We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Although a coaxial compound helicopter can takeoff without propeller in the normal condition, the distance should be as short as possible for obstacle avoidance when the vehicle operates in a confined area with heavy loads. Therefore, a suitable propeller control is required to improve the takeoff performance while the total power consumption is no more than the available power. The path is predicted by applying trajectory optimisation. Several varying takeoff parameters, including attitude, liftoff speed and obstacle height, are considered for optimum global performance. Three path indicators are proposed. Apart from typical distance and pilot workload, path sensitivity is quantified based on deviation from takeoff parameter variation. Results indicated that low propeller thrust at hover and moderate allocation on the propeller through flight is recommended. The aircraft achieves significantly improved takeoff performance compared to flight with pure rotors while maintaining the maximum takeoff weight. The distance is shortened by 12.6%, and the longitudinal pilot workload is alleviated by 9.8% and 7.3% from mean and maximum power frequency aspects. Besides, the path is less sensitive to takeoff parameter variations, such as speed, altitude and height.
Objectives: Medical devices and the hospital environment can be contaminated easily by multidrug-resistant bacteria. The effectiveness of cleaning practices is often suboptimal because environmental cleaning in hospitals is complex and depends on human factors, the physical and chemical characteristics of environment, and the viability of the microorganisms. Ultraviolet-C (UV-C) lamps can be used to reduce the spread of microorganisms. We evaluated the effectiveness of an ultraviolet-C (UV-C) device on terminal room cleaning and disinfection. Methods: The study was conducted at an ICU of a medical center in Taiwan. We performed a 3-stage evaluation for the effectiveness of UV-C radiation, including pre–UV-C radiation, UV-C radiation, and a bleaching procedure. The 3 stages of evaluation were implemented in the ICU rooms from which a patient had been discharged or transferred. We collected the data from adenosine triphosphate (ATP) bioluminescence testing, colonized strains, and their corresponding colony counts by sampling from the environmental surfaces and air. We tested 8 high-touch surfaces, including 2 sides of bed rails, headboards, footboards, bedside tables, monitors, pumping devices, IV stands, and oxygen flow meters. Results: In total, 1,696 environmental surfaces and 72 air samples were analyzed. The levels of ATP bioluminescence and colony counts of isolated bacteria decreased significantly after UV-C radiation and bleaching disinfection for both the environmental and air samples (P < .001). Resistant bacteria (vancomycin-resistant Enterococcus, VRE) were commonly isolated on the hard-to-clean surfaces of monitors, oxygen flow meters, and IV pumps. However, they were also eradicated (P < .001). Conclusions: UV-C can significantly reduce environmental contamination by multidrug-resistant microorganisms. UV-C is an effective device to assist staff in cleaning the hospital environment.
Mental disorders, including depression, obsessive compulsive disorder (OCD), and schizophrenia, share a common neuropathy of disturbed large-scale coordinated brain maturation. However, high-interindividual heterogeneity hinders the identification of shared and distinct patterns of brain network abnormalities across mental disorders. This study aimed to identify shared and distinct patterns of altered structural covariance across mental disorders.
Methods
Subject-level structural covariance aberrance in patients with mental disorders was investigated using individualized differential structural covariance network. This method inferred structural covariance aberrance at the individual level by measuring the degree of structural covariance in patients deviating from matched healthy controls (HCs). T1-weighted anatomical images of 513 participants (105, 98, 190 participants with depression, OCD and schizophrenia, respectively, and 130 age- and sex-matched HCs) were acquired and analyzed.
Results
Patients with mental disorders exhibited notable heterogeneity in terms of altered edges, which were otherwise obscured by group-level analysis. The three disorders shared high difference variability in edges attached to the frontal network and the subcortical-cerebellum network, and they also exhibited disease-specific variability distributions. Despite notable variability, patients with the same disorder shared disease-specific groups of altered edges. Specifically, depression was characterized by altered edges attached to the subcortical-cerebellum network; OCD, by altered edges linking the subcortical-cerebellum and motor networks; and schizophrenia, by altered edges related to the frontal network.
Conclusions
These results have potential implications for understanding heterogeneity and facilitating personalized diagnosis and interventions for mental disorders.
Coastal eutrophication and hypoxia remain a persistent environmental crisis despite the great efforts to reduce nutrient loading and mitigate associated environmental damages. Symptoms of this crisis have appeared to spread rapidly, reaching developing countries in Asia with emergences in Southern America and Africa. The pace of changes and the underlying drivers remain not so clear. To address the gap, we review the up-to-date status and mechanisms of eutrophication and hypoxia in global coastal oceans, upon which we examine the trajectories of changes over the 40 years or longer in six model coastal systems with varying socio-economic development statuses and different levels and histories of eutrophication. Although these coastal systems share common features of eutrophication, site-specific characteristics are also substantial, depending on the regional environmental setting and level of social-economic development along with policy implementation and management. Nevertheless, ecosystem recovery generally needs greater reduction in pressures compared to that initiated degradation and becomes less feasible to achieve past norms with a longer time anthropogenic pressures on the ecosystems. While the qualitative causality between drivers and consequences is well established, quantitative attribution of these drivers to eutrophication and hypoxia remains difficult especially when we consider the social economic drivers because the changes in coastal ecosystems are subject to multiple influences and the cause–effect relationship is often non-linear. Such relationships are further complicated by climate changes that have been accelerating over the past few decades. The knowledge gaps that limit our quantitative and mechanistic understanding of the human-coastal ocean nexus are identified, which is essential for science-based policy making. Recognizing lessons from past management practices, we advocate for a better, more efficient indexing system of coastal eutrophication and an advanced regional earth system modeling framework with optimal modules of human dimensions to facilitate the development and evaluation of effective policy and restoration actions.
Plasma vertical displacement control is essential for the stable operation of tokamak devices. The traditional plasma vertical displacement calculation method is not suitable for balancing speed and accuracy simultaneously, which is necessary for real-time feedback control. In this study, neural networks are used to rapidly detect vertical displacement recognition. Based on a fully connected neural network, the vertical displacement calculation model is trained and tested using magnetic data of approximately 2000 shots. To compare the effects of different inputs on vertical displacement calculation, different magnetic measurement diagnostic signals are used to train and test the model. Compared with a full magnetic measurement dataset, 39 magnetic measurement signals (38 magnetic probes and plasma current) show better accuracy with mean square error <0.0005. The model is tested using historical experimental data, and it demonstrates accurate vertical displacement calculation even in the case of a vertical displacement event. In general, neural network algorithm has great application potential in vertical displacement calculation.
In detonation engines and accidental explosions, a detonation may propagate in an inhomogeneous mixture with non-uniform reactant concentration. In this study, one- and two-dimensional simulations are conducted for detonation propagation in hydrogen/oxygen/nitrogen mixtures with periodic sinusoidal or square wave distribution of the reactant concentration. The objective is to assess the properties of detonation propagation in such inhomogeneous mixtures. Specifically, detonation quenching and reinitiation, cellular structure, cell size and detonation speed deficit are investigated. It is found that there exists a critical amplitude of the periodic mixture composition distribution, above which the detonation quenches. When the amplitude is below the critical value, detonation quenching and reinitiation occur alternately. A double cellular structure consisting of substructures and a large-scale structure is found for a two-dimensional detonation propagating in inhomogeneous mixtures with a periodic reactant concentration gradient. The detonation reinitiation process and the formation of the double cellular structure are interpreted. To quantify the properties of detonation propagation in different inhomogeneous mixtures, the large cell size, critical amplitude, transition distance and detonation speed deficit are compared for hydrogen/air without and with nitrogen dilution and for periodic sine wave and square wave distributions of the reactant concentration. The large-scale cell size is found to be linearly proportional to the wavelength, and both the critical amplitude and the transition distance decrease with the wavelength. The small detonation speed deficit is shown to be due to the incomplete combustion of the reactant. This work provides helpful understanding of the features of detonation propagation in inhomogeneous mixtures.
The Qieganbulake deposit associated with a mafic–ultramafic–carbonatite complex in the Kuluketage block is not only the world’s second-largest vermiculite deposit, but also a medium-size carbonatite-related phosphate deposit. Field observations, radiometric dating results and Sr–Nd–Hf isotopes reveal that the parental magmas of the carbonatite and mafic–ultramafic rocks are cogenetic and formed synchronously at c. 810 Ma. Geochemical characteristics and Sr–Nd–Hf–S isotopes ((87Sr/86Sr)i = 0.70581–0.70710; ϵNd(t) = −0.20 to −11.80; ϵHf(t) = −7.5 to −10.3; δ34S = +0.7 ‰ to +3.0 ‰ (some sulfides with high δ34S values (+3.2 to +6.6) were formed by late hydrothermal sulfur)), in combination with mineral compositions and previous research, strongly indicate that the Qieganbulake mafic–ultramafic–carbonatite complex formed via extensive crystal fractionation/cumulation and liquid immiscibility of a carbonated tholeiitic magma, possibly derived from partial melting of an enriched subcontinental lithospheric mantle previously modified by slab-released fluids and sediment input in a continental rift setting. The coupled enriched Sr–Nd isotopic signatures, in combination with previous research, suggest that the enriched subcontinental lithospheric mantle could have been metasomatized by asthenospheric mantle melts to different degrees. The Qieganbulake carbonatite-related phosphate ores were the products of normal fractional crystallization/cumulation of P–Fe3+ complex enriched carbonatite magma in high oxygen fugacity conditions, which was generated by liquid immiscibility of CO2–Fe–Ti–P-rich residual magma undergoing high differentiation.
Increasingly, we can invest in projects that are distributed around the world through online investment platforms. Will the spatial distance between these projects and ourselves affect our investment preferences? The present research aims to experimentally examine the impact of spatial distance on intertemporal preferences for investment returns and to explore the underlying mediating effect of the sense of control. Three studies were devised to address this topic. Studies 1 and 2 used two methods to manipulate the spatial distance between the location of investment projects and the location of investors. Participants were more impatient with investment returns when the investment project was located farther away. In other words, they preferred lower but earlier returns in intertemporal choice. Moreover, participants’ sense of control over the investment project mediated the relationship between spatial distance and intertemporal preferences. Using a priming method, Study 3 showed that participants’ impatience for investment returns in investments with different spatial distances could be remedied by giving them generalized control. Theoretical implications for studies regarding psychological distance and intertemporal decision making and practical implications for investments are discussed.
We conducted three experiments to investigate the effects of physical and psychological pains on intertemporal choices. In Experiments 1 and 2, physical pain was induced by the self-created Shiatsu sheet treading method (SSTM) and the classical cold pressor task (CPT), respectively. In Experiment 3, psychological pain was induced by the video induction method. All types of pain increased preference for smaller immediate rewards. Theoretical implications and practical implications are discussed.
The incidence of beta thalassemia varies greatly in different regions of China. Blood transfusion combined with iron chelation and hematopoietic stem cell transplantation (HSCT) is the main treatment for beta thalassemia in China. This study aimed to reveal the specific treatment schemes used for patients with beta thalassemia and to evaluate their effects.
Methods
A search strategy was developed to identify articles published between 1 January 2010 and 30 August 2021 in the following literature databases: PubMed, Embase, the China National Knowledge Infrastructure, Wanfang Data, and the Chinese BioMedical Literature Database.
Results
The most used iron chelation schemes in China for patients with beta thalassemia included deferoxamine (DFO) monotherapy, deferiprone (DFP) monotherapy, deferasirox (DFX) monotherapy, and combinations of DFP and DFO. Most studies reported that combinations of DFP, DFO, and DFX monotherapy performed better than DFO or DFP monotherapy alone in reducing the blood, heart, and liver iron load. However, the adverse effects of iron chelation affected patient compliance with treatment to a certain extent. Stem cells for patients receiving HSCT in China were mainly donated by human leukocyte antigen (HLA)-matched siblings or unrelated individuals. The five-year overall survival rate after HSCT ranged from 83 to 90 percent, while the five-year beta thalassemia-free survival rate ranged from 65 to 87 percent. Graft-versus-host disease and infection were the most common serious complications experienced by transplant recipients.
Conclusions
For patients in China with beta thalassemia, the most effective iron chelation treatment schemes were combinations of DFP, DFO, and DFX monotherapy. HSCT from HLA-matched siblings or unrelated donors resulted in a significant improvement in the cure rate for beta thalassemia. However, patients still need safer and more effective innovative treatments, and further evidence on existing treatments needs to be generated from larger scale studies in the Chinese population.
High-performance electrodes with outstanding catalysts play a vital role in the commercial application of direct ethanol fuel cells. In the present study, a supported catalyst with controllable Pd loading, prepared using a facile impregnation method with sepiolite as a carrier, was synthesized and tested for electrocatalytic oxidation of ethanol. Physical characterization revealed the pore structure and large specific surface area of the sepiolite, which provided excellent conditions for the loading of nanometal clusters. The Pd-sepiolite had greater electrocatalytic ethanol activity and anti-intermediate product poisoning performance than a metallic Pd disc electrode under alkaline conditions. Under these experimental conditions, the electrochemical activity in terms of ethanol oxidation increased significantly with increasing Pd loading. Considering both the activity and stability of the electrodes, 23 wt.% Pd loading on sepiolite was selected with a coating amount of 140 μg cm–2 on glassy carbon. Factors such as ethanol/potassium hydroxide concentration, scanning rate and temperature had direct impacts on peak current densities as well as on reaction kinetics as depicted by Tafel plots. The electrochemical impedance test showed that Pd intercalation could improve significantly the conductivity of sepiolite and reduce the electron-transfer resistance in the electrocatalytic process. Thus, Pd-loaded sepiolite is a simple and effective catalyst for direct ethanol fuel cells.
The terminal Ediacaran Shibantan biota (~550–543 Ma) from the Dengying Formation in the Yangtze Gorges area of South China represents one of the rare examples of carbonate-hosted Ediacara-type macrofossil assemblages. In addition to the numerically dominant taxa—the non-biomineralizing tubular fossil Wutubus and discoidal fossils Aspidella and Hiemalora, the Shibantan biota also bears a moderate diversity of frondose fossils, including Pteridinium, Rangea, Arborea, and Charnia. In this paper, we report two species of the rangeomorph genus Charnia, including the type species Charnia masoni Ford, 1958 emend. and Charnia gracilis new species, from the Shibantan biota. Most of the Shibantan Charnia specimens preserve only the petalodium, with a few bearing the holdfast and stem. Despite overall architectural similarities to other Charnia species, the Shibantan specimens of Charnia gracilis n. sp. are distinct in their relatively straight, slender, and more acutely angled first-order branches. They also show evidence that may support a two-stage growth model and a epibenthic sessile lifestyle. Charnia fossils described herein represent one of the youngest occurrences of this genus and extend its paleogeographic and stratigraphic distributions. Our discovery also highlights the notable diversity of the Shibantan biota, which contains examples of a wide range of Ediacaran morphogroups.
Excavation at Mogou, a Bronze Age cemetery containing over 1700 burials and 6000 individuals, has revealed a diverse range of multiple burials. Building on this dataset, the Mogou Multidisciplinary Investigation Project aims to explore connections between kinship, burial space and social organisation in Bronze Age north-west China.
The influence of second-order dispersion (SOD) on stimulated Raman scattering (SRS) in the interaction of an ultrashort intense laser with plasma was investigated. More significant backward SRS was observed with the increase of the absolute value of SOD ($\mid \kern-1pt\!{\psi}_2\!\kern-1pt\mid$). The integrated intensity of the scattered light is positively correlated to the driver laser pulse duration. Accompanied by the side SRS, filaments with different angles along the laser propagation direction were observed in the transverse shadowgraph. A model incorporating Landau damping and above-threshold ionization was developed to explain the SOD-dependent angular distribution of the filaments.
Depressive symptoms, functional impairment, and decreased quality of life (QOL) are three important domains of major depressive disorder (MDD). However, the possible causal relationship between these factors has yet to be elucidated. Moreover, it is not known whether certain symptoms of MDD are more impairing than others. The network approach is a promising solution to these shortfalls.
Methods
The baseline data of a multicenter prospective project conducted in 11 governances of China were analyzed. In total, 1385 patients with MDD were included. Depressive symptoms, functioning disability, and QOL were evaluated by the 17-item Hamilton Depression Rating Scale (HAMD-17), the Sheehan Disability Scale (SDS), and the Quality of Life Enjoyment and Satisfaction Questionnaire-Short Form (Q-LES-Q-SF). The network was estimated through the graphical Least Absolute Shrinkage and Selection Operator (LASSO) technique in combination with the directed acyclic graph.
Results
Three centrality metrics of the graphical LASSO showed that social life dysfunction, QOL, and late insomnia exhibited the highest strength centrality. The network accuracy and stability were estimated to be robust and stable. The Bayesian network indicated that some depressive symptoms were directly associated with QOL, while other depressive symptoms showed an indirect association with QOL mediated by impaired function. Depressed mood was positioned at the highest level in the model and predicted the activation of functional impairment and anxiety.
Conclusions
Functional disability mediated the relationship between depressive symptoms and QOL. Family functionality and suicidal symptoms were directly related to QOL. Depressed mood played the predominant role in activating both anxiety symptom and functional impairment.
This study tracked the longstanding effect of childhood adversities on health status over the course of a life. This study used the data from China Health and Retirement Longitudinal Study which was a nationally representative survey and documented the generation who had arrived in the middle- and old-age phase and experienced the difficult time in the early founding of PR China in their childhood. Results shown the significant associations between multiple forms of children adversities (economic distress, child neglect, child abuse, lack of friends, parental mental health problems) and health status in adolescence (from 0.068 to 0.102, p<0.01), and health status in mid and late adulthood, including self-rated general health problems (from 0.039 to 0.061, p<0.01), chronic conditions (from 0.014 to 0.120, p<0.01 except for lack of friends), body aches (from 0.016 to 0.062, p<0.01 except for child neglect), and depression (from 0.047 to 0.112, p<0.01). Meanwhile, results also shown an underlying pathway (i.e., health status in adolescence) linking childhood adversities and health status in mid and late adulthood. Results suggested that the experience of multiple forms of adversities in childhood represented a substantial source of health risk throughout life.
During late Carboniferous time, the residual ocean basin gradually closed in West Junggar and only a small amount of seawater remained in the Hala’alat Mountain area, where discussions of provenance and tectonics are limited. In this study, LA-ICP-MS U–Pb dating and heavy mineral identification are conducted on the upper Carboniferous tuffaceous sandstones from the Hala’alat and Aladeyikesai formations in the Hala’alat Mountain area. The results reveal the low maturity of the clastic sediments, indicating proximal deposition. The Hala’alat Formation detrital zircons present a single peak (c. 330 Ma). Speculatively, the primary provenance is the Boshchekul–Chingiz Arc, and the secondary sources are the Darbut Tectono-Magmatic Belt and island arcs in the basin. The main peak and provenance of the Aladeyikesai Formation are similar to those of the Hala’alat Formation. Moreover, several age groups, namely, 370–344 Ma, 427–404 Ma and 478–476 Ma, potentially correspond to provenances of the Darbut Tectono-Magmatic Belt, the Boshchekul–Chingiz Arc and the Kujibai–Hongguleleng Ophiolitic Mélange Belt. In addition, the maximum depositional ages of the Hala’alat and Aladeyikesai formations calculated are 314.6 ± 1.54 Ma and 330.8 ± 0.61 Ma, respectively. Comprehensive analysis shows a relatively singular provenance of the Hala’alat Formation. While the provenance of the Aladeyikesai Formation shows inheritance, the provenance area extends northwards to the Kujibai–Hongguleleng Ophiolitic Mélange Belt. Furthermore, the closure of the Junggar Ocean during Carboniferous time caused the potential source region of the Hala’alat Mountain area to migrate northeastwards from Barleik Mountain to Xiemisitai Mountain. This study provides a basis for the analysis of regional geological evolution.
This paper examines whether changes in US presidential administration and central bank turnover during the period 1976–2016 caused regime shifts in Taylor rule deviations. Using a dynamic stochastic general equilibrium model to construct the welfare-maximizing policy rule and deviations from the optimal rule, we find evidence that politics indeed play a key role in explaining these deviations. In addition to politics, unemployment rates and the interest rate spread significantly account for regime shifts in Taylor rule deviations.
Elucidating individual aberrance is a critical first step toward precision medicine for heterogeneous disorders such as depression. The neuropathology of depression is related to abnormal inter-regional structural covariance indicating a brain maturational disruption. However, most studies focus on group-level structural covariance aberrance and ignore the interindividual heterogeneity. For that reason, we aimed to identify individualized structural covariance aberrance with the help of individualized differential structural covariance network (IDSCN) analysis.
Methods
T1-weighted anatomical images of 195 first-episode untreated patients with depression and matched healthy controls (n = 78) were acquired. We obtained IDSCN for each patient and identified subtypes of depression based on shared differential edges.
Results
As a result, patients with depression demonstrated tremendous heterogeneity in the distribution of differential structural covariance edges. Despite this heterogeneity, altered edges within subcortical-cerebellum network were often shared by most of the patients. Two robust neuroanatomical subtypes were identified. Specifically, patients in subtype 1 often shared decreased motor network-related edges. Patients in subtype 2 often shared decreased subcortical-cerebellum network-related edges. Functional annotation further revealed that differential edges in subtype 2 were mainly implicated in reward/motivation-related functional terms.
Conclusions
In conclusion, we investigated individualized differential structural covariance and identified that decreased edges within subcortical-cerebellum network are often shared by patients with depression. The identified two subtypes provide new insights into taxonomy and facilitate potential clues to precision diagnosis and treatment of depression.