We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Due to shortages of N95 respirators during the coronavirus disease 2019 (COVID-19) pandemic, it is necessary to estimate the number of N95s required for healthcare workers (HCWs) to inform manufacturing targets and resource allocation.
Methods:
We developed a model to determine the number of N95 respirators needed for HCWs both in a single acute-care hospital and the United States.
Results:
For an acute-care hospital with 400 all-cause monthly admissions, the number of N95 respirators needed to manage COVID-19 patients admitted during a month ranges from 113 (95% interpercentile range [IPR], 50–229) if 0.5% of admissions are COVID-19 patients to 22,101 (95% IPR, 5,904–25,881) if 100% of admissions are COVID-19 patients (assuming single use per respirator, and 10 encounters between HCWs and each COVID-19 patient per day). The number of N95s needed decreases to a range of 22 (95% IPR, 10–43) to 4,445 (95% IPR, 1,975–8,684) if each N95 is used for 5 patient encounters. Varying monthly all-cause admissions to 2,000 requires 6,645–13,404 respirators with a 60% COVID-19 admission prevalence, 10 HCW–patient encounters, and reusing N95s 5–10 times. Nationally, the number of N95 respirators needed over the course of the pandemic ranges from 86 million (95% IPR, 37.1–200.6 million) to 1.6 billion (95% IPR, 0.7–3.6 billion) as 5%–90% of the population is exposed (single-use). This number ranges from 17.4 million (95% IPR, 7.3–41 million) to 312.3 million (95% IPR, 131.5–737.3 million) using each respirator for 5 encounters.
Conclusions:
We quantified the number of N95 respirators needed for a given acute-care hospital and nationally during the COVID-19 pandemic under varying conditions.
Zircon crystals from diamondiferous kyanite gneisses of the Barchi-Kol area (Kokchetav massif, Northern Kazakhstan) have been investigated by a combined application of cathodoluminescence (CL), Raman spectroscopy and electron probe microanalysis (EPMA). The zircon crystals exhibit up to four distinct domains characterised by significantly different CL signatures and parameters of the ν3(SiO4) (1008 cm–1) Raman band (i.e. full width at half maximum, position and intensity). Extremely metamict zircon cores (Domain I) host inclusions of low-pressure minerals (quartz and graphite) and the outer mantles (Domain III) are populated by ultrahigh-pressure relicts (diamond and coesite), whereas inner mantles (Domain II) and overgrowth rim zones (Domain IV) are inclusion free. Both the zircon cores and rims have very low Ti concentrations, implying formation temperatures below 760°C. The Ti content in the inner mantles (up to 40 ppm) is indicative of temperatures in the 760–880°C range. The temperature estimates for the outer mantles are 900–940°C, indicating a pronounced overlap with the peak metamorphic values yielded by the Zr-in-rutile geothermometer for the same rocks (910–950°C). The internal textures of the zircons and the occurrence of index minerals within the distinct domains allow us to unravel the stages of the complex metamorphic history recorded in the zircon. Our data show that the zircon cores are inherited seeds of pre-metamorphic (magmatic?) origin, the inner mantles were formed on the prograde metamorphic stage, the outer mantles record ultrahigh-pressure metamorphism and the outermost rims mark the retrograde metamorphic stage. The observed zircon internal textures are thus clearly correlated with distinct growth events, and in some examples reflect a major part of the metamorphic history. It is concluded that the combined application of the CL, Raman spectroscopy and EPMA techniques to zircon offers significant potential for deciphering the metamorphic evolution of deeply-subducted rocks.
To provide an effective crisis intervention, there is a need to better understand how these interventions work. The aim of this study was to develop an explanatory theory of therapeutic processes implied in the psychological process of crisis intervention.
Objectives
We aimed to reduce the gap between clinicians and researchers by showing how a qualitative method may reveal experiences about how professionals explained their clinical practice in crisis intervention and what their representation are of people in crisis.
Method
In depth, semi-structured interviews were conducted, transcribed and independently reviewed by using Grounded Theory Methodology (GTM). Data were analyzed with the constant comparative method. The study was conducted in crisis experts in Psychiatric Emergency Room (PER). A purposive sample of 17 professionals in crisis intervention included in our study.
Results
Results showed that therapeutic processes are managed in multiple interactions and regulations. Crisis intervention is an opportunity to highlight the psychic functioning. There are multiple settings of interventions oriented by the context of the institution and theorical background of professionals. The social realities slow down the possibility to elaborate the end of the intervention.
Conclusion
This study illuminates that clinicians and professionals in crisis intervention need guidelines to better improve their therapeutic interventions. They also need a political support to create specialized training and develop medical and psychological services to take in charge people in crisis. This research contributes to show the discrepancy between what the professional thinks to do in their interventions and what he really do.
The literature distinguishes two types of psychotherapy researches: studies on effects and studies on processes (Hill & Lambert, 2004). While the first focuses on the effectiveness of therapy, the second looks at 'how does psychotherapy work” (Strupp, 1992; Hendrick, 2009). Our research focuses on the evaluation of the therapeutic processes in crisis intervention by trying to answer the question: how crisis intervention works? Our scientific and clinical approach has led us to work with 16 experts in crisis intervention. The qualitative analysis called Grounded Theory Methodology described by Glaser and Anselm Strauss (1967) was used to better explore the therapeutic techniques used in the clinical practice. Various steps of our qualitative research and our first results willbe exposed. The aim of our study is to redefine the concept of crisis and to modelize the techniques implied in the therapeutic processes of crisis work.
Clinical practice in emergency room and crisis unit is often fraught with pitfalls (Immediate demands, accelerated temporality, difficulties working with family and care network). This practice contains specific clinical therapeutic interventions based on recognized theoretical frameworks. These theoretical frameworks constitute “formal knowledge”. They help to diagnose but have got limitations. In fact, clinical competence requires also technical and interpersonal skills (“know-how”) as well as reasoning skills and clinical intuition (“Informal knowledge”). All these knowledge and skills are built over clinical experience based on trainings and supervisions, continued clinical reasoning and exchanges with colleagues.
Objectives
Our research aims to capture therapeutic processes in clinical crisis intervention by illustrating what experts really do in their clinical practice and above all, how they do.
Aims
Our study illustrates several crisis situations, moment-by-moment, by analyzed experts’ voices.
Method
Our method is grounded in a first person epistemology and used a qualitative methodology focused on explicitation interview. Ten crisis interviews were analyzed in a micro and macro perception.
Results
Our research based on experts’ voices has identified a series of therapeutic techniques and principles who are essential to better intervene in clinical crisis intervention. A model of intervention was developed to train debutant clinician.
Conclusion
We believe that reflexivity is a powerful attitude to understand and transform practices in a lasting way.
Disclosure of interest
The authors have not supplied their declaration of competing interest.
Obsessive-compulsive disorder (OCD) is a highly disabling condition, with frequent early onset. Adult/adolescent OCD has been extensively investigated, but little is known about prevalence and clinical characterization of geriatric patients with OCD (G-OCD = 65 years). The present study aimed to assess prevalence of G-OCD and associated socio-demographic and clinical correlates in a large international sample.
Methods:
Data from 416 outpatients, participating in the ICOCS network, were assessed and categorized into 2 groups, age < vs = 65 years, and then divided on the basis of the median age of the sample (age < vs = 42 years). Socio-demographic and clinical variables were compared between groups (Pearson Chi-squared and t tests).
Results:
G-OCD compared with younger patients represented a significant minority of the sample (6% vs 94%, P < .001), showing a significantly later age at onset (29.4 ± 15.1 vs 18.7 ± 9.2 years, P < .001), a more frequent adult onset (75% vs 41.1%, P < .001) and a less frequent use of cognitive-behavioural therapy (CBT) (20.8% vs 41.8%, P < .05). Female gender was more represented in G-OCD patients, though not at a statistically significant level (75% vs 56.4%, P = .07). When the whole sample was divided on the basis of the median age, previous results were confirmed for older patients, including a significantly higher presence of women (52.1% vs 63.1%, P < .05).
Conclusions:
G-OCD compared with younger patients represented a small minority of the sample and showed later age at onset, more frequent adult onset and lower CBT use. Age at onset may influence course and overall management of OCD, with additional investigation needed.
Dynamics of abscisic acid (ABA) and indole-3-acetic acid (IAA) contents were followed in developing barley caryopses of the ABA-deficient mutant AZ34 and its parental cultivar Steptoe. Distribution of these hormones and HvPIP2 aquaporins (AQPs) was studied with the help of immunohistochemical methods in the roots and coleorhiza of developing embryos. In Steptoe, maturation of the caryopsis was accompanied by vast accumulation of ABA, while this hormone accumulated more slowly in the caryopsis of AZ34 and its content was lower than in Steptoe. Accumulation of ABA was accompanied by a decline in IAA level in the developing caryopsis, the process being delayed in AZ34 in accordance with the slower accumulation of ABA. ABA accumulated to high levels in the coleorhiza cells of Steptoe, while the effect was absent in AZ34. The high level of ABA was likely to be important for maintaining the barrier function of the coleorhiza, preventing germination of seminal roots and enabling seed dormancy, while the absence of ABA accumulation in coleorhiza of AZ34 may be responsible for the initiation of root germination inside the caryopsis. The abundance of HvPIP2 AQPs in the seminal roots was higher at the beginning of maturation of Steptoe caryopsis and declined afterwards, while the levels of APQs increased later in AZ34 in accordance with the delay in ABA accumulation. These results suggest the importance of ABA accumulation in coleorhiza for preventing precocious growth of seminal roots, and suggest regulation of IAA and aquaporin levels by this hormone during maturation of embryos.
Over recent decades, biomass gains in remaining old-growth Amazonia forests have declined due to environmental change. Amazonia’s huge size and complexity makes understanding these changes, drivers, and consequences very challenging. Here, using a network of permanent monitoring plots at the Amazon–Cerrado transition, we quantify recent biomass carbon changes and explore their environmental drivers. Our study area covers 30 plots of upland and riparian forests sampled at least twice between 1996 and 2016 and subject to various levels of fire and drought. Using these plots, we aimed to: (1) estimate the long-term biomass change rate; (2) determine the extent to which forest changes are influenced by forest type; and (3) assess the threat to forests from ongoing environmental change. Overall, there was no net change in biomass, but there was clear variation among different forest types. Burning occurred at least once in 8 of the 12 riparian forests, while only 1 of the 18 upland forests burned, resulting in losses of carbon in burned riparian forests. Net biomass gains prevailed among other riparian and upland forests throughout Amazonia. Our results reveal an unanticipated vulnerability of riparian forests to fire, likely aggravated by drought, and threatening ecosystem conservation at the Amazon southern margins.
We have observed the G23 field of the Galaxy AndMass Assembly (GAMA) survey using the Australian Square Kilometre Array Pathfinder (ASKAP) in its commissioning phase to validate the performance of the telescope and to characterise the detected galaxy populations. This observation covers ~48 deg2 with synthesised beam of 32.7 arcsec by 17.8 arcsec at 936MHz, and ~39 deg2 with synthesised beam of 15.8 arcsec by 12.0 arcsec at 1320MHz. At both frequencies, the root-mean-square (r.m.s.) noise is ~0.1 mJy/beam. We combine these radio observations with the GAMA galaxy data, which includes spectroscopy of galaxies that are i-band selected with a magnitude limit of 19.2. Wide-field Infrared Survey Explorer (WISE) infrared (IR) photometry is used to determine which galaxies host an active galactic nucleus (AGN). In properties including source counts, mass distributions, and IR versus radio luminosity relation, the ASKAP-detected radio sources behave as expected. Radio galaxies have higher stellar mass and luminosity in IR, optical, and UV than other galaxies. We apply optical and IR AGN diagnostics and find that they disagree for ~30% of the galaxies in our sample. We suggest possible causes for the disagreement. Some cases can be explained by optical extinction of the AGN, but for more than half of the cases we do not find a clear explanation. Radio sources aremore likely (~6%) to have an AGN than radio quiet galaxies (~1%), but the majority of AGN are not detected in radio at this sensitivity.
The UVIT ultraviolet and visual band detectors and electronics for the ASTROSAT observatory were calibrated in the vacuum laboratory at the University of Calgary. This work was supported by the Canadian Space Agengy and carried out prior to integration with the UVIT optical assembly and the ASTROSAT spacecraft. The multiband (X-ray, ultraviolet and optical) ASTROSAT observatory was successfully launched by the Indian Space Research Organization on Sept. 28, 2015, with subsequent in-orbit verification and ongoing calibration activities. Here we discuss the current issues of calibrating the UVIT data, such as distortion corrections, and how the laboratory data is being used to address these issues.
Most major modern families of Hymenoptera were established in the Mesozoic, but the diversifications within ecologically key trophic guilds and lineages that significantly influence the character of modern terrestrial ecosystems – bees (Apiformes), ants (Formicidae), social Vespidae, parasitoids (Ichneumonidae), and phytophagous Tenthredinoidea – were previously known to occur mostly in the middle to late Eocene. We find these changes earlier, seen here in the early Eocene Okanagan Highlands fossil deposits of western North America. Some of these may have occurred even earlier, but have been obscured by taphonomic processes. We provide an overview of the Okanagan Highlands Hymenoptera to family level and in some cases below that, with a minimum of 25 named families and at least 30 when those tentatively assigned or distinct at family level, but not named are included. Some are poorly known as fossils (Trigonalidae, Siricidae, Peradeniidae, Monomachidae), and some represent the oldest confirmed occurrences (Trigonalidae, Pompilidae, Sphecidae sensu stricto, Peradeniidae, Monomachidae, and possibly Halictidae). Some taxa previously thought to be relictual or extinct by the end of the Cretaceous (Angarosphecidae, Archaeoscoliinae, some Diapriidae) are present and sometimes abundant in the early Eocene. Living relatives of some taxa are now present in different climate regimes or on different continents.
Most attention on tropical biodiversity conservation has focussed on protected areas. Recognising and enhancing the value of biodiversity outside, as well as inside, protected areas is increasingly important given recognition that biodiversity targets will not be met through protected areas alone. We investigated the extent to which protection influences colony occupancy and colony size of a species of conservation concern, the rock-nesting White-necked Picathartes Picathartes gymnocephalus. We used mixed models to compare long term trends at 42 colonies located both inside and outside a protected area of forest, Gola Rainforest National Park, and considered colonies further inside the boundary as being better protected. Colony occupation was primarily predicted by the level of protection, with occupation highest within protected areas, but was not different between colonies situated close to or far from the boundary. Mean colony occupation was consistently high in protected areas, and lower in unprotected areas. The surface area of colony rocks was also an important predictor with larger rock faces having a higher probability of occupancy. Our best models also included distance to forested habitat, presence of cleared forest and evidence of hunting as less important predictors. Over the eight-year study, after controlling for rock surface area, active colony size declined significantly. However, declines were only significant in colonies in unprotected forest, whilst colonies located within protected areas were buffered from significant decline. Together this suggests colony occupancy and the number of active nests are influenced by protection and human disturbance. Although a lack of demographic and population dynamic work on picathartes prevents identifying mechanisms, we show that despite unprotected colonies having lower occupancy and fewer active nests they can persist in human altered and disturbed areas, partly because larger traditionally used rocks remain important nesting sites.
We describe a versatile infrared camera/spectrograph, IRIS, designed and constructed at the Anglo-Australian Observatory for use on the Anglo-Australian Telescope. A variety of optical configurations can be selected under remote control to provide several direct image scales and a few low-resolution spectroscopic formats. Two cross-dispersed transmission echelles are of novel design, as is the use of a modified Bowen-Burch system to provide a fast f/ratio in the widest-field option. The drive electronics includes a choice of readout schemes for versatility, and continuous display when the array is not taking data, to facilitate field acquisition and focusing.
The linearity of the detector has been studied in detail. Although outwardly good, slight nonlinearities prevent removal of fixed-pattern noise from the data without application of a cubic linearising function.
Specific control and data-reduction software has been written. We describe also a scanning mode developed for spectroscopic imaging.
There are several ways planets can survive the giant phase of the host star, hence one can consider the case of Earth-like planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU from the star would remain in the continuous habitable zone (CHZ) for about 8 Gyr. Polarisation due to a terrestrial planet in the CHZ of a cool white dwarf (CWD) is 102 (104) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a powerful tool to detect close-in planets around white dwarfs. Multi-band polarimetry would also allow one to reveal the presence of a planet atmosphere, even providing a first characterisation. With current facilities a super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known CWD. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue. Preliminary habitability study show also that photosynthetic processes can be sustained on Earth-like planets orbiting CWDs and that the DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, hence white dwarfs are compatible with the persistence of complex life from the perspective of UV irradiation.
Full Stokes spectropolarimetric observations of a Mira star (χ Cyg) and a RV Tauri star (R Sct) are presented and analyzed comparatively. From their Stokes V data (circular polarization), we report the detection of a weak magnetic field at the surface of these cool and evolved radially pulsating stars. For both stars, we analyse this detection in the framework of their complex atmospheric dynamics, with the possibility that shock waves may imprint an efficient compressive effect on the surface magnetic field. We also report strong Stokes U and Stokes Q signatures associated to metallic lines (as a global trend), those linear polarimetric features appear to be time variable along the pulsating phase. More surprising, in the Stokes U and Stokes Q data, we also detect signatures associated to individual metallic lines (such as Sr i 460.7 nm, Na D2588.9 nm), that are known (from the solar case) to be easily polarizable in case of a global asymmetry at the photospheric level.