Skip to main content Accessibility help
Hostname: page-component-684899dbb8-662rr Total loading time: 0.623 Render date: 2022-05-28T11:39:04.341Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Chapter Two - Natural selection for anti-herbivore plant secondary metabolites

a <span class='italic'>Eucalyptus</span> system

Published online by Cambridge University Press:  05 August 2012

Julianne M. O’Reilly-Wapstra
School of Plant Science, University of Tasmania
Brad M. Potts
School of Plant Science, University of Tasmania
Clare McArthur
School of Biological Sciences, University of Sydney
Glenn R. Iason
James Hutton Institute, Aberdeen
Marcel Dicke
Wageningen Universiteit, The Netherlands
Susan E. Hartley
University of York
Get access



Since the seminal papers of Fraenkel (1959) and Ehrlich and Raven (1964), much research has demonstrated the role of plant secondary metabolites (PSMs) as defence mechanisms against invertebrate and vertebrate herbivory. These metabolites can act directly on the herbivore as toxins (Theis & Lerdau, 2003; Gershenzon & Dudareva, 2007), digestibility reducers (Ayres et al., 1997; De Gabriel et al., 2009) and deterrents (Pass & Foley, 2000), and they can also act indirectly by, for example, attracting natural enemies of the herbivore (Dicke, 2009). The idea that the herbivores themselves are acting as selective agents on these PSMs has existed since it was first noted that these compounds may serve as anti-herbivore traits, and in some systems it is clear that herbivores may act as agents of natural selection on some specific PSMs (Simms & Rausher, 1989; Mauricio & Rausher, 1997; Stinchcombe & Rausher, 2001; Agrawal, 2005). However, in most systems there is still a dearth of evidence addressing this question, particularly in light of the vast number of herbivores that attack a single plant species across its entire life and the array of PSMs that are expressed in a plant species. Are all of these herbivores agents of selection and have all PSMs evolved because of the selective pressures by the herbivores, or are PSMs driven by selection from other pressures such as abiotic factors (Close & McArthur, 2002)? Knowing the answer to these questions is important when attempting to understand what is driving population divergence within species and the evolution and change in PSMs.

For selection to occur there must be additive genetic-based variability in herbivory within plant populations. This herbivory must correlate with additive genetic-based variation in plant defensive traits, and herbivory must affect plant fitness (see Box 2.1). Key papers in the late 1980s through to the late 1990s clearly demonstrated the evolutionary impact that invertebrate herbivores were having on plant chemical defences in some systems (Rausher & Simms, 1989; Simms & Rausher, 1992; Rausher, 1993; Mauricio & Rausher, 1997; Juenger & Bergelson, 1998).

The Ecology of Plant Secondary Metabolites
From Genes to Global Processes
, pp. 10 - 33
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Agrawal, A. A. 2005 Natural selection on common milkweed () by a community of specialized insect herbivoresEvolutionary Ecology Research 7 651Google Scholar
Agrawal, A. A. 2007 Macroevolution of plant defense strategiesTrends in Ecology and Evolution 22 103CrossRefGoogle ScholarPubMed
Agrawal, A. A.Fishbein, M. 2008 Phylogenetic escalation and decline of plant defense strategiesProceedings of the National Academy of Sciences USA 105 10057CrossRefGoogle ScholarPubMed
Agrawal, A. A.Fishbein, M.Halitschke, R. 2009 Evidence for adaptive radiation from a phylogenetic study of plant defensesProceedings of the National Academy of Sciences USA 106 18067CrossRefGoogle ScholarPubMed
Anderson, L. L.Paige, K. N. 2003 Multiple herbivores and coevolutionary interactions in an hybrid swarmEvolutionary Ecology 17 139CrossRefGoogle Scholar
Andrew, R. L.Peakall, R.Wallis, I. R. 2005 Marker-based quantitative genetics in the wild? The heritability and genetic correlation of chemical defenses in Genetics 171 1989CrossRefGoogle Scholar
Andrew, R. L.Peakall, R.Wallis, I. R. 2007 Spatial distribution of defense chemicals and markers and the maintenance of chemical variationEcology 88 716CrossRefGoogle ScholarPubMed
Andrew, R. L.Wallis, I. R.Harwood, C. E. 2007 Heritable variation in the foliar secondary metabolite sideroxylonal in confers cross-resistance to herbivoresOecologia 153 891CrossRefGoogle ScholarPubMed
Andrew, R. L.Wallis, I. R.Harwood, C. E. 2010 Genetic and environmental contributions to variation and population divergence in a broad-spectrum foliar defence of Annals of Botany 105 707CrossRefGoogle Scholar
Ayres, M. P.Clausen, T. P.MacLean, S. F. 1997 Diversity of structure and antiherbivore activity in condensed tanninsEcology 78 1696CrossRefGoogle Scholar
Bailey, J.Schweitzer, J.Rehill, B. 2007 Rapid shifts in the chemical composition of aspen forests: an introduced herbivore as an agent of natural selectionBiological Invasions 9 715CrossRefGoogle Scholar
Barbour, R. C.O’Reilly-Wapstra, J. M.De Little, D. W. 2009 A geographic mosaic of genetic variation within a foundation tree species and its community-level consequencesEcology 90 1762CrossRefGoogle ScholarPubMed
Barton, A. F. M.Cotterill, P. P.Brooker, M. I. H. 1991 Short note: heritability of cineole yield in Silvae Genetica 40 37Google Scholar
Barton, K. E.Koricheva, J. 2010 The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysisAmerican Naturalist 175 481CrossRefGoogle ScholarPubMed
Becerra, J. X.Noge, K.Venable, D. L. 2009 Macroevolutionary chemical escalation in an ancient plant–herbivore arms raceProceedings of the National Academy of Sciences USA 106 18062CrossRefGoogle Scholar
Benkman, C. W. 1999 The selection mosaic and diversifying coevolution between crossbills and Lodgepole pineAmerican Naturalist 153 S75CrossRefGoogle ScholarPubMed
Boege, K.Marquis, R. J. 2005 Facing herbivory as you grow up: the ontogeny of resistance in plantsTrends in Ecology and Evolution 20 441CrossRefGoogle ScholarPubMed
Boyle, R. R.McLean, S. 2004 Constraint of feeding by chronic ingestion of 1,8-cineole in the brushtail possum ()Journal of Chemical Ecology 30 757CrossRefGoogle Scholar
Brooker, M. I. H. 2000 A new classification of the genus L’HerAustralian Systematic Botany 13 79CrossRefGoogle Scholar
Brophy, J. J.Southwell, I. A. 2002 chemistryCoppen, J. J. W.Eucalyptus: The Genus EucalyptusLondonTaylor & FrancisGoogle Scholar
Bulinski, J.McArthur, C. 1999 An experimental field study of the effects of mammalian herbivore damage on seedlingsForest Ecology and Management 113 241CrossRefGoogle Scholar
Close, D. C.McArthur, C. 2002 Rethinking the role of many plant phenolics – protection from photodamage not herbivores?Oikos 99 166CrossRefGoogle Scholar
Close, D. C.McArthur, C.Paterson, S. 2003 Photoinhibition: a link between effects of the environment on eucalypt seedling leaf chemistry and herbivoryEcology 84 2952CrossRefGoogle Scholar
Conner, J. K.Hartl, D. L. 2004 A Primer of Ecological GeneticsSunderland, MASinauer AssociatesGoogle Scholar
Dahlgren, J.Oksanen, L.Olofsson, J. 2009 Plant defences at no cost? The recovery of tundra scrubland following heavy grazing by grey-sided voles, Evolutionary Ecology Research 11 1205Google Scholar
De Gabriel, J. L.Moore, B. D.Foley, W. J. 2009 The effects of plant defensive chemistry on nutrient availability predict reproductive success in a mammalEcology 90 711CrossRefGoogle Scholar
Dicke, M. 2009 Behavioural and community ecology of plants that cry for helpPlant, Cell and Environment 32 654CrossRefGoogle ScholarPubMed
Donaldson, J. R.Lindroth, R. L. 2007 Genetics, environment, and their interaction determine efficacy of chemical defense in trembling aspenEcology 88 729CrossRefGoogle ScholarPubMed
Dracatos, P. M.Cogan, N. O. I.Sawbridge, T. I. 2009 Molecular characterisation and genetic mapping of candidate genes for qualitative disease resistance in perennial ryegrass ( L.)BMC Plant Biology 9 22CrossRefGoogle Scholar
Dutkowski, G. W.Potts, B. M. 1999 Geographic patterns of genetic variation in ssp. and a revised racial classificationAustralian Journal of Botany 47 237CrossRefGoogle Scholar
Ehrlich, P. R.Raven, P. H. 1964 Butterflies and plants: a study in coevolutionEvolution 18 586CrossRefGoogle Scholar
Elliot, H. Little, D. W. 1985 Insect Pests of Trees and Timber in TasmaniaHobart, TasmaniaForestry Commission.Google Scholar
Eschler, B. M.Pass, D. M.Willis, R. 2000 Distribution of foliar formylated phloroglucinol derivatives amongst speciesBiochemical Systematics and Ecology 28 813CrossRefGoogle ScholarPubMed
Falconer, D. S.Mackay, T. C. 1996 Introduction to Quantitative GeneticsHarlowPearson EducationGoogle Scholar
Fraenkel, G. S. 1959 The of secondary plant substancesScience 129 1466CrossRefGoogle ScholarPubMed
Freeman, J. S.O’Reilly-Wapstra, J. M.Vaillancourt, R. E. 2008 Quantitative trait loci for key defensive compounds affecting herbivory of eucalypts in AustraliaNew Phytologist 178 846CrossRefGoogle ScholarPubMed
Futuyma, D. J.Agrawal, A. A. 2009 Macroevolution and the biological diversity of plants and herbivoresProceedings of the National Academy of Sciences USA 106 18054CrossRefGoogle ScholarPubMed
Gershenzon, J.Dudareva, N. 2007 The function of terpene natural products in the natural worldNature Chemical Biology 3 408CrossRefGoogle ScholarPubMed
Gleadow, R. M.Haburjak, J.Dunn, J. E. 2008 Frequency and distribution of cyanogenic glycosides in L’HeritPhytochemistry 69 1870CrossRefGoogle ScholarPubMed
Gomez, J. M.Perfectti, F.Bosch, J. 2009 A geographic selection mosaic in a generalized plant–pollinator–herbivore systemEcological Monographs 79 245CrossRefGoogle Scholar
Goodger, J. Q. D.Woodrow, I. E. 2002 Cyanogenic polymorphism as an indicator of genetic diversity in the rare species (Myrtaceae)Functional Plant Biology 29 1445CrossRefGoogle Scholar
Gosney, B. 2009
Henery, M. L.Moran, G. F.Wallis, I. R. 2007 Identification of quantitative trait loci influencing foliar concentrations of terpenes and formylated phloroglucinol compounds in New Phytologist 176 82CrossRefGoogle Scholar
Hillis, W. E. 1966 Variation in polyphenol composition within species of l’HeritPhytochemistry 5 541CrossRefGoogle Scholar
Hume, I. D. 1999 Marsupial NutritionCambridgeCambridge University PressGoogle Scholar
Jansson, S.Douglas, C. J. 2007 : A model system for plant biologyAnnual Review of Plant Biology 58 435CrossRefGoogle ScholarPubMed
Jaya, E.Kubien, D. S.Jameson, P. E. 2010 Vegetative phase change and photosynthesis in : architectural simplification prolongs juvenile traitsTree Physiology 30 393CrossRefGoogle ScholarPubMed
Johnson, M. T. J.Agrawal, A. A.Maron, J. L. 2009 Heritability, covariation and natural selection on 24 traits of common evening primrose () from a field experimentJournal of Evolutionary Biology 22 1295CrossRefGoogle Scholar
Jones, T. H.Potts, B. M.Vaillancourt, R. E. 2002 Genetic resistance of to autumn gum moth defoliation and the role of cuticular waxesCanadian Journal of Forest Research 32 1961CrossRefGoogle Scholar
Jordan, G. J.Potts, B. M.Chalmers, P. 2000 Quantitative genetic evidence that the timing of vegetative phase change in ssp. is an adaptive traitAustralian Journal of Botany 48 561CrossRefGoogle Scholar
Jordan, G. J.Potts, B. M.Clarke, A. R. 2002 Susceptibility of ssp. to sawfly ( ssp. ) attack and its potential impact on plantation productivityForest Ecology and Management 160 189CrossRefGoogle Scholar
Juenger, T.Bergelson, J. 1998 Pairwise versus diffuse natural selection and the multiple herbivores of scarlet gilia, Evolution 52 1583CrossRefGoogle Scholar
Koshevoi, O. N.Komissarenko, A. N.Kovaleva, A. M. 2009 Coumarins from leavesChemistry of Natural Compounds 45 532CrossRefGoogle Scholar
Kulheim, C.Yeoh, S. H.Maintz, J. 2009 Comparative SNP diversity among four Eucalyptus species for genes from secondary metabolite biosynthetic pathwaysBMC Genomics 10 11CrossRefGoogle ScholarPubMed
Laine, A. L. 2009 Role of coevolution in generating biological diversity: spatially divergent selection trajectoriesJournal of Experimental Botany 60 2957CrossRefGoogle ScholarPubMed
Lankau, R. A. 2007 Specialist and generalist herbivores exert opposing selection on a chemical defenseNew Phytologist 175 176CrossRefGoogle ScholarPubMed
Lawler, I. R.Stapley, J.Foley, W. J. 1999 Ecological example of conditioned flavor aversion in plant–herbivore interactions: effect of terpenes of leaves on feeding by common ringtail and brushtail possumsJournal of Chemical Ecology 25 401CrossRefGoogle Scholar
Lawler, I. R.Foley, W. J.Eschler, B. M. 2000 Foliar concentration of a single toxin creates habitat patchiness for a marsupial folivoreEcology 81 1327CrossRefGoogle Scholar
Leimu, R.Koricheva, J. 2006 A meta-analysis of genetic correlations between plant resistances to multiple enemiesAmerican Naturalist 168 E15CrossRefGoogle ScholarPubMed
Li, H.-F.Madden, J. L. 1995 Analysis of leaf oils from a species trialBiochemical Systematics and Ecology 23 167CrossRefGoogle Scholar
Li, H.-F.Madden, J. L.Potts, B. M. 1995 Variation in volatile leaf oils of the Tasmanian species – 1. Subgenus Biochemical Systematics and Ecology 23 299CrossRefGoogle Scholar
Loney, P. E.McArthur, C.Sanson, G. 2006 How do soil nutrients affect within-plant patterns of herbivory in seedlings of ?Oecologia 150 409CrossRefGoogle Scholar
Majer, J. D.Recher, H. F.Wellington, B. 1997 Invertebrates of eucalypt formationsWilliams, J.Woinarski, J. C. Z.Eucalypt Ecology. Individuals to EcosystemsCambridgeCambridge University PressGoogle Scholar
Marsh, K. J.Wallis, I. R.Foley, W. J. 2003 The effect of inactivating tannins on the intake of foliage by a specialist folivore () and a generalist herbivore ()Australian Journal of Zoology 51 31CrossRefGoogle Scholar
Mauricio, R.Rausher, M. D. 1997 Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defenceEvolution 51 1435CrossRefGoogle Scholar
Milgate, A. W.Potts, B. M.Joyce, K. 2005 Genetic variation in for susceptibility to and its association with tree growthAustralasian Plant Pathology 34 11CrossRefGoogle Scholar
Miller, A. M.McArthur, C.Smethurst, P. J. 2006 Characteristics of tree seedlings and neighbouring vegetation have an additive influence on browsing by generalist herbivoresForest Ecology and Management 228 197CrossRefGoogle Scholar
Miller, A. M.O’Reilly-Wapstra, J. M.Potts, B. M. 2009 Non-lethal strategies to reduce browse damage in eucalypt plantationsForest Ecology and Management 259 45CrossRefGoogle Scholar
Moore, B. D.Foley, W. 2005 Tree use by koalas in a chemically complex landscapeNature 435 488CrossRefGoogle Scholar
Moore, B. D.Wallis, I. R.Pala-Paul, J. 2004 Antiherbivore chemistry of – cues and deterrents for marsupial folivoresJournal of Chemical Ecology 30 1743CrossRefGoogle ScholarPubMed
Moore, B. D.Lawler, I. R.Wallis, I. R. 2010 Palatability mapping: a koala’s eye view of spatial variation in habitat qualityEcology 91 3165CrossRefGoogle ScholarPubMed
Neyland, M. 1996 Tree Decline in TasmaniaHobartLand and Water Management CouncilGoogle Scholar
O’Reilly-Wapstra, J.Cowan, P. 2010 Native plant/herbivore interactions as determinants of the ecological and evolutionary effects of invasive mammalian herbivores: the case of the common brushtail possumBiological Invasions 12 373CrossRefGoogle Scholar
O’Reilly-Wapstra, J. M.McArthur, C.Potts, B. M. 2002 Genetic variation in resistance of to marsupial browsersOecologia 130 289CrossRefGoogle ScholarPubMed
O’Reilly-Wapstra, J. M.McArthur, C.Potts, B. M. 2004 Linking plant genotype, plant defensive chemistry and mammal browsing in a speciesFunctional Ecology 18 677CrossRefGoogle Scholar
O’Reilly-Wapstra, J. M.Potts, B. M.McArthur, C. 2005 Effects of nutrient variability on the genetic-based resistance of to a mammalian herbivore and on plant defensive chemistryOecologia 142 597CrossRefGoogle ScholarPubMed
O’Reilly-Wapstra, J.Humphreys, J.Potts, B. 2007 Stability of genetic-based defensive chemistry across life stages in a speciesJournal of Chemical Ecology 33 1876CrossRefGoogle Scholar
O’Reilly-Wapstra, J. M.Iason, G. R.Thoss, V. 2007 The role of genetic and chemical variation of seedlings in influencing slug herbivoryOecologia 152 82CrossRefGoogle ScholarPubMed
O’Reilly-Wapstra, J. M.Bailey, J. K.McArthur, C. 2010 Genetic- and chemical-based resistance to two mammalian herbivores varies across the geographic range of Evolutionary Ecology Research 12 1Google Scholar
O’Reilly-Wapstra, J. M.Freeman, J. S.Davies, N. W. 2011 7 485
Osier, T. L.Lindroth, R. L. 2001 Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performanceJournal of Chemical Ecology 27 1289CrossRefGoogle ScholarPubMed
Parker, J. D.Salminen, J. P.Agrawal, A. A. 2010 Herbivory enhances positive effects of plant genotypic diversityEcology Letters 13 553CrossRefGoogle ScholarPubMed
Pass, G. J.Foley, W. J. 2000 Plant secondary metabolites as mammalian feeding deterrents: separating the effects of the taste of salicin from its post-ingestive consequences in the common brushtail possum ()Journal of Comparative Physiology B 170 185CrossRefGoogle Scholar
Potts, B. M.Jordan, G. J. 1994 The spatial pattern and scale of variation in ssp. : variation in seedling abnormalities and early growthAustralian Journal of Botany 42 471CrossRefGoogle Scholar
Potts, B. M.Pederick, L. A. 2000 Morphology, phylogeny, origin, distribution and genetic diversity of the eucalyptsKeane, P. J.Kile, G. A.Podger, F. D.Brown, B. N.Diseases and Pathogens of EucalyptsCollingwoodCSIRO Publishing11Google Scholar
Potts, B. M.Vaillancourt, R. E.Jordan, G. J. 2004 Exploration of the gene poolBorralho, N. M. G.Pereira, J. S.Marques, C.Eucalyptus in a Changing WorldPortugal: RAIZ Instituto Investigaçäo da Floresta e PapelGoogle Scholar
Ralph, S. G. 2009 Studying defences against insect herbivores in the post-genomic eraCritical Reviews in Plant Science 28 335CrossRefGoogle Scholar
Rapley, L.Allen, G. R.Potts, B. M. 2004 194
Rapley, L.Allen, G. R.Potts, B. M. 2004 Susceptibility of to defoliation in relation to a specific foliar wax compoundChemoecology 14 157Google Scholar
Rapley, L. P.Allen, G. R.Potts, B. M. 2007 Constitutive or induced defences – how does defend itself from larval feeding?Chemoecology 17 235CrossRefGoogle Scholar
Rapley, L. P.Potts, B. M.Battaglia, M. 2009 Long-term realised and projected growth impacts caused by autumn gum moth defoliation of 2-year-old plantation trees in Tasmania, AustraliaForest Ecology and Management 258 1896CrossRefGoogle Scholar
Rasmann, S.Agrawal, A. A. 2009 Plant defense against herbivory: progress in identifying synergism, redundancy, and antagonism between resistance traitsCurrent Opinion in Plant Biology 12 473CrossRefGoogle ScholarPubMed
Rausher, M. D. 1993 Patterns of selection on phytophage resistance in Evolution 47 970Google Scholar
Rausher, M. D. 2001 Co-evolution and plant resistance to natural enemiesNature 411 857CrossRefGoogle ScholarPubMed
Rausher, M. D.Simms, E. L. 1989 The evolution of resistance to herbivory in . I. Attempts to detect selectionEvolution 43 563Google ScholarPubMed
Romeo, J. T.Saunders, J. A.Barbosa, P. 1996 Phytochemical Diversity and Redundancy in Ecological InteractionsNew YorkPlenum PressCrossRefGoogle Scholar
Sampaio, M. B.Scariot, A. 2010 Effects of stochastic herbivory events on population maintenance of an understorey palm species () in riparian tropical forestJournal of Tropical Ecology 26 151CrossRefGoogle Scholar
Sansaloni, C.Petroli, C.Carling, J. 2010 A high-density Diversity Arrays Technology (DArT) microarray for genome-wide genotyping in EucalyptusPlant Methods 6 16CrossRefGoogle ScholarPubMed
Sewell, M. M.Neale, D. B. 2000 Mapping quantitative traits in forest treesJain, S. M.Minocha, S. C.Molecular Biology of Woody PlantsThe NetherlandsKluwer Academic Publishers407CrossRefGoogle Scholar
Simms, E. L.Rausher, M. D. 1989 The evolution of resistance to herbivory in . II. Natural selection by insects and costs of resistanceEvolution 43 573Google Scholar
Simms, E. L.Rausher, M. D. 1992 Uses of quantitative genetics for studying the evolution of plant resistanceFritz, R. S.Simms, E. L.Plant Resistance to Herbivores and Pathogens. Ecology, Evolution and GeneticsChicago, ILUniversity of Chicago Press42Google Scholar
Steane, D. A.Conod, N.Jones, R. C. 2006 A comparative analysis of population structure of a forest tree, (Myrtaceae), using microsatellite markers and quantitative traitsTree Genetics and Genomes 2 30CrossRefGoogle Scholar
Steinbauer, M. J. 2010 Latitudinal trends in foliar oils of eucalypts: environmental correlates and diversity of chrysomelid leaf-beetlesAustral Ecology 35 205CrossRefGoogle Scholar
Stinchcombe, J. R. 2005 Measuring natural selection on proportional traits: comparisons of three types of selection estimates for resistance and susceptibility to herbivore damageEvolutionary Ecology 19 363CrossRefGoogle Scholar
Stinchcombe, J. R.Rausher, M. D. 2001 Diffuse selection on resistance to deer herbivory in the ivy leaf morning glory, American Naturalist 158 376CrossRefGoogle Scholar
Strauss, S. Y.Irwin, R. E. 2004 Ecological and evolutionary consequences of multispecies plant–animal interactionsAnnual Review of Ecology and Systematics 35 435CrossRefGoogle Scholar
Theis, N.Lerdau, M. 2003 The evolution of function in plant secondary metabolitesInternational Journal of Plant Sciences 164 S93CrossRefGoogle Scholar
Thompson, J. N. 2005 The Geographic Mosaic of CoevolutionChicago, ILUniversity of Chicago PressGoogle Scholar
Wallis, I. R.Watson, M. L.Foley, W. J. 2002 Secondary metabolites in : field distribution and laboratory feeding choices by a generalist herbivore, the common brushtail possumAustralian Journal of Zoology 50 507CrossRefGoogle Scholar
Wardle, D. A. 2006 The influence of biotic interactions on soil biodiversityEcology Letters 9 870CrossRefGoogle ScholarPubMed
Wheat, C. W.Vogel, H.Wittstock, U. 2007 The genetic basis of a plant–insect coevolutionary key innovationProceedings of the National Academy of Sciences USA 104 20427CrossRefGoogle ScholarPubMed
Whitham, T. G.DiFazio, S. P.Schweitzer, J. A. 2008 Extending genomics to natural communities and ecosystemsScience 320 492CrossRefGoogle ScholarPubMed
Whittock, S. P.Apiolaza, L. A.Kelly, C. M. 2003 Genetic control of coppice and lignotuber development in Australian Journal of Botany 51 57CrossRefGoogle Scholar
Wiggins, N. L.McArthur, C.McLean, S. 2003 Effects of two plant secondary metabolites, cineole and gallic acid, on nightly feeding patterns of the common brushtail possumJournal of Chemical Ecology 29 1447CrossRefGoogle ScholarPubMed
Wiggins, N. L.Marsh, K. J.Wallis, I. R. 2006 Sideroxylonal in foliage influences foraging behaviour of an arboreal folivoreOecologia 147 272CrossRefGoogle ScholarPubMed
Williams, J. E.Brooker, M. I. H. 1997 Eucalypts: an introductionWilliams, J. E.Woinarski, J. C. Z.Eucalypt Ecology: Individuals to EcosystemsCambridgeCambridge University Press278Google Scholar
Wise, M. J. 2009 Competition among herbivores of as a constraint on the evolution of host-plant resistanceEvolutionary Ecology 23 347CrossRefGoogle Scholar
Woinarski, J. C. Z.Recher, H. F.Majer, J. D. 1997 Vertebrates of eucalypt formationsWilliams, J. E.Woinarski, J. C. Z.Eucalypt Ecology. Individuals to EcosystemsCambridgeCambridge University Press303Google Scholar
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats