Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-lmg95 Total loading time: 1.359 Render date: 2021-10-22T08:16:58.936Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

21 - Asteroids

from IV - Solar system

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appenzeller, I., Fricke, K., Furtig, W.et al. (1998). Successful commissioning of FORS1 – the first optical instrument on the VLT. The Messenger, 94, 1.Google Scholar
Bagnulo, S., Belskaya, I. N., Boehnhardt, H.et al. (2011). Polarimetry of small bodies of the solar system with large telescopes. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 20592067.CrossRefGoogle Scholar
Belskaya, I. N. and Shevchenko, V. G. (2000). Opposition effect of asteroids. Icarus, 147, 94105.CrossRefGoogle Scholar
Belskaya, I. N., Efimov, Y. S., Lupishko, D. F., and Shakhovskoy, N. M. (1985). Five color polarimetry of the asteroid 16-Psyche. Soviet Astronomy Letters, 11, 116118.Google Scholar
Belskaya, I. N., Lupishko, D. F., and Shakhovskoi, N. M. (1987). Negative polarization spectra for five asteroids. Soviet Astronomy Letters, 13, 219.Google Scholar
Belskaya, I. N., Kiselev, N. N., Lupishko, D., and Chernova, G. P. (1991). Polarimetry of CMEU asteroids. II – A peculiarity of M-type asteroids. Kinematics and Physics of Celestial Bodies, 7, 811.Google Scholar
Belskaya, I. N., Shevchenko, V. G., Kiselev, N. N.et al. (2003). Opposition polarimetry and photometry of S- and E-type asteroids. Icarus, 166, 276284.CrossRefGoogle Scholar
Belskaya, I. N., Shkuratov, Yu. G., Efimov, Yu. S.et al. (2005). The F-type asteroids with small inversion angles of polarization. Icarus, 178, 213221.CrossRefGoogle Scholar
Belskaya, I. N., Levasseur-Regourd, A.-C., Cellino, A. et al. (2009a). Polarimetry of main belt asteroids: Wavelength dependence. Icarus, 199, 97105.CrossRefGoogle Scholar
Belskaya, I. N., Fornasier, S., and Krugly, Y. N. (2009b). Polarimetry and BVRI photometry of the potentially hazardous near-Earth asteroid (23187) 2000 PN9. Icarus, 201, 167171.CrossRefGoogle Scholar
Belskaya, I. N., Fornasier, S., Krugly, Yu. N.et al. (2010). Puzzling asteroid 21 Lutetia: Our knowledge prior to the Rosetta fly-by. Astronomy and Astrophysics, 515, A29.CrossRefGoogle Scholar
Burbine, T. H., Gaffey, M. J., and Bell, J. F. (1992). S-asteroids 387 Aquitania and 980 Anacostia – Possible fragments of the breakup of a spinel-bearing parent body with CO3/CV3 affinities. Meteoritics, 27, 424434.CrossRefGoogle Scholar
Bus, S. J. and Binzel, R. P. (2002). Phase II of the small main-belt asteroid spectroscopic survey. A feature-based taxonomy. Icarus, 158, 146177.CrossRefGoogle Scholar
Cañada-Assandri, M., Gil-Hutton, R., and Benavidez, P. (2012). Polarimetric survey of main-belt asteroids. III. Results for 33 X-type objects. Astronomy and Astrophysics, 542, A11.CrossRefGoogle Scholar
Cellino, A., Gil-Hutton, R., Tedesco, E. F., Di Martino, M., and Brunini, A. (1999). Polarimetric observations of small asteroids: Preliminary results. Icarus, 138, 129140.CrossRefGoogle Scholar
Cellino, A., Zappalà, V., Doressoundiram, A.et al. (2001). The puzzling case of the Nysa-Polana family. Icarus, 152, 225237.CrossRefGoogle Scholar
Cellino, A., Gil-Hutton, R., di Martino, M.et al. (2005a). Asteroid polarimetric observations using the Torino UBVRI photopolarimeter. Icarus, 179, 304324.CrossRefGoogle Scholar
Cellino, A., Yoshida, F., Anderlucci, E.et al. (2005b). A polarimetric study of asteroid 25143 Itokawa. Icarus, 179, 297303.CrossRefGoogle Scholar
Cellino, A., Belskaya, I. N., Bendjoya, Ph.et al. (2006). The strange polarimetric behavior of asteroid (234) Barbara. Icarus, 180, 565567.CrossRefGoogle Scholar
Cellino, A., Delbò, M., Bendjoya, Ph., and Tedesco, E. F. (2010). Polarimetric evidence of close similarity between members of the Karin and Koronis dynamical families. Icarus, 209, 556563.CrossRefGoogle Scholar
Cellino, A., Dell’Oro, A., Bendjoya, Ph., Cañada-Assandri, M., and Di Martino, M. (2012). A new calibration of the albedo–polarization relation for the asteroids. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 25522560.CrossRefGoogle Scholar
Cellino, A., Bagnulo, S., Tanga, P., Novakovic, B., and Delbò, M. (2014). A successful search for hidden Barbarians in the Watsonia asteroid family. Monthly Notices of the Royal Astronomical Society Letters, 439, L75.CrossRefGoogle Scholar
Chamberlin, A. B., McFadden, L.-A., Schulz, R., Schleicher, D. G., and Bus, S. J. (1996). 4015 Wilson Harrington, 2201 Oljato, and 3200 Phaethon: Search for CN Emission. Icarus, 119, 173181.CrossRefGoogle Scholar
Chapman, C. R. (1996). S-type asteroids, ordinary chondrites, and space weathering: The evidence from Galileo’s fly-bys of Gaspra and Ida. Meteoritics and Planetary Science, 31, 699725.CrossRefGoogle Scholar
Chapman, C. R., Morrison, D., and Zellner, B. (1975). Surface properties of asteroids – A synthesis of polarimetry, radiometry, and spectrophotometry. Icarus, 25, 104130.CrossRefGoogle Scholar
Degtyarev, V. S. and Kolokolova, L. O. (1992). Possible application of circular polarization for remote sensing of cosmic bodies. Earth, Moon and Planets, 57, 213223.CrossRefGoogle Scholar
Delbò, M., Cellino, A., and Tedesco, E. F. (2007). Albedo and size determination of potentially hazardous asteroids: (99942) Apophis. Icarus, 188, 266269.CrossRefGoogle Scholar
De Luise, F., Perna, D., Dotto, E.et al. (2007). Physical investigation of the potentially hazardous asteroid (144898) 2004 VD17. Icarus, 191, 628635.CrossRefGoogle Scholar
DeMeo, F. E., Binzel, R. P., Slivan, S. M., and Bus, S. J. (2009). An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, 202, 160180.CrossRefGoogle Scholar
Desidera, S., Giro, E., Munari, U.et al. (2004). Polarimetric evolution of V838 Monocerotis. Astronomy and Astrophysics, 414, 591600.CrossRefGoogle Scholar
Dollfus, A. and Zellner, B. (1979). Optical polarimetry of asteroids and laboratory samples. In Gehrels, T., ed., Asteroids. Tucson: University of Arizona Press, pp. 170183.Google Scholar
Dollfus, A., Wolff, M., Geake, J. E., Lupishko, D. F., and Dougherty, L. M. (1989). Photopolarimetry of asteroids. In Binzel, R. P., Gehrels, T., and Matthews, M. S., eds., Asteroids II. Tucson: University of Arizona Press, pp. 594616.Google Scholar
Fornasier, S., Belskaya, I. N., Fulchignoni, M., Barucci, M. A., and Barbieri, C. (2006a). First albedo determination of 2867 Steins, target of the Rosetta mission. Astronomy and Astrophysics, 449, L9L12.CrossRefGoogle Scholar
Fornasier, S., Beskaya, I. N., Shkuratov, Yu. G.et al. (2006b). Polarimetric survey of asteroids with the Asiago telescope. Astronomy and Astrophysics, 455, 371377.CrossRefGoogle Scholar
Gaffey, M. J., Bell, J. F., and Cruikshank, D. P. (1989). Reflectance spectroscopy and asteroid surface mineralogy. In Binzel, R. P., Gehrels, T., and Matthews, M. S., eds., Asteroids II. Tucson: University of Arizona Press, pp. 98127.Google Scholar
Gehrels, T., ed. (1974). Planets, Stars, and Nebulae Studied with Photopolarimetry. Tucson: University of Arizona Press.Google Scholar
Gil-Hutton, R. (2007). Polarimetry of M-type asteroids. Astronomy and Astrophysics, 464, 11271132.CrossRefGoogle Scholar
Gil-Hutton, R. and Cañada-Assandri, M. (2011). Polarimetric survey of main-belt asteroids. I. Results for fifty seven S-, L-, and K-type objects. Astronomy and Astrophysics, 529, A86.CrossRefGoogle Scholar
Gil-Hutton, R. and Cañada-Assandri, M. (2012). Polarimetric survey of main-belt asteroids. II. Results for 58 B- and C-type objects. Astronomy and Astrophysics, 539, A115.CrossRefGoogle Scholar
Gil-Hutton, R., Mesa, V., Cellino, A.et al. (2008). New cases of unusual polarimetric behavior in asteroids. Astronomy and Astrophysics, 482, 309314.CrossRefGoogle Scholar
Goidet-Devel, B., Renard, J. B., and Levasseur-Regourd, A.-C. (1995). Polarization of asteroids. Synthetic curves and characteristic parameters. Planetary and Space Science, 43, 779786.CrossRefGoogle Scholar
Gradie, J. and Tedesco, E. F. (1982). Compositional structure of the asteroid belt. Science, 216, 14051407.CrossRefGoogle ScholarPubMed
Gradie, J., Tedesco, E. F., and Zellner, B. (1978). Rotational variations in the optical polarization and reflection spectrum of Vesta. Bulletin of the American Astronomical Society, 10, 595.Google Scholar
Hadamcik, E., Levasseur-Regourd, A. C., Renard, J. B., Lasue, J., and Sen, A. K. (2011). Polarimetric observations and laboratory simulations of asteroidal surfaces: The case of 21-Lutetia. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 18811890.CrossRefGoogle Scholar
Ishiguro, M., Nakayama, H., Kogachi, M.et al. (1997). Maximum visible polarization of 4179 Toutatis in the apparition of 1996. Publications of the Astronomical Society of Japan, 49, L31L34.CrossRefGoogle Scholar
Jenniskens, P., Shaddad, M. H., Numan, D.et al. (2009). The impact and recovery of asteroid 2008 TC3. Nature, 458, 485488.CrossRefGoogle Scholar
Kawabata, K., Okazaki, A., Akitaya, H. et al. (1999). A new spectropolarimeter at the Dodaira Observatory. Publications of the Astronomical Society of the Pacific, 111, 898908.CrossRefGoogle Scholar
Kiselev, N. N., Lupishko, D. F., Chernova, G. P., and Shkuratov, Yu. G. (1990). Polarimetry of the asteroid 1685 Toro. Kinematika i Fizika Nebesnykh Tel, 6, 7782.Google Scholar
Kiselev, N. N., Rosenbush, V. K., and Jockers, K. (1999). Polarimetry of asteroid 2100 Ra-Shalom at large phase angle. Icarus, 140, 464466.CrossRefGoogle Scholar
Kiselev, N. N., Rosenbush, V. K., Jockers, K.et al. (2002). Polarimetry of near-Earth asteroid 33342 (1998 WT24). Synthetic phase angle dependence of polarization for the E-type asteroids. In Warmbein, B., ed., Proceedings of Asteroids, Comets, Meteors – ACM 2002, ESA SP-500. The Netherlands: Noordwijk, pp. 887890.Google Scholar
Kolokolova, L. and Jockers, K. (1997). Composition of cometary dust from polarization spectra. Planetary and Space Science, 45, 15431550.CrossRefGoogle Scholar
Lupishko, D. F. (1998). Bimodality in the albedo distribution of S-asteroids. Solar System Research, 32, 233.Google Scholar
Lupishko, D. and Belskaya, I. N. (1989). On the surface composition of the M-type asteroids. Icarus, 78, 395401.CrossRefGoogle Scholar
Lupishko, D. F. and Mohamed, R. A. (1996). A new calibration of the polarimetric albedo scale of asteroids. Icarus, 119, 209213.CrossRefGoogle Scholar
Lupishko, D. F. and Vasilyev, S. V. (1997). Asteroid Polarimetric Database. Kinematics and Physics of Celestial Bodies, 13, 1723.Google Scholar
Lupishko, D. F., Belskaya, I. N., Kvaratskheliia, O. I., Kiselev, N. N., and Morozhenko, A. V. (1988). The polarimetry of Vesta during the 1986 opposition. Astronomicheskii Vestnik, 22, 142146 [in Russian].Google Scholar
Lupishko, D. F., Vasilyev, S. V., Efimov, Yu. S., and Shakhovskoy, N. M. (1995). UBVRI polarimetry of asteroid (4179) Toutatis. Icarus, 113, 200205.CrossRefGoogle Scholar
Lupishko, D. F., Efimov, Yu. S. and Shakhovskoi, N. M. (1999). Position angle variations of the polarization plane of asteroid 4 Vesta. Solar System Research, 33, 4548.Google Scholar
Lupishko, D. F. and Vasilyev, S. V., eds, (2012). Asteroid Polarimetric Database V7.0. EAR-A-3-RDR-APD-POLARI METRY-V7.0. NASA Planetary Data System, 2012. Available online at: http://sbn.psi.edu/pds/resource/apd.html (accessed January 13, 2015).
Magalhães, A. M., Rodriguez, C. V., Margoniner, V. E., Pereyra, A., and Heathcote, S. (1996). High precision CCD imaging polarimetry. In Roberge, W. G. and Whittet, D. C. B., eds., Polarimetry of the Interstellar Medium. Astronomical Society of the Pacific Conference Series, Vol. 97. San Francisco CA: Astronomical Society of the Pacific, p. 118.Google Scholar
Masiero, J., Hodapp, K., Harrington, D., and Lin, H. S. (2007). Commissioning of the dual-beam imaging polarimeter for the University of Hawaii 88 inch telescope. Publications of the Astronomical Society of the Pacific, 119, 11261132.CrossRefGoogle Scholar
Masiero, J., Hartzell, C., and Scheers, D. J. (2009). The effect of the dust size distribution on asteroid polarization. The Astronomical Journal, 138, 15571562.CrossRefGoogle Scholar
Masiero, J. R., Mainzer, A. K., Grav, T.et al. (2011). Main belt asteroids with WISE/NEOWISE. I. Preliminary albedos and diameters. The Astrophysical Journal, 741, 68.CrossRefGoogle Scholar
Masiero, J. R., Mainzer, A. K., Gray, T.et al. (2012). A revised asteroid polarization–albedo relationship using WISE/NEOWISE data. The Astrophysical Journal, 749, 104.CrossRefGoogle Scholar
Mignard, F., Cellino, A., Muinonen, K.et al. (2007). The Gaia Mission: Expected applications to asteroid science. Earth, Moon and Planets, 101, 97125.CrossRefGoogle Scholar
Muinonen, K., Piironen, J., Kaasalainen, S., and Cellino, A. (2002). Asteroid photometric and polarimetric phase curves: Joint linear-exponential modeling. Memorie Della Società Astronomica Italiana—Journal of the Italian Astronomical Society, 73, 716721.Google Scholar
Muinonen, K., Belskaya, I. N., Cellino, A. (2010). A three-parameter magnitude phase function for asteroids. Icarus, 209, 542555.CrossRefGoogle Scholar
Mukai, T., Iwata, T., Kikuchi, S.et al. (1997). Polarimetric observations of 4179 Toutatis in 1992/1993. Icarus, 127, 452460.CrossRefGoogle Scholar
Nesvorny, D., Enke, B. L., Bottke, W. F.et al. (2006). Karin cluster formation by asteroid impact. Icarus, 183, 296311.CrossRefGoogle Scholar
Novakovic, B., Cellino, A., and Knezevic, Z. (2011). Families among high-inclination asteroids. Icarus, 216, 6981.CrossRefGoogle Scholar
Penttilä, A., Lumme, K., Hadamcik, E., and Levasseur-Regourd, A.-C. (2005). Statistical analysis of asteroidal and cometary polarization phase curves. Astronomy and Astrophysics, 432, 10811090.CrossRefGoogle Scholar
Pernechele, C., Giro, E., and Fantinel, D. (2003). Device for optical linear polarization measurements with a single exposure. Proceedings of SPIE, 4843, 156163.CrossRefGoogle Scholar
Pernechele, C., Abe, L., Bendjoya, Ph.et al. (2012). A single-shot optical linear polarimeter for asteroid studies. Proceedings of SPIE, 8446, 84462H.CrossRefGoogle Scholar
Piirola, V. (1973). A double image chopping polarimeter. Astronomy and Astrophysics, 27, 383388.Google Scholar
Rivkin, A. S., Howell, E. S., Britt, D. T.et al. (1995). Three-micron spectrometric survey of M- and E-class asteroids. Icarus, 117, 90100.CrossRefGoogle Scholar
Rivkin, A. S., Howell, E. S., Lebofsky, L. A., Clark, B. E., and Britt, D. T. (2000). The nature of M-class asteroids from 3-micron observation. Icarus, 145, 351368.CrossRefGoogle Scholar
Rosenbush, V. K., Kiselev, N. N., Shevchenko, V. G.et al. (2005). Polarization and brightness opposition effects for the E-type asteroid 64 Angelina. Icarus, 178, 222234.CrossRefGoogle Scholar
Rosenbush, V. K., Shevchenko, V. G., Kiselev, N. N.et al. (2009). Polarization and brightness opposition effects for the E-type asteroid 44 Nysa. Icarus, 201, 655665.CrossRefGoogle Scholar
Ross Taylor, S. (1992). Solar System Evolution. New York: Cambridge University Press.Google Scholar
Scaltriti, F., Piirola, V., Cellino, A.et al. (1989). The UBVRI photopolarimeter of the Torino Astronomical Observatory. Memorie della Societa Astronomica Italiana, 60, 243246.Google Scholar
Shakhovskoj, N. M. (1994). Methods for analysis of polarization observations. Crimean Astrophysical Observatory, 91, 106123.Google Scholar
Shevchenko, V. G. and Tedesco, E. F. (2006). Asteroid albedos deduced from stellar occultations. Icarus, 184, 211220.CrossRefGoogle Scholar
Sunshine, J., Connolly, H. C., McCoy, T. J., and Bus, S. J. (2007). Refractory-rich asteroids: Concentrations of the most ancient materials in the Solar System. Bulletin of the American Astronomical Society, 39, 476.Google Scholar
Sunshine, J. M., Connolly, H. C., McCoy, T. J., Bus, S.J., and La Croix, L. M. (2008). Ancient asteroids enriched in refractory inclusions. Science, 320, 514517.CrossRefGoogle ScholarPubMed
Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D. (2002). The supplemental IRAS minor planet survey. The Astronomical Journal, 123, 10561085.CrossRefGoogle Scholar
Tholen, D. (1984). Asteroid taxonomy from cluster analysis of photometry. Ph.D. thesis, University of Arizona.
Tholen, D. J. and Barucci, M. A. (1989). Asteroid taxonomy. In Binzel, R., Gehrels, T., and Matthews, M. S., eds., Asteroids II. Tucson: University of Arizona Press, pp. 298315.Google Scholar
Vasil’Ev, S. V., Lupishko, D. F., Shakhovskoj, N. M., and Efimov, Yu. S. (1996). UBVRI polarimetry and photometry of the asteroid 1620 Geographos. Kinematics and Physics of Celestial Bodies, 12, 812.Google Scholar
Vernazza, P., Binzel, R. P., Rossi, A., Fulchignoni, M., and Birlan, M. (2009). Solar wind as the origin of rapid reddening of asteroid surfaces. Nature, 458, 993995.CrossRefGoogle ScholarPubMed
Wolff, M. (1980). Theory and application of the polarization–albedo rules. Icarus, 44, 780792.CrossRefGoogle Scholar
Wolff, M. (1981). Computing diffuse reflection from particulate planetary surface with a new function. Applied Optics, 20, 24932498.CrossRefGoogle ScholarPubMed
Zellner, B. and Gradie, J. (1976a). Minor planets and related objects. XX. Polarimetric evidence for the albedos and compositions of 94 asteroids. The Astronomy Journal, 81, 262280.CrossRefGoogle Scholar
Zellner, B. and Gradie, J. (1976b). Polarization of the reflected light of asteroid 433 Eros. Icarus, 28, 117123.CrossRefGoogle Scholar
Zellner, B., Gehrels, T., and Gradie, J. (1974). Minor planets and related objects. XVI. Polarimetric diameters. The Astronomy Journal, 79, 11001110.CrossRefGoogle Scholar
Zellner, B., Leake, M., Lebertre, T., and Dollfus, A. (1977). Polarimetry of meteorites and the asteroid albedo scale. Lunar and Planetary Science Conference, 8, 1041.Google Scholar
6
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×