Skip to main content Accessibility help
×
Home

A spatial and temporal analysis of risk factors associated with sporadic Shiga toxin-producing Escherichia coli O157 infection in England between 2009 and 2015

  • Richard Elson (a1) (a2) (a3), Katherine Grace (a4), Roberto Vivancos (a1) (a2) (a5), Claire Jenkins (a1), Goutam K. Adak (a1) (a2), Sarah J. O'Brien (a2) (a6) and Iain R. Lake (a2) (a3)...

Abstract

Infection with STEC O157 is relatively rare but has potentially serious sequelae, particularly for children. Large outbreaks have prompted considerable efforts designed to reduce transmission primarily from food and direct animal contact. Despite these interventions, numbers of infections have remained constant for many years and the mechanisms leading to many sporadic infections remain unclear.

Here, we show that two-thirds of all cases reported in England between 2009 and 2015 were sporadic. Crude rates of infection differed geographically and were highest in rural areas during the summer months. Living in rural areas with high densities of cattle, sheep or pigs and those served by private water supplies were associated with increased risk. Living in an area of lower deprivation contributed to increased risk but this appeared to be associated with reported travel abroad. Fresh water coverage and residential proximity to the coast were not risk factors.

To reduce the overall burden of infection in England, interventions designed to reduce the number of sporadic infections with STEC should focus on the residents of rural areas with high densities of livestock and the effective management of non-municipal water supplies. The role of sheep as a reservoir and potential source of infection in humans should not be overlooked.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A spatial and temporal analysis of risk factors associated with sporadic Shiga toxin-producing Escherichia coli O157 infection in England between 2009 and 2015
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A spatial and temporal analysis of risk factors associated with sporadic Shiga toxin-producing Escherichia coli O157 infection in England between 2009 and 2015
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A spatial and temporal analysis of risk factors associated with sporadic Shiga toxin-producing Escherichia coli O157 infection in England between 2009 and 2015
      Available formats
      ×

Copyright

Corresponding author

Author for correspondence: Richard Elson, E-mail: richard.elson@phe.gov.uk

Footnotes

Hide All

Rural residence, presence of private water supplies and proximity to high densities of farmed animals is associated with increased risk of STEC O157 infection in England.

Footnotes

References

Hide All
1.Byrne, L et al. (2015) The epidemiology, microbiology and clinical impact of Shiga toxin-producing Escherichia coli in England, 2009–2012. Epidemiology and Infection 143, 34753487.
2.Majowicz, SE et al. (2014) Global incidence of human Shiga toxin-producing Escherichia coli infections and deaths: a systematic review and knowledge synthesis. Foodborne Pathogens and Disease 11, 447455.
3.European Centre for Disease Prevention and Control (2016) Annual epidemiological report 2016–Shigatoxin/verocytotoxin-producing Escherichia coli infection. Stockholm, pp. 13.
4.Adams, NL et al. (2016) Shiga toxin-producing Escherichia coli O157, England and Wales, 1983–2012. Emerging Infectious Diseases 22, 590597.
5.Buchholz, U et al. (2011) German outbreak of Escherichia coli O104:H4 associated with sprouts. New England Journal of Medicine 365, 17631770.
6.Lal, A et al. (2012) Seasonality in human zoonotic enteric diseases: a systematic review. PloS One 7, e31883.
7.Persad, AK and LeJeune, JT (2014) Animal reservoirs of Shiga toxin-producing Escherichia coli. Microbiology Spectrum 2, EHEC-0027-2014, 114.
8.Chapman, PA et al. (2001) Escherichia coli O157 in cattle and sheep at slaughter, on beef and lamb carcasses and in raw beef and lamb products in South Yorkshire, UK. International Journal of Food Microbiology 64, 139150.
9.Milnes, AS et al. (2008) Intestinal carriage of verocytotoxigenic Escherichia coli O157, Salmonella, thermophilic Campylobacter and Yersinia enterocolitica, in cattle, sheep and pigs at slaughter in Great Britain during 2003. Epidemiology and Infection 136, 739751.
10.Avery, SM, Moore, A and Hutchison, ML (2004) Fate of Escherichia coli originating from livestock faeces deposited directly onto pasture. Letters in Applied Microbiology 38, 355359.
11.Williams, AP et al. (2005) Persistence of Escherichia coli O157 on farm surfaces under different environmental conditions. Journal of Applied Microbiology 98, 10751083.
12.O'Brien, SJ, Adak, GK and Gilham, C (2001) Contact with farming environment as a major risk factor for Shiga toxin (verocytotoxin)-producing Escherichia coli O157 infection in humans. Emerging Infectious Diseases 7, 10491051.
13.Williams, AP et al. (2008) Leaching of bioluminescent Escherichia coli O157:H7 from sheep and cattle faeces during simulated rainstorm events. Journal of Applied Microbiology 105, 14521460.
14.Anon (1999) VTEC O157 outbreak linked to beach holidays. Communicable Disease Report. CDR Weekly 9, 327, 330.
15.Paunio, M et al. (1999) Swimming-associated outbreak of Escherichia coli O157:H7. Epidemiology and Infection 122, 15.
16.Bruneau, A et al. (2004) Outbreak of E. coli O157:H7 associated with bathing at a public beach in the Montreal-Centre region. Canada Communicable Disease Report 30, 133136.
17.Harrison, S and Kinra, S (2004) Outbreak of Escherichia coli O157 associated with a busy bathing beach. Communicable Disease and Public Health 7, 4750.
18.Ihekweazu, C et al. (2006) Outbreak of E. coli O157 infection in the south west of the UK: risks from streams crossing seaside beaches. Euro Surveillance 11, 128130.
19.Richardson, HY et al. (2009) Microbiological surveillance of private water supplies in England: the impact of environmental and climate factors on water quality. Water Research 43, 21592168.
20.Risebro, HL, Pitchers, R and Hunter, PR. Risk Assessment of VTEC Infections in English and Welsh Drinking Water report for contract DWI/70/2/256.
21.Dallman, TJ et al. (2015) Applying phylogenomics to understand the emergence of Shiga-toxin-producing Escherichia coli O157:H7 strains causing severe human disease in the UK. Microbial Genomics 1, 118.
22.Butcher, H et al. (2016) Whole genome sequencing improved case ascertainment in an outbreak of Shiga toxin-producing Escherichia coli O157 associated with raw drinking milk. Epidemiology and Infection 144, 28122823.
23.Innocent, GT et al. (2005) Spatial and temporal epidemiology of sporadic human cases of Escherichia coli O157 in Scotland, 1996–1999. Epidemiology and Infection 133, 10331041.
24.Friesema, IH et al. (2011) Geographical association between livestock density and human Shiga toxin-producing Escherichia coli O157 infections. Epidemiology and Infection 139, 10811087.
25.Haus-Cheymol, R et al. (2006) Association between indicators of cattle density and incidence of paediatric haemolytic-uraemic syndrome (HUS) in children under 15 years of age in France between 1996 and 2001: an ecological study. Epidemiology and Infection 134, 712718.
26.Frank, C et al. (2008) Cattle density and Shiga toxin-producing Escherichia coli infection in Germany: increased risk for most but not all serogroups. Vector Borne and Zoonotic Diseases 8, 635643.
27.Jalava, K et al. (2011) Agricultural, socioeconomic and environmental variables as risks for human verotoxigenic Escherichia coli (VTEC) infection in Finland. BMC Infectious Diseases 11, 275.
28.Pearl, DL et al. (2009) A multi-level approach for investigating socio-economic and agricultural risk factors associated with rates of reported cases of Escherichia coli O157 in humans in Alberta, Canada. Zoonoses and Public Health 56, 455464.
29.Ohaiseadha, C et al. (2017) A geostatistical investigation of agricultural and infrastructural risk factors associated with primary verotoxigenic E. coli (VTEC) infection in the Republic of Ireland, 2008–2013. Epidemiology and Infection 145, 95105.
30.Office for National Statistics. (April 2017) Census Geography.
31.Department for the Environment, Food and Rural Affairs (2013) June Survey of Agriculture and Horticulture: Methodology.
32.Office for National Statistics (April 2017) English indices of deprivation 2015.
33.Bibby, P and Brindley, P (2013) School of Computer Science, University of Nottingham. Urban and Rural Area Definitions for Policy Purposes in England and Wales: Methodology (v1.0).
34.Ordnance Survey. OS MasterMap® Topography Layer.
35.Jenks, GF and Caspall, FC (1971) Error on choroplethic maps: definition, measurement, reduction. Annals of the Association of American Geographers 61, 217244.
36.StataCorp (2011) Stata Statistical Software: Release 13. College Station TSL.
37.Milnes, AS et al. (2009) Factors related to the carriage of verocytotoxigenic E. coli, Salmonella, thermophilic Campylobacter and Yersinia enterocolitica in cattle, sheep and pigs at slaughter. Epidemiology and Infection 137, 11351148.
38.Mikhail, A et al. (2017) Evolution of outbreak clusters detected by whole genome sequencing; investigation of phylogenetically linked sporadic cases reveals an ovine source. PHE Research & Applied Epidemiology Scientific Conference. Warwick, United Kingdom.
39.Mikhail, AFW et al. (2018) An outbreak of Shiga toxin-producing Escherichia coli O157:H7 associated with contaminated salad leaves: epidemiological, genomic and food trace back investigations. Epidemiology and Infection 146, 187196.
40.Strachan, NJ et al. (2006) Escherichia coli O157: burger bug or environmental pathogen? International Journal of Food Microbiology 112, 129137.
41.Cha, W et al. (2018) Prevalence and characteristics of Shiga toxin-producing Escherichia coli in finishing pigs: implications on public health. International Journal of Food Microbiology 264, 815.
42.Tseng, M et al. (2014) Shiga toxin-producing Escherichia coli in swine: the public health perspective. Animal Health Research Reviews 15, 6375.
43.Mughini-Gras, L et al. (2018) Attribution of human infections with Shiga toxin-producing Escherichia coli (STEC) to livestock sources and identification of source-specific risk factors, The Netherlands (2010–2014). Zoonoses and Public Health 65, e8e22.
44.Chapman, PA et al. (1997) A 1-year study of Escherichia coli O157 in cattle, sheep, pigs and poultry. Epidemiology and Infection 119, 245250.
45.Nielsen, EM et al. (2004) Verocytotoxin-producing Escherichia coli in wild birds and rodents in close proximity to farms. Applied and Environmental Microbiology 70, 69446947.
46.Nichols, GL (2005) Fly transmission of Campylobacter. Emerging Infectious Diseases 11, 361364.
47.Adams, NL et al. (Under review) Socioeconomic status and Shiga toxin-producing Escherichia coli infection in England: risk factors and clinical features. In: Public Health England.
48.Rotheram, S et al. (2018) An ethnographic approach to examining health inequalities in gastrointestinal infections. In: Public Health Research and Science Conference. University of Warwick, UK.
49.Lake, IR et al. (2007) Case-control study of environmental and social factors influencing cryptosporidiosis. European Journal of Epidemiology 22, 805811.
50.Simonsen, J, Frisch, M and Ethelberg, S (2008) Socioeconomic risk factors for bacterial gastrointestinal infections. Epidemiology 19, 282290.
51.Newman, KL et al. (2015) The impact of socioeconomic status on foodborne illness in high-income countries: a systematic review. Epidemiology and Infection 143, 24732485.
52.Adams, NL et al. (2018) Socioeconomic status and infectious intestinal disease in the community: a longitudinal study (IID2 study). European Journal of Public Health 28, 134138.
53.Williams, AP et al. (2007) Persistence, dissipation, and activity of Escherichia coli O157:H7 within sand and seawater environments. FEMS Microbiology Ecology 60, 2432.
54.Joosten, R et al. (2017) Risk factors for gastroenteritis associated with canal swimming in two cities in the Netherlands during the summer of 2015: a prospective study. PloS One 12, e0174732.
55.Schets, FM, De Roda Husman, AM and Havelaar, AH (2011) Disease outbreaks associated with untreated recreational water use. Epidemiology and Infection 139, 11141125.
56.Sartorius, B et al. (2007) Outbreak of norovirus in Vastra Gotaland associated with recreational activities at two lakes during August 2004. Scandinavian Journal of Infectious Diseases 39, 323331.
57.Marion, JW et al. (2010) Association of gastrointestinal illness and recreational water exposure at an inland U.S. beach. Water Research 44, 47964804.
58.Byrne, L et al. (2014) Evaluating the use of multilocus variable number tandem repeat analysis of Shiga toxin-producing Escherichia coli O157 as a routine public health tool in England. PloS One 9, e85901.
59.Tam, CC et al. (2012) Longitudinal study of infectious intestinal disease in the UK (IID2 study): incidence in the community and presenting to general practice. Gut 61, 6977.

Keywords

A spatial and temporal analysis of risk factors associated with sporadic Shiga toxin-producing Escherichia coli O157 infection in England between 2009 and 2015

  • Richard Elson (a1) (a2) (a3), Katherine Grace (a4), Roberto Vivancos (a1) (a2) (a5), Claire Jenkins (a1), Goutam K. Adak (a1) (a2), Sarah J. O'Brien (a2) (a6) and Iain R. Lake (a2) (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed