We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Based on a real-world collaboration with innovators in applying early health economic modeling, we aimed to offer practical steps that health technology assessment (HTA) researchers and innovators can follow and promote the usage of early HTA among research and development (R&D) communities.
Methods
The HTA researcher was approached by the innovator to carry out an early HTA ahead of the first clinical trial of the technology, a soft robotic sock for poststroke patients. Early health economic modeling was selected to understand the potential value of the technology and to help uncover the information gap. Threshold analysis was used to identify the target product profiles. Value-of-information analysis was conducted to understand the uncertainties and the need for further research.
Results
Based on the expected price and clinical effectiveness by the innovator, the new technology was found to be cost-saving compared to the current practice. Risk reduction in deep vein thrombosis and ankle contracture, the incidence rate of ankle contracture, the compliance rate of the new technology, and utility scores were found to have high impacts on the value-for-money of the new technology. The value of information was low if the new technology can achieve the expected clinical effectiveness. A list of parameters was recommended for data collection in the impending clinical trial.
Conclusions
This work, based on a real-world collaboration, has illustrated that early health economic modeling can inform medical innovation development. We provided practical steps in order to achieve more efficient R&D investment in medical innovation moving forward.
The terminal Ediacaran Shibantan biota (~550–543 Ma) from the Dengying Formation in the Yangtze Gorges area of South China represents one of the rare examples of carbonate-hosted Ediacara-type macrofossil assemblages. In addition to the numerically dominant taxa—the non-biomineralizing tubular fossil Wutubus and discoidal fossils Aspidella and Hiemalora, the Shibantan biota also bears a moderate diversity of frondose fossils, including Pteridinium, Rangea, Arborea, and Charnia. In this paper, we report two species of the rangeomorph genus Charnia, including the type species Charnia masoni Ford, 1958 emend. and Charnia gracilis new species, from the Shibantan biota. Most of the Shibantan Charnia specimens preserve only the petalodium, with a few bearing the holdfast and stem. Despite overall architectural similarities to other Charnia species, the Shibantan specimens of Charnia gracilis n. sp. are distinct in their relatively straight, slender, and more acutely angled first-order branches. They also show evidence that may support a two-stage growth model and a epibenthic sessile lifestyle. Charnia fossils described herein represent one of the youngest occurrences of this genus and extend its paleogeographic and stratigraphic distributions. Our discovery also highlights the notable diversity of the Shibantan biota, which contains examples of a wide range of Ediacaran morphogroups.
Do US Circuit Courts' decisions on criminal appeals influence sentence lengths imposed by US District Courts? This Element explores the use of high-dimensional instrumental variables to estimate this causal relationship. Using judge characteristics as instruments, this Element implements two-stage models on court sentencing data for the years 1991 through 2013. This Element finds that Democratic, Jewish judges tend to favor criminal defendants, while Catholic judges tend to rule against them. This Element also finds from experiments that prosecutors backlash to Circuit Court rulings while District Court judges comply. Methodologically, this Element demonstrates the applicability of deep instrumental variables to legal data.
The sequential occurrence of three layers of smooth muscle layers (SML) in human embryos and fetus is not known. Here, we investigated the process of gut SML development in human embryos and fetuses and compared the morphology of SML in fetuses and neonates. The H&E, Masson trichrome staining, and Immunohistochemistry were conducted on 6–12 gestation week human embryos and fetuses and on normal neonatal intestine. We showed that no lumen was seen in 6–7th gestation week embryonic gut, neither gut wall nor SML was developed in this period. In 8–9th gestation week embryonic and fetal gut, primitive inner circular SML (IC-SML) was identified in a narrow and discontinuous gut lumen with some vacuoles. In 10th gestation week fetal gut, the outer longitudinal SML (OL-SML) in gut wall was clearly identifiable, both the inner and outer SML expressed α-SMA. In 11–12th gestation week fetal gut, in addition to the IC-SML and OL-SML, the muscularis mucosae started to develop as revealed by α-SMA immune-reactivity beneath the developing mucosal epithelial layer. Comparing with the gut of fetuses of 11–12th week of gestation, the muscularis mucosae, IC-SML, and OL-SML of neonatal intestine displayed different morphology, including branching into glands of lamina propria in mucosa and increased thickness. In conclusions, in the human developing gut between week-8 to week-12 of gestation, the IC-SML develops and forms at week-8, followed by the formation of OL-SML at week-10, and the muscularis mucosae develops and forms last at week-12.
Prior research documents that asset growth is negatively associated with future firm performance. In contrast, we show that growth financed by product market stakeholders (i.e., “operating growth”) is positively associated with future firm performance. Investors and security analysts underestimate the positive effects of operating growth on future performance, resulting in return predictability and overly pessimistic earnings forecasts for firms with high operating growth. Future stock returns largely concentrate around subsequent earnings announcements with declining magnitudes, consistent with the error-in-expectation explanation. Results from cross-sectional tests further support the hypothesis that operating growth signals high future performance but investors underreact to it.
Glutamatergic dysfunction has been implicated in sensory integration deficits in schizophrenia, yet how glutamatergic function contributes to behavioural impairments and neural activities of sensory integration remains unknown.
Methods
Fifty schizophrenia patients and 43 healthy controls completed behavioural assessments for sensory integration and underwent magnetic resonance spectroscopy (MRS) for measuring the anterior cingulate cortex (ACC) glutamate levels. The correlation between glutamate levels and behavioural sensory integration deficits was examined in each group. A subsample of 20 pairs of patients and controls further completed an audiovisual sensory integration functional magnetic resonance imaging (fMRI) task. Blood Oxygenation Level Dependent (BOLD) activation and task-dependent functional connectivity (FC) were assessed based on fMRI data. Full factorial analyses were performed to examine the Group-by-Glutamate Level interaction effects on fMRI measurements (group differences in correlation between glutamate levels and fMRI measurements) and the correlation between glutamate levels and fMRI measurements within each group.
Results
We found that schizophrenia patients exhibited impaired sensory integration which was positively correlated with ACC glutamate levels. Multimodal analyses showed significantly Group-by-Glutamate Level interaction effects on BOLD activation as well as task-dependent FC in a ‘cortico-subcortical-cortical’ network (including medial frontal gyrus, precuneus, ACC, middle cingulate gyrus, thalamus and caudate) with positive correlations in patients and negative in controls.
Conclusions
Our findings indicate that ACC glutamate influences neural activities in a large-scale network during sensory integration, but the effects have opposite directionality between schizophrenia patients and healthy people. This implicates the crucial role of glutamatergic system in sensory integration processing in schizophrenia.
Several amino acids can stimulate milk synthesis in mammary epithelial cells (MEC); however, the regulatory role of isoleucine (Ile) and underlying molecular mechanism remain poorly understood. In this study, we aimed to evaluate the regulatory effects of Ile on milk protein and fat synthesis in MEC and reveal the mediation mechanism of Brahma-related gene 1 (BRG1) on this regulation. Ile dose dependently affected milk protein and fat synthesis, mechanistic target of rapamycin (mTOR) phosphorylation, sterol regulatory element binding protein 1c (SREBP-1c) expression and maturation, and BRG1 protein expression in bovine MEC. Phosphatidylinositol 3 kinase (PI3K) inhibition by LY294002 treatment blocked the stimulation of Ile on BRG1 expression. BRG1 knockdown and gene activation experiments showed that it mediated the stimulation of Ile on milk protein and fat synthesis, mTOR phosphorylation, and SREBP-1c expression and maturation in MEC. ChIP-PCR analysis detected that BRG1 bound to the promoters of mTOR and SREBP-1c, and ChIP-qPCR further detected that these bindings were increased by Ile stimulation. In addition, BRG1 positively regulated the binding of H3K27ac to these two promoters, while it negatively affected the binding of H3K27me3 to these promoters. BRG1 knockdown blocked the stimulation of Ile on these two gene expressions. The expression of BRG1 was higher in mouse mammary gland in the lactating period, compared with that in the puberty or dry period. Taken together, these experimental data reveal that Ile stimulates milk protein and fat synthesis in MEC via the PI3K-BRG1-mTOR/SREBP-1c pathway.
As a real-space technique, atomic-resolution STEM imaging contains both amplitude and geometric phase information about structural order in materials, with the latter encoding important information about local variations and heterogeneities present in crystalline lattices. Such phase information can be extracted using geometric phase analysis (GPA), a method which has generally focused on spatially mapping elastic strain. Here we demonstrate an alternative phase demodulation technique and its application to reveal complex structural phenomena in correlated quantum materials. As with other methods of image phase analysis, the phase lock-in approach can be implemented to extract detailed information about structural order and disorder, including dislocations and compound defects in crystals. Extending the application of this phase analysis to Fourier components that encode periodic modulations of the crystalline lattice, such as superlattice or secondary frequency peaks, we extract the behavior of multiple distinct order parameters within the same image, yielding insights into not only the crystalline heterogeneity but also subtle emergent order parameters such as antipolar displacements. When applied to atomic-resolution images spanning large (~0.5 × 0.5 μm2) fields of view, this approach enables vivid visualizations of the spatial interplay between various structural orders in novel materials.
Taurine (Tau) has many profound physiological functions, but its role and molecular mechanism in muscle cells are still not fully understood. In this study, we investigated the role and underlying molecular mechanism of Tau on protein synthesis and proliferation of C2C12 myoblast cells. Cells were treated with Tau (0, 60, 120, 180 and 240 μM) for 24 h. Tau dose-dependently promoted protein synthesis, cell proliferation, mechanistic target of rapamycin protein (mTOR) phosphorylation and also AT-rich interaction domain 4B (ARID4B) expression, with the best stimulatory effects at 120 μM. LY 294002 treatment showed that Tau promoted ARID4B expression in a phosphoinositide 3-kinase (PI3K)-dependent manner. ARID4B knockdown (by small interfering RNA transfection for 24 h) prevented Tau from stimulating protein synthesis and cell proliferation, whereas ARID4B gene activation (using the CRISPR/dCas9 technology) had stimulatory effects. ARID4B knockdown abolished Tau signalling to mRNA expression and protein phosphorylation of mTOR, whereas ARID4B gene activation had stimulatory effects. Chromatin immunoprecipitation (ChIP)-PCR identified that all of ARID4B, H3K27ac and H3K27me3 bound to the −4368 to –4591 bp site in the mTOR promoter, and ChIP-quantitative PCR (qPCR) further detected that Tau stimulated ARID4B binding to this site. ARID4B knockdown or gene activation did not affect H3K27me3 binding to the mTOR promoter but decreased or increased H3K27ac binding, respectively. Furthermore, ARID4B knockdown abolished the stimulation of Tau on H3K27ac binding to the mTOR promoter. In summary, these data uncover that Tau promotes protein synthesis and proliferation of C2C12 myoblast cells through the PI3K-ARID4B-mTOR pathway, providing a deep understanding of how Tau regulates anabolism in muscle cells.
Thermal convection of fluid is a more efficient way than diffusion to carry heat from hot sources to cold places. Here, we experimentally study the Rayleigh–Bénard convection of aqueous glycerol solution in a cubic cell with suspensions of rod-like particles made of polydimethylsiloxane. The particles are inertial due to their large thermal expansion coefficient and finite sizes. The thermal expansion coefficient of the particles is three times larger than that of the background fluid. This contrast makes the suspended particles lighter than the local fluid in hot regions and heavier in cold regions. The heat transport is enhanced at relatively large Rayleigh number ($\textit {Ra}$) but reduced at small $\textit {Ra}$. We demonstrate that the increase of Nusselt number arises from the particle–boundary layer interactions: the particles act as ‘active’ mixers of the flow and temperature fields across the boundary layers.
Steam jet milling was applied for the first time to ultra-fine grind the filter cake (moisture content 23.80%) produced by a kaolin concentrator. The material was dehydrated and dried simultaneously during grinding, and the final ground sample met the moisture content requirement for powder products of <2%. The particle size of the ground kaolin samples decreased and the particle-size distribution was more concentrated, indicating that the steam jet milling was more effective for kaolin processing than the conventional dry grinding process. In addition, steam jet milling can improve the whiteness and decrease the crystal order of the samples, thus improving the kaolin properties in follow-up applications.
Beryl from Xuebaoding, Sichuan Province, western China is known for its unusual tabular habit and W–Sn–Be paragenesis in a greisen-type deposit. The crystals are typically colourless transparent to pale blue, often with screw dislocations of hexagonal symmetry on the (0001) crystal faces. Combining electron microprobe analyses and laser ablation inductively coupled plasma mass spectrometry with single-crystal X-ray diffraction (XRD), correlated with Raman and micro-infrared (IR) spectroscopy and imaging, the crystal chemical characteristics are determined. The contents of Na+ (0.24–0.38 atoms per formula unit (apfu)) and Li+ up to 0.38 apfu are at the high end compared to beryl from other localities worldwide. Li+ substitution for Be2+ on the tetrahedral (T2) site is predominantly charge balanced by Na+ on the smaller channel (C2) site, with Na+ ranging from 91.5% to 99.7% (apfu) of the sum of all other alkali elements. Cs+ and minor Rb+ and K+ primarily charge balance the minor M2+ substitution for Al3+ at the A site; all iron at the A site is suggested to be trivalent. The a axis ranges from 9.2161(2) to 9.2171(4) Å, with unit-cell volume from 678.03(3) to 678.48(7) Å3. The c/a ratio of 1.0002–1.0005 is characteristic for T2-type beryl with unit-cell parameters controlled primarily by Be2+ substitution. Transmission micro-IR vibrational spectroscopy and imaging identifies coordination of one or two water molecules to Na+ (type IIs and type IId, respectively) as well as alkali free water (type I). Based on IR absorption cross section and XRD a C1 site water content of 0.4–0.5 apfu is derived, i.e. close to 50% site occupancy. Secondary crystal phases with a decrease in Fe and Mg, yet increase in Na, suggest early crystallisation of aquamarine, with goshenite being late. With similar crystal chemistry to beryl of columnar habit from other localities worldwide, the tabular habit of Xuebaoding beryl seems to be unrelated to chemical composition and alkali content.
Grain refinement has been applied to enhance the materials strength for miniaturization and lightweight design of nuclear equipment. It is critically important to investigate the low-cycle fatigue (LCF) properties of grain refined 316LN austenitic stainless steels for structural design and safety assessment. In the present work, a series of fine-grained (FG) 316LN steels were produced by thermo-mechanical processes. The LCF properties were studied under a fully reversed strain-controlled mode at room temperature. Results show that FG 316LN steels demonstrate good balance of high strength and high ductility. However, a slight loss of ductility in FG 316LN steel induces a significant deterioration of LCF life. The rapid energy dissipation in FG 316LN steels leads to the reduction of their LCF life. Dislocations develop rapidly in the first stage of cycles, which induces the initial cyclic hardening. The dislocations rearrange to form dislocations cell structure resulting in cyclic softening in the subsequent cyclic deformation. Strain-induced martensite transformation appears in FG 316LN stainless steels at high strain amplitude (Δε/2 = 0.8%), which leads to the secondary cyclic hardening. Moreover, a modified LCF life prediction model for grain refined metals predicts the LCF life of FG 316LN steels well.
Probiotics and plant extracts are considered to prevent the development of non-alcoholic fatty liver disease (NAFLD). The present study explores the effects of using both probiotics and plant extracts on NAFLD. The present study evaluated the effects of plant extracts on lipid droplet accumulation and the growth of probiotics in vitro. A C57BL/6 mouse model was used to examine the effects of probiotics and plant extracts on NAFLD. Body weight and food intake were measured. The levels of serum lipids, oxidative stress and the liver injury index were determined using commercial kits. Haematoxylin and eosin staining, GC and real-time PCR were also used for analysis. The results revealed that administration of Lactobacillus casei YRL577 and L. paracasei X11 with resveratrol (RES) or tea polyphenols (TP) significantly reduced the levels of total cholesterol, TAG and LDL-cholesterol and increased the level of the HDL-cholesterol. The groups of L. casei YRL577 with RES and TP also regulated the liver structure, oxidative stress and injury. Furthermore, L. casei YRL577 with TP exhibited a more positive effect towards improving the NAFLD and increased the concentrations of the butyric acid than other three combined groups. L. casei YRL577 with TP up-regulated the mRNA levels of the farnesoid X receptor and fibroblast growth factor 15 and decreased the mRNA levels of the apical Na-dependent bile acid transporter. These findings showed that L. casei YRL577 + TP-modified genes in the intestinal bile acid pathway improved markers of NAFLD.
Non-alcoholic fatty liver disease (NAFLD) has become the main cause of end-stage liver disease. Probiotics have the potential effect of alleviating NAFLD. The aim of this study was to explore functional probiotics and their underlying mechanisms. The bile salt hydrolase (BSH) activity in thirty-four strains was determined in vitro. Then, C57BL/6 mice were used to explore the effects of probiotics on NAFLD. Body weight and food intake were measured, and serum lipid concentrations, oxidative stress and proinflammatory cytokines levels were determined using commercial kits. The expressions of intestinal bile acid pathway genes were evaluated via real-time PCR. The results showed that Lactobacillus casei YRL577 and L. paracasei X11 had higher BSH activity. L. casei YRL577 significantly reduced liver weight and liver index and could regulate the levels of lipid metabolism, oxidative stress and proinflammatory cytokines as compared with L. paracasei X11. Furthermore, the results indicated that L. casei YRL577 up-regulated the mRNA levels of farnesoid X receptor and fibroblast growth factor 15, whereas down-regulated the mRNA level of apical Na-dependent bile acid transporter. These findings suggested that L. casei YRL577 modified genes in the intestinal bile acid pathway which might contribute to the alleviation of NAFLD.
Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is dominated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present. Herein, we report four species of Arborea from the Shibantan assemblage, including the type species Arborea arborea (Glaessner in Glaessner and Daily, 1959) Glaessner and Wade, 1966, Arborea denticulata new species, and two unnamed species, Arborea sp. A and Arborea sp. B. Arborea arborea is the most abundant frond in the Shibantan assemblage. Arborea denticulata n. sp. resembles Arborea arborea in general morphology but differs in its fewer primary branches and lower length/width ratio of primary branches. Arborea sp. A and Arborea sp. B are fronds with a Hiemalora-type basal attachment. Sealing by microbial mats and authigenic cementation may have played an important role in the preservation of Arborea in the Shibantan assemblage. The Shibantan material of Arborea extends the stratigraphic, ecological, and taphonomic ranges of this genus.
A continuous survey on influenza was conducted in Hulunbuir, China from January 2010 to May 2019 to reveal epidemiological, microbiological and air pollutants associated with laboratory-confirmed influenza cases.
Methods
Influenza-like illness and severe acute respiratory infection subjects were enrolled from a sentinel hospital in Hulunbuir during the study period for epidemiological and virological investigation. The association between air pollutants and influenza-positivity rate was assessed by a generalised additive model.
Results
Of 4667 specimens, 550 (11.8%) were tested positive for influenza. The influenza-positivity was highest in the age groups of 5–14 years, 50–69 years and ⩾70 years. We found that the effect of particulate matter ⩽2.5 μm (PM2.5) concentrations on the influenza-positivity rate was statistically significant, particularly on day lag-4 and lag-5. Genetic characterisations showed that (H1N1) pdm09 strains belonged to subclade 6B.1 and that influenza B isolates belonged to subclade 1A-3Del, with significant substitutions in the haemagglutinin and neuraminidase proteins compared with those in the WHO-recommended vaccine strains.
Conclusions
Elderly individuals and school-age children were at high risk for influenza infection. PM2.5 concentrations showed significant effects on influenza-positivity rate in Hulunbuir, which could be considered in local influenza prevention strategies.
Turbulent spots occur in shear flows confined between two walls and are surrounded by robust quadrupolar flows. Although the far-field decay of such large-scale flows has been reported to be exponential, we predict a different algebraic decay for the case of plane Couette flow. We address this problem theoretically, by modelling an isolated spot as an obstacle in a linear plane shear flow with free-slip boundary conditions at the walls. By seeking invariant solutions in a co-moving Lagrangian frame and using geometric scale separation, a set of differential equations governing large-scale flows is derived from the Navier–Stokes equations and solved analytically. The wall-normal velocity turns out to be exponentially localised in the plane, while the quadrupolar in-plane velocity field, after wall-normal averaging, features a superposition of algebraic and exponential decays. The algebraic decay exponent is $-3$. The quadrupolar angular dependence stems from (i) the shearing of the streamwise velocity and (ii) the breaking of the spanwise homogeneity. Near the spot, exponentially decaying solutions can generate reversed quadrupolar flows. Eventually, by noting that the algebraically decaying in-plane flow is two-dimensional and harmonic, we suggest a topological origin to the quadrupolar large-scale flow.