/albedo characterization of 15 scattered disk and detached objects observed with Herschel-PACS. Astronomy and Astrophysics, 541, id. A92, 18 pp.Google Scholar
Scarrott, S. M., Warren-Smith, R. F., Pallister, W. S., Axon, D. J., and Bingham, R. G. (1983). Electronographic polarimetry – The Durham polarimeter. Monthly Notices of the Royal Astronomical Society, 204, 11631177.CrossRefGoogle Scholar
Shkuratov, Yu. G., Muinonen, K., Bowell, E.et al. (1994). A critical review of theoretical models for the negative polarization of light scattered by atmosphereless solar system bodies. Earth, Moon, and Planets, 65(3), 201246.CrossRefGoogle Scholar
Shkuratov, Yu., Ovcharenko, A., Zubko, E.et al. (2002). The opposition effect and negative polarization of structurally simulated planetary regoliths. Icarus, 159, 396416.CrossRefGoogle Scholar
Sicardy, B., Ortiz, J. L., Assafin, M.et al. (2011). A Pluto-like radius and a high albedo for the dwarf planet Eris from an occultation. Nature, 478, 493496.CrossRefGoogle Scholar
Stansberry, J., Grundy, W., Brown, M.et al. (2008). Physical properties of Kuiper belt and Centaurs objects: Constraints from Spitzer space telescope. In Barucci, M.-A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A., eds., The Solar System Beyond Neptune. Tucson: University of Arizona Press, pp. 161179.Google Scholar
Stern, S. A. and Trafton, L. M. (2008). On the atmospheres of objects in the Kuiper Belt. In Barucci, M.-A., Boehnhardt, H., Cruikshank, D. P., and Morbidelli, A., eds., The Solar System Beyond Neptune. Tucson: University of Arizona Press, pp. 365380.Google Scholar
Tancredi, G. and Favre, S. (2008). Which are the dwarfs in the Solar System?Icarus, 195, 851862.CrossRefGoogle Scholar
Tegler, S. C., Cornelison, D. M., Grundy, W. M.et al. (2010). Methane and nitrogen abundances on Pluto and Eris. The Astrophysical Journal, 725, 12961305.CrossRefGoogle Scholar
Tegler, S. C., Grundy, W. M., Olkin, C. B.et al., (2012). Ice mineralogy across and into the surfaces of Pluto, Triton, and Eris. The Astrophysical Journal, 751, 76, 10pp.CrossRefGoogle Scholar
Tozzi, G. P., Bagnulo, S., Barucci, M. A.et al. (2012). Search for coma in Centaurs (2060) Chiron, (5145) Pholus and (10199) Chariklo. Abstract for DPS meeting #44, #310.15.Google Scholar
1
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×