We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Invasive woody perennials pose an immense threat to the diversity and function of many ecosystems, including forests in the eastern United States. While herbicide treatments have proven effective in controlling many plant invasions, there is considerable interest in the refinement of herbicide prescriptions to improve efficacy and prevent non-target damage. Adjuvants are widely utilized to improve herbicide efficacy, but research on novel adjuvants is often lacking. Furthermore, adjuvant research has generally focused on enhancement of foliar herbicide absorption, and few studies focus on adjuvant utility for other herbicide delivery techniques such as cut stump treatments. We evaluated 2XL—a cocktail of cellulase enzymes derived from fungi—as a potential herbicide adjuvant for use with glyphosate applied in a cut stump treatment due to its ability to degrade a key component of cell walls. We conducted a field experiment using the cut stump method of treatment (cut surface treated with herbicide) on a problematic invasive shrub, Amur honeysuckle [Lonicera maackii (Rupr.) Herder]. We tested combinations of three concentrations of 2XL with five concentrations of glyphosate and hypothesized that low concentrations of glyphosate combined with 2XL would be as effective in limiting the resprouting of L. maackii as higher concentrations of glyphosate without the enzymes. Our results indicated that 2XL did not improve glyphosate efficacy for reducing the number of resprouting stems or the length of the longest resprouting stem within the same or following year as treatment. Limited data indicated the combination of 2XL and glyphosate applied at 30 g L−1 slightly increased resprouting in the year following treatment. While 2XL did not improve glyphosate efficacy, our results showed effective control of L. maackii at the lowest concentration of glyphosate tested (30 g L−1), suggesting that concentrations lower than those typically applied may be effective in controlling L. maackii within parameters similar to those tested here.
Paleoethnobotanical perspectives are essential for understanding past lifeways yet continue to be underrepresented in Paleoindian research. We present new archaeobotanical and radiocarbon data from combustion features within stratified cultural components at Connley Caves, Oregon, that reaffirm the inclusion of plants in the diet of Paleoindian groups. Botanical remains from three features in Connley Cave 5 show that people foraged for diverse dryland taxa and a narrow range of wetland plants during the summer and fall months. These data add new taxa to the known Pleistocene food economy and support the idea that groups equipped with Western Stemmed Tradition toolkits had broad, flexible diets. When viewed continentally, this work contributes to a growing body of research indicating that regionally adapted subsistence strategies were in place by at least the Younger Dryas and that some foragers in the Far West may have incorporated a wider range of plants including small seeds, leafy greens, fruits, cacti, and geophytes into their diet earlier than did Paleoindian groups elsewhere in North America. The increasing appearance of diverse and seemingly low-ranked resources in the emerging Paleoindian plant-food economy suggests the need to explore a variety of nutritional variables to explain certain aspects of early foraging behavior.
In August 2019, public health surveillance systems in Scotland and England identified seven, geographically dispersed cases infected with the same strain (defined as isolates that fell within the same five single nucleotide polymorphism single linage cluster) of Shiga toxin-producing Escherichia coli O157:H7. Epidemiological analysis of enhanced surveillance questionnaire data identified handling raw beef and shopping from the same national retailer (retailer A) as the common exposure. Concurrently, a microbiological survey of minced beef at retail identified the same strain in a sample of minced beef sold by retailer A, providing microbiological evidence of the link. Between September and November 2019, a further four primary and two secondary cases infected with the same strain were identified; two cases developed haemolytic uraemic syndrome. None of the four primary cases reported consumption of beef from retailer A and the transmission route of these subsequent cases was not identified, although all four primary cases visited the same petting farm. Generally, outbreaks of STEC O157:H7 in the UK appear to be distinct, short-lived events; however, on-going transmission linked to contaminated food, animals or environmental exposures and person-to-person contact do occur. Although outbreaks of STEC caused by contaminated fresh produce are increasingly common, undercooked meat products remain a risk of infection.
In April 2018, Public Health England was notified of cases of Shigella sonnei who had eaten food from three different catering outlets in England. The outbreaks were initially investigated as separate events, but whole-genome sequencing (WGS) showed they were caused by the same strain. The investigation included analyses of epidemiological data, the food chain and microbiological examination of food samples. WGS was used to determine the phylogenetic relatedness and antimicrobial resistance profile of the outbreak strain. Ultimately, 33 cases were linked to this outbreak; the majority had eaten food from seven outlets specialising in Indian or Middle Eastern cuisine. Five outlets were linked to two or more cases, all of which used fresh coriander although a shared supplier was not identified. An investigation at one of the venues recorded that 86% of cases reported eating dishes with coriander as an ingredient or garnish. Four cases were admitted to hospital and one had evidence of treatment failure with ciprofloxacin. Phylogenetic analysis showed that the outbreak strain was part of a wider multidrug-resistant clade associated with travel to Pakistan. Poor hygiene practices during cultivation, distribution or preparation of fresh produce are likely contributing factors.
We employ kinetic theory, extended to incorporate the influence of velocity correlations, friction and particle stiffness, and a model for rate-independent, elastic components of the stresses at volume fractions larger than a critical value, in an attempt to reproduce the results of discrete-element numerical simulations of steady, fully developed, dissipative, collisional shearing flows over and within inclined, erodible, fragile beds. The flows take place between vertical, frictional sidewalls at different separations with sufficient total particle flux so that differently inclined, erodible beds result. Numerical solutions of the spanwise-averaged differential equations of the theory and the associated boundary conditions are seen to be capable of reproducing profiles of stresses, solid volume fraction, average velocity and the strength of the particle velocity fluctuations, both in the rapid collisional flow above the bed and in the slower creeping flow within the bed. The indication is that extended kinetic theory has the unique ability to faithfully describe steady, inhomogeneous, granular shearing flows, ranging from dilute to extremely dense, using balances of momentum and energy and employing boundary conditions that are associated with the balances, with a small number of physically determined, microscopic parameters.
Limpets and barnacles are important components of intertidal assemblages worldwide. This study examines the effects of barnacles on the foraging behaviour of the limpet Patella vulgata, which is the main algal grazer in the North-west Atlantic. The behaviour of limpets on a vertical seawall on the Isle of Man (UK) was investigated using autonomous radio-telemetry, comparing their activity patterns on plots characterized by dense barnacle cover and plots from which the barnacles had been removed. Limpet behaviour was investigated at mid-shore level, but two different elevations were considered. This experiment revealed a significant effect of barnacle cover on the activity of P. vulgata. Limpets on smooth surfaces spent a greater proportion of total time active than did limpets on barnacles. Movement activity was also greater in areas that were lower down in the tidal range. In general, limpets were either predominantly active during diurnal high or nocturnal low tides and always avoided nocturnal high tides. Individuals on barnacles at the higher elevation concentrated their activity during nocturnal low water. All the other groups of limpets (smooth surfaces on the upper level and all individuals on the lower shore) had more excursions centred around daylight hours with an equal distribution of activity between periods of low and high water. Inter-individual variability was, however, pronounced.
The rocky shores of the north-east Atlantic have been long studied. Our focus is from Gibraltar to Norway plus the Azores and Iceland. Phylogeographic processes shape biogeographic patterns of biodiversity. Long-term and broadscale studies have shown the responses of biota to past climate fluctuations and more recent anthropogenic climate change. Inter- and intra-specific species interactions along sharp local environmental gradients shape distributions and community structure and hence ecosystem functioning. Shifts in domination by fucoids in shelter to barnacles/mussels in exposure are mediated by grazing by patellid limpets. Further south fucoids become increasingly rare, with species disappearing or restricted to estuarine refuges, caused by greater desiccation and grazing pressure. Mesoscale processes influence bottom-up nutrient forcing and larval supply, hence affecting species abundance and distribution, and can be proximate factors setting range edges (e.g., the English Channel, the Iberian Peninsula). Impacts of invasive non-native species are reviewed. Knowledge gaps such as the work on rockpools and host–parasite dynamics are also outlined.
The prehospital disaster and emergency medical services community stands on the front-line in the response to events such as novel influenza, multi-drug resistant tuberculosis, and other high consequence diseases such as the Ebola Virus Disease.
Aim:
To address provider and community safety, we developed an online educational program utilizing a Multi-Pathogen Approach to infectious disease personal protective equipment (PPE) deployment by prehospital providers. Such vigilance starts with syndromic recognition and quickly transcends to include operational issues, clinical interventions, and public health integration.
Methods:
The University of Maryland, Baltimore County (Maryland, USA), Department of Emergency Health Services partnered with the Maryland State Department of Health (USA), to develop an online educational curriculum. The curriculum was developed through an expert panel consensus group including prehospital providers and is hybrid in design and includes awareness level training and procedural guidance.
Results:
Currently deployed online, this educational content demonstrating the use of the Multi-Pathogen Approach is accessible open-access via YouTube worldwide on computers, tablets, and smartphones. This curriculum is also accessible for continuing medical education to over 50,000 prehospital, hospital, and clinic personnel throughout Maryland and the National Capital Region of the United States. The curriculum consists of twelve modules of didactic and live videotaped demonstrations.
Discussion:
The development of the Multi-Pathogen Approach for the deployment of PPE and the use of online education modules has given prehospital providers an easily accessible open-access tool for high consequence disease management. The development of educational efforts such as these can help ensure better patient care and prehospital EMS system readiness.
Cougar Mountain Cave is located in Oregon's Fort Rock Basin. In 1958, avocationalist John Cowles excavated most of the cave's deposits and recovered abundant fiber, lithic, wood, and osseous artifacts. A crew from the University of California, Davis returned to the site in 1966 to evaluate the potential for further research, collecting additional lithic and fiber artifacts from disturbed deposits and in situ charcoal from apparently undisturbed deposits. Because Cowles took few notes or photographs, the Cougar Mountain Cave collection—most of which is housed at the Favell Museum in Klamath Falls, Oregon—has largely gone unstudied even though it contains diagnostic artifacts spanning the Holocene and, potentially, the terminal Pleistocene. We recently submitted charcoal and basketry from the site for radiocarbon dating, providing the first reliable sense of when Cougar Mountain Cave was first occupied. Our results indicate at least a Younger Dryas age for initial occupation. The directly dated basketry has provided new information about the age ranges and spatial distributions of diagnostic textile types in the northwestern Great Basin.
To quantify the survival of Clostridium difficile spores on hospital bed sheets through the United Kingdom National Health System (UK NHS) healthcare laundry process (Health Technical Memorandum (HTM) 01-04) in vitro and on bed sheets from patients with C. difficile through the commercial laundry.
Methods
Clostridium difficile spores were inoculated onto cotton sheets and laundered through a simulated washer extractor cycle using an industrial bleach detergent with sodium hypochlorite 15% and peracetic acid sour 14% (acetic acid and hydrogen peroxide; pH, 2–4). Spore survival on hospital sheets naturally contaminated with C. difficile was also assessed using a washer extractor plus drying and finishing cycles at a commercial laundry.
Patients
Naturally contaminated C. difficile bed sheets were taken from beds of patients that had previously been diagnosed with C. difficile infection (CDI) and had received care on an isolated C. difficile ward.
Results
The simulated washer extractor cycle, with an industrial detergent, demonstrated survival of 2 strains of C. difficile NCTC 11209 (0–4 colony-forming units [cfu] per 25 cm2) and ribotype 001/072 (0–9 cfu per 25 cm2). Before laundering, naturally contaminated bed sheets had an average spore load of 51 cfu per 25 cm2, and after washing, drying, and finishing, the spore load was 33 cfu per 25 cm2. Before and after washing, the C. difficile strain was identified as ribotype 001/072. Both the simulated and in-situ laundering processes failed the microbiological standards of no pathogenic bacteria remaining.
Conclusions
Clostridium difficile spores are able to survive laundering through a commercial washer extractor and may be contributing to sporadic outbreaks of CDI. Further research to establish exposure of laundry workers, patients, and the hospital environment to C. difficile spores from bed sheets is needed.
Infection with STEC O157 is relatively rare but has potentially serious sequelae, particularly for children. Large outbreaks have prompted considerable efforts designed to reduce transmission primarily from food and direct animal contact. Despite these interventions, numbers of infections have remained constant for many years and the mechanisms leading to many sporadic infections remain unclear.
Here, we show that two-thirds of all cases reported in England between 2009 and 2015 were sporadic. Crude rates of infection differed geographically and were highest in rural areas during the summer months. Living in rural areas with high densities of cattle, sheep or pigs and those served by private water supplies were associated with increased risk. Living in an area of lower deprivation contributed to increased risk but this appeared to be associated with reported travel abroad. Fresh water coverage and residential proximity to the coast were not risk factors.
To reduce the overall burden of infection in England, interventions designed to reduce the number of sporadic infections with STEC should focus on the residents of rural areas with high densities of livestock and the effective management of non-municipal water supplies. The role of sheep as a reservoir and potential source of infection in humans should not be overlooked.
Across the globe, the implementation of quality improvement science and collaborative learning has positively affected the care and outcomes for children born with CHD. These efforts have advanced the collective expertise and performance of inter-professional healthcare teams. In this review, we highlight selected quality improvement initiatives and strategies impacting the field of cardiovascular care and describe implications for future practice and research. The continued leveraging of technology, commitment to data transparency, focus on team-based practice, and recognition of cultural norms and preferences ensure the success of sustainable models of global collaboration.
Because the Anthropocene by definition is an epoch during which environmental change is largely anthropogenic and driven by social, economic, psychological and political forces, environmental social scientists can effectively analyse human behaviour and knowledge systems in this context. In this subject review, we summarize key ways in which the environmental social sciences can better inform fisheries management policy and practice and marine conservation in the Anthropocene. We argue that environmental social scientists are particularly well positioned to synergize research to fill the gaps between: (1) local behaviours/needs/worldviews and marine resource management and biological conservation concerns; and (2) large-scale drivers of planetary environmental change (globalization, affluence, technological change, etc.) and local cognitive, socioeconomic, cultural and historical processes that shape human behaviour in the marine environment. To illustrate this, we synthesize the roles of various environmental social science disciplines in better understanding the interaction between humans and tropical marine ecosystems in developing nations where issues arising from human–coastal interactions are particularly pronounced. We focus on: (1) the application of the environmental social sciences in marine resource management and conservation; (2) the development of ‘new’ socially equitable marine conservation; (3) repopulating the seascape; (4) incorporating multi-scale dynamics of marine social–ecological systems; and (5) envisioning the future of marine resource management and conservation for producing policies and projects for comprehensive and successful resource management and conservation in the Anthropocene.
A range of endemic and protected vertebrate species from Madagascar are threatened by the demand for bushmeat. We report on the number of discarded carapaces from illegally killed Critically Endangered radiated tortoises Astrochelys radiata in an urban centre in south-west Madagascar. Through covert monitoring of public rubbish dumps we observed 1,913 carapaces during July 2010–January 2014. There was notable spatial and temporal variation, with some evidence of peaks in carapace dumping during May–June and October–December. A single rubbish dump near the artisanal fishery landing beaches accounted for 93% of the observed carapaces.