We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The selection of the correct convergence angle is essential for achieving the highest resolution imaging in scanning transmission electron microscopy (STEM). The use of poor heuristics, such as Rayleigh's quarter-phase rule, to assess probe quality and uncertainties in the measurement of the aberration function results in the incorrect selection of convergence angles and lower resolution. Here, we show that the Strehl ratio provides an accurate and efficient way to calculate criteria for evaluating the probe size for STEM. A convolutional neural network trained on the Strehl ratio is shown to outperform experienced microscopists at selecting a convergence angle from a single electron Ronchigram using simulated datasets. Generating tens of thousands of simulated Ronchigram examples, the network is trained to select convergence angles yielding probes on average 85% nearer to optimal size at millisecond speeds (0.02% of human assessment time). Qualitative assessment on experimental Ronchigrams with intentionally introduced aberrations suggests that trends in the optimal convergence angle size are well modeled but high accuracy requires a high number of training datasets. This near-immediate assessment of Ronchigrams using the Strehl ratio and machine learning highlights a viable path toward the rapid, automated alignment of aberration-corrected electron microscopes.
This article introduces an intuitive understanding of electron Ronchigrams and how they are affected by aberrations. This is accomplished through a portable web application, http://Ronchigram.com. The history of the Ronchigram, the physics which define it, and its visual features are reviewed in the context of aberration-corrected scanning transmission electron microscopy.
We investigated potential nosocomial aerosol transmission of severe fever with thrombocytopenia syndrome virus (SFTSV) with droplet precautions. During aerosol generating procedures, SFTSV was be transmitted from person to person through aerosols. Thus, airborne precautions should be added to standard precautions to avoid direct contact and droplet transmission.
Assessment of frontal lobe impairment in amyotrophic lateral sclerosis (ALS) is a matter of great importance, since it often causes ALS patients to decrease medication and nursing compliance, thus shortening their survival time.
Methods:
The frontal assessment battery (FAB) is a short and rapid method for assessing frontal executive functions. We investigated the applicability of the FAB as a screening method for assessing cognitive impairments in 61 ALS patients. Depending on the results of the FAB, we classified patients into two subgroups: FAB-normal and FAB-abnormal. We then performed additional evaluations of cognitive function using the Korean version of the mini-mental state examination (K-MMSE), a verbal fluency test (COWAT), and a neuropsychiatric inventory (NPI). Results of these tests were compared between the two groups using Mann-Whitney U-tests, and Spearman correlation analyses were used to investigate the relationships between FAB score and disease duration and severity.
Results:
Of the 61 sporadic ALS patients included in this study, 14 were classified as FAB-abnormal and 47 were classified as FAB-normal. The FAB-normal and FAB-abnormal patients performed significantly differently in all domains of the COWAT. There was no difference in behavioral disturbance, as assessed by the NPI, between the two groups. The FAB scores were found to significantly correlate with both disease duration and severity.
Conclusions:
The FAB shows promise as a method of screening for frontal lobe dysfunction in ALS, as it is not only quick and easy, but also reliable. Additional studies should examine how FAB performance changes as ALS progresses.
Nitrogen-doped titania with a unique two-level hierarchical structure and visible light photocatalytic activity is reported. Thus, nitrogen-doped titanium oxide microrods decorated with N-doped titanium oxide nanosheets were synthesized by a hydrothermal reaction in NH4OH and postcalcination. During the calcination, the in situ incorporation of nitrogen atoms of ammonium ion into titania lattice was accompanied by the structural evolution from titanate to anatase titania. The morphological and structural evolution was monitored by scanning electron microscopy (SEM), x-ray diffraction (XRD), thermogravimetric analysis/differential thermal analysis (TGA/DTA), Raman, Fourier transform infrared (FTIR), x-ray absorption near edge structure (XANES), x-ray photoelectron spectroscopy (XPS), and adsorption isotherms. The N-doping brought visible light absorption, and the material exhibited high photocatalytic activity in the decomposition of Orange II under visible light irradiation (λ ≥ 400 nm), especially when it was loaded with 1 wt% Pt as a cocatalyst.
The improvement of optical reflectance of BaO–ZnO–B2O3–SiO2 (BZBS) glass by the addition of various types of micron-scale crystalline fillers (TiO2, SiO2, ZrO2, Al2O3, MgO, and cordierite) was investigated for application of the materials to barrier ribs of plasma display panels. The fillers were partially dissolved during sintering, yielding an increased local volume of the fillers in the submicron range, filler rearrangement along boundaries of sintered glass frits, and rather irregular and rugged filler shapes differing from the original morphologies. The measured optical reflectance of the various filler added specimens was within the 30–70% range, which was much higher than the predicted values (less than 10%) based on the rule of mixture of the refractive index. Here we report that the high reflectance of the barrier rib glass for plasma display panels is explained by light scattering by the increased submicron portion of the partially dissolved residual fillers, the size of which is similar to the visual spectrum range (0.4–0.7 μm). The order of reflectance improvement among different types of filler-embedded specimens was consistent with that of the degree of dispersion of the residual fillers in the glass matrix.