We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
As optical parametric chirped pulse amplification has been widely adopted for the generation of extreme intensity laser sources, nonlinear crystals of large aperture are demanded for high-energy amplifiers. Yttrium calcium oxyborate (YCa4O(BO3)3, YCOB) is capable of being grown with apertures exceeding 100 mm, which makes it possible for application in systems of petawatt scale. In this paper, we experimentally demonstrated for the first time to our knowledge, an ultra-broadband non-collinear optical parametric amplifier with YCOB for petawatt-scale compressed pulse generation at 800 nm. Based on the SG-II 5 PW facility, amplified signal energy of approximately 40 J was achieved and pump-to-signal conversion efficiency was up to 42.3%. A gain bandwidth of 87 nm was realized and supported a compressed pulse duration of 22.3 fs. The near-field and wavefront aberration represented excellent characteristics, which were comparable with those achieved in lithium triborate-based amplifiers. These results verified the great potential for YCOB utilization in the future.
In 2016, an outbreak of paratyphoid fever occurred in 40 cases at Qingyang town, in China. A case-control study was carried out to determine the source of this outbreak. Case-control study was conducted to identify the risk factors of this outbreak. The cases were identified as patients with isolation of S. Paratyphi, controls were confirmed cases’ healthy classmates, colleagues or neighbors and matched by age (±5 y) and gender. Pulsed-field gel electrophoresis was performed to source tracking. Totally, 40 cases were reported: 24 cases were students, and 20 (20/24) of them were Qingyang High School students. For the case-control study, consuming Chinese egg pancakes was detected as a risk factor (OR1:1 = 5.000; 95% CI: 1.710-14.640), and hand-washing before meals was protective behavior compared with seldom hand-washing (OR1:1 = 23.256; 95% CI: 2.451-200.000). S. Paratyphi was cultured from a well water sample used for washing contents of the pancakes. Isolates from well water and paratyphoid cases showed the same PFGE patterns. Contaminated well water and Chinese egg pancakes were likely source and vehicle of this outbreak. Health education, especially handwashing, and food safety supervision should be promoted particularly in schools.
Previous studies have confirmed that miR-146a-5p overexpression suppresses neurogenesis, thereby enhancing depression-like behaviors. However, it remains unclear how miR-146a-5p dysregulation produces in vivo brain structural abnormalities in patients with major depressive disorder (MDD).
Methods
In this case–control study, we combined cortical morphology analysis of magnetic resonance imaging (MRI) and miR-146a-5p quantification to investigate the neuropathological effect of miR-146a-5p on cortical thickness in MDD patients. Serum-derived exosomes that were considered to readily cross the blood-brain barrier and contain miR-146a-5p were isolated for miRNA quantification. Moreover, follow-up MRI scans were performed in the MDD patients after 6 weeks of antidepressant treatment to further validate the clinical relevance of the relationship between miR-146a-5p and brain structural abnormalities.
Results
In total, 113 medication-free MDD patients and 107 matched healthy controls were included. Vertex-vise general linear model revealed miR-146a-5p-dependent cortical thinning in MDD patients compared with healthy individuals, i.e., overexpression of miR-146a-5p was associated with reduced cortical thickness in the left orbitofrontal cortex (OFC), anterior cingulate cortex, bilateral lateral occipital cortices (LOCs), etc. Moreover, this relationship between baseline miR-146a-5p and cortical thinning was nonsignificant for all regions in the patients who had received antidepressant treatment, and higher baseline miR-146a-5p expression was found to be related to greater longitudinal cortical thickening in the left OFC and right LOC.
Conclusions
The findings of this study reveal a relationship between miR-146a-5p overexpression and cortical atrophy and thus may help specify the in vivo mediating effect of miR-146a-5p dysregulation on brain structural abnormalities in patients with MDD.
As an internal time-keeping mechanism, circadian rhythm plays crucial role in maintaining homoeostasis when in response to nutrition change; meanwhile, branched-chain amino acids (BCAA) in skeletal muscle play an important role in preserving energy homoeostasis during fasting. Previous results from our laboratory suggested that fasting can influence peripheral circadian rhythm and BCAA metabolism in fish, but the relationship between circadian rhythm and BCAA metabolism, and whether circadian rhythm regulates BCAA metabolism to maintain physiological homoeostasis during fasting remains unclear. This study shows that the expression of fifteen core clock genes as well as KLF15 and Bcat2 is highly responsive to short-term fasting in fast muscle of Siniperca chuatsi, and the correlation coefficient between Clock and KLF15 expression is enhanced after fasting treatment. Furthermore, we demonstrate that the transcriptional expression of KLF15 is regulated by Clock, and the transcriptional expression of Bcat2 is regulated by KLF15 by using dual-luciferase reporter gene assay and Vivo-morpholinos-mediated gene knockdown technique. Therefore, fasting imposes a dynamic coordination of transcription between the circadian rhythm and BCAA metabolic pathways. The findings highlight the interaction between circadian rhythm and BCAA metabolism and suggest that fasting induces a switch in KLF15 expression through affecting the rhythmic expression of Clock, and then KLF15 promotes the transcription of Bcat2 to enhance the metabolism of BCAA, thus maintaining energy homoeostasis and providing energy for skeletal muscle as well as other tissues.
This paper studies the open-loop equilibrium strategies for a class of non-zero-sum reinsurance–investment stochastic differential games between two insurers with a state-dependent mean expectation in the incomplete market. Both insurers are able to purchase proportional reinsurance contracts and invest their wealth in a risk-free asset and a risky asset whose price is modeled by a general stochastic volatility model. The surplus processes of two insurers are driven by two standard Brownian motions. The objective for each insurer is to find the equilibrium investment and reinsurance strategies to balance the expected return and variance of relative terminal wealth. Incorporating the forward backward stochastic differential equations (FBSDEs), we derive the sufficient conditions and obtain the general solutions of equilibrium controls for two insurers. Furthermore, we apply our theoretical results to two special stochastic volatility models (Hull–White model and Heston model). Numerical examples are also provided to illustrate our results.
High-molecular-weight glutenin subunits (HMW-GS) contribute to dough elasticity and bread baking quality in wheat. In this study, wheat varieties were classified based on their HMW-GS composition into three groups: 1Dx5 (5 + 10, Gaoyou 8901, Xinmai 28, Xinmai 19, Xinmai 26 and Jinbaoyin), 1Dx2 (2 + 12, Zhoumai 24, Xinmai 9 and Yumai) and 1Dx4 (4 + 12, Aikang 58). Sequence analysis showed that 1Dx-GY8901, 1Dx-XM28, 1Dx-XM19 and 1Dx-XM26 were similar to the 1Dx5 gene and clustered on the same branch, while 1Dx-AK58, 1Dx-ZM24, 1Dx-JBY, 1Dx-YM, 1Dx-XM9 and 1Dx-JBY were more similar to the 1Dx2 gene and clustered on the same branch with 1Dx.2.2. There was a mutation of Ser to Cys at position S2, for an extra Cys in the repeat regions of 1Dx-XM19, 1Dx-XM26, 1Dx-XM28 and 1Dx-GY8901. The wheat HMW-GS genes exhibited similar percentages of α-helix, extended strand, β-turn and random coil structure, with ranges of 13.33–13.59, 4.77–5.78, 7.08–9.18 and 72.3–73.94%, respectively. Sequence conservation and the composition of HMW-GS subunits were also analysed for a series of strong gluten wheat varieties, Xinmai 9 (1, 7 + 8, 2 + 12), Xinmai 19 (1, 7 + 9, 5 + 10), Xinmai 26 (1, 7 + 8, 5 + 10) and Xinmai 28 (1, 7 + 9, 5 + 10). The results of this work should facilitate future breeding efforts and provide the theoretical basis for wheat quality improvement.
The reflection and transmission of an incident solitary wave with an arbitrary propagation direction due to an interface are investigated in the present paper. It is found that the propagation direction of the transmitted solitary wave depends on not only the propagation direction of the incident solitary wave, but also on the system parameters such as the masses, the number densities of dust particles in two different regions. Dependence of the transmission angle on the plasma parameters and incident angle are given analytically. Moreover, the number and amplitude of transmitted solitary waves and reflected solitary waves are also given when there is only one exact incident solitary wave. Our result has potential application, for example, we can devise an appropriate experiment to measure the differences of the masses and number densities of dust particles between two different regions by using our present results. Furthermore, we can also measure the electric charge of a dust particle by devising an appropriate experiment by using our results.
To investigate the association between folate levels and the risk of gestational diabetes mellitus (GDM) risk during the whole pregnancy.
Design:
In this retrospective cohort study of pregnant women, serum folate levels were measured before 24 gestational weeks (GW). GDM was diagnosed between 24th and 28th GW based on the criteria of the International Association of Diabetes and Pregnancy Study Groups. General linear models were performed to examine the association of serum folate with plasma glucose (i.e. linear regressions) and risk of GDM (i.e. log-binomial regressions) after controlling for confounders. Restricted cubic spline regression was conducted to test the dosage–response relationship between serum folate and the risk of GDM.
Setting:
A sigle, urban hospital in Shanghai, China.
Participants:
A total of 42 478 women who received antenatal care from April 2013 to March 2017 were included.
Results:
Consistent positive associations were observed between serum folate and plasma glucose levels (fasting, 1-h, 2-h). The adjusted relative risks (RR) and 95 % CI of GDM across serum folate quartiles were 1·00 (reference), 1·15 (95 % CI (1·04, 1·26)), 1·40 (95 % CI (1·27, 1·54)) and 1·54 (95 % CI (1·40, 1·69)), respectively (P-for-trend < 0·001). The positive association between serum folate and GDM remained when stratified by vitamin B12 (adequate v. deficient groups) and the GW of serum folate measurement (≤13 GW v. >13 GWs)
Conclusions:
The findings of this study may provide important evidence for the public health and clinical guidelines of pregnancy folate supplementation in terms of GDM prevention.
The essence of sub-critical transition of oscillatory boundary-layer flows is the non-modal growth of finite-amplitude disturbances. The current understanding of the mechanisms of the orderly and bypass transitions of oscillatory boundary-layer flows is limited. The present study adopts optimisation approaches to predict the maximum energy amplification of two- and three-dimensional perturbations in response to the optimal initial disturbance with or without external forcing. A series of direct numerical simulations are also performed to compare with the results obtained from the stability analyses. In particular, the optimal initial perturbation similar to a Tollmien–Schlichting (T–S) wave yields the largest transient growth under the combined effects of the Orr mechanism and inflectional point instability. With a considerable level of two-dimensional disturbance, the vortex tube nonlinearly develops from the T–S-like wave, and then either deforms into a $\varLambda$-vortex in the near-wall region or rolls up to the free shear region. The further burst of turbulence can follow the first pathway as K-type transition or the second one as vortex tube breakdown due to the elliptical instability. Additionally, non-modal growth can initiate the inception of streaky structures by favourable three-dimensional initial perturbations and/or forcing. The secondary instabilities responsible for the streak breakdown are classified as the varicose (symmetric) and sinuous (anti-symmetric) modes. Under a sufficiently high level of three-dimensional disturbance, the bypass transition is predominantly characterised by the formation of the sinuous mode and turbulent spots, which leads to the suppression of inflection point instability.
Pregnancy is a complex biological process. The establishment and maintenance of foetal–maternal interface are pivotal events. Decidual immune cells and inflammatory cytokines play indispensable roles in the foetal–maternal interface. The disfunction of decidual immune cells leads to adverse pregnancy outcome. Tumour necrosis factor (TNF)-α, a common inflammatory cytokine, has critical roles in different stages of normal pregnancy process. However, the relationship between the disorder of TNF-α and adverse pregnancy outcomes, including preeclampsia (PE), intrauterine growth restriction (IUGR), spontaneous abortion (SA), preterm birth and so on, is still indefinite. In this review, we thoroughly reviewed the effect of TNF-α disorder on pathological conditions. Moreover, we summarized the reports about the adverse pregnancy outcomes (PE, IUGR, SA and preterm birth) of using anti-TNF-α drugs (infliximab, etanercept and adalimumab, certolizumab and golimumab) currently in the clinical studies. Overall, IUGR, SA and preterm birth are the most common adverse pregnancy outcomes of anti-TNF-α drugs. Our review may provide insight for the immunological treatment of pregnancy-related complication, and help practitioners make informed decisions based on the current evidences.
Fact, as the logical starting point of evidence law, is empirical in nature. It is this very feature of fact that shapes the basic attribute of evidence, i.e., relevance, and determines that fact-finding is a process of empirical inference. Hence, the truth ascertained by the fact-finder through the “Mirror of Evidence” is probabilistic, characterized by the probability of standards of proof. The “objective fact theory”, which has enjoyed a dominant role in Chinese legal scholarship and judicial practice for a long time, confuses empirical fact with objective existence. As a result, the theory of “objective evidence” was established, and judicial notions such as “seeking truth from fact” and “the perpetrator of every murder case must be captured” are derived from this theory. They not only accounted for the deficiencies in Chinese evidence theories and system, but also led to judicial injustices. In recent years, the Chinese evidence theories and system have evinced a trend of transformation, nevertheless, this transformation is still unfinished.
Nicotine 2,6-dihydroxybenzoate is a nicotine salt that can be used as the nicotine source in tobacco products. X-ray powder diffraction data, unit-cell parameters, and space group for nicotine 2,6-dihydroxybenzoate, C10H15N2⋅C7H5O4, are reported [a = 7.726(8) Å, b = 11.724(3) Å, c = 9.437(1) Å, α = 90°, β = 109.081(3)°, γ = 90°, unit-cell volume V = 802.902 Å3, Z = 2, ρcal = 1.309 g cm−3, and space group P21] at room temperature. All measured lines were indexed and were consistent with the P21 space group.
The apple buprestid, Agrilus mali Matsumura, that was widespread in north-eastern China, was accidently introduced to the wild apple forest ecosystem in mountainous areas of Xinjiang, China. This invasive beetle feeds on domesticated apples and many species of Malus and presents a serious threat to ancestral apple germplasm sources and apple production worldwide. Estimating the potential area at risk of colonization by A. mali is crucial for instigating appropriate preventative management strategies, especially under global warming. We developed a CLIMEX model of A. mali to project this pest's potential distribution under current and future climatic scenarios in 2100 using CSIRO-Mk 3.0 GCM running the SRES A1B emissions scenario. Under current climate, A. mali could potentially invade neighbouring central Asia and eventually the mid-latitude temperate zone, and some subtropical areas and Pampas Steppe in the Southern Hemisphere. This potential distribution encompasses wild apples species, the ancestral germplasm for domesticated apples. With global warming, the potential distribution shifts to higher latitudes, with the potential range expanding slightly, though the overall suitability could decline in both hemispheres. In 2100, the length of the growing season of this pest in the mid-latitude temperature zone could increase by 1–2 weeks, with higher growth rates in most sites compared with current climate in mid-latitudes, at least in China. Our work highlights the need for strategies to prevent the spread of this pest, managing the threats to wild apples in Tian Shan Mountain forests in Central Asia, and commercial apple production globally. We discuss practical management tactics to reduce the spread of this pest and mitigate its impacts.
Previous analyses of grey and white matter volumes have reported that schizophrenia is associated with structural changes. Deep learning is a data-driven approach that can capture highly compact hierarchical non-linear relationships among high-dimensional features, and therefore can facilitate the development of clinical tools for making a more accurate and earlier diagnosis of schizophrenia.
Aims
To identify consistent grey matter abnormalities in patients with schizophrenia, 662 people with schizophrenia and 613 healthy controls were recruited from eight centres across China, and the data from these independent sites were used to validate deep-learning classifiers.
Method
We used a prospective image-based meta-analysis of whole-brain voxel-based morphometry. We also automatically differentiated patients with schizophrenia from healthy controls using combined grey matter, white matter and cerebrospinal fluid volumetric features, incorporated a deep neural network approach on an individual basis, and tested the generalisability of the classification models using independent validation sites.
Results
We found that statistically reliable schizophrenia-related grey matter abnormalities primarily occurred in regions that included the superior temporal gyrus extending to the temporal pole, insular cortex, orbital and middle frontal cortices, middle cingulum and thalamus. Evaluated using leave-one-site-out cross-validation, the performance of the classification of schizophrenia achieved by our findings from eight independent research sites were: accuracy, 77.19–85.74%; sensitivity, 75.31–89.29% and area under the receiver operating characteristic curve, 0.797–0.909.
Conclusions
These results suggest that, by using deep-learning techniques, multidimensional neuroanatomical changes in schizophrenia are capable of robustly discriminating patients with schizophrenia from healthy controls, findings which could facilitate clinical diagnosis and treatment in schizophrenia.
Hierarchical layered double hydroxide (HLDH) was synthesized by using sodium dodecyl sulfate (SDS) as a soft-template agent for the removal of two charged organic dyes (i.e. methylene blue (MB; cationic dye) and methyl orange (MO; anionic dye)). The experimental results based on response surface methodology (RSM) demonstrated distinct removal behaviours of HLDH towards these two dyes: (1) the maximum capacity was 416.7 mg g–1 for MO and 58.7 mg g–1 for MB at 25°C; (2) the increase in temperature could enhance MO removal significantly, whereas it had a negligible effect on the MB treatment process; and (3) rapid removal of MB (5 min) compared to MO (480 min) was observed. In addition, the removal process for both dyes was pH-independent. Multiple characterization techniques further revealed the removal mechanisms, demonstrating that SDS played a significant role in the removal of both dyes; that is, MO replaced SDS to be intercalated into the HLDH interlayer via anion exchange. MB could influence the –SO3 group of SDS, resulting in it modifying the electrodensity of SDS. It could then be further combined with an SDS anion (DS–) via hydrophobic and electrostatic interactions to form DS-MB monolayers. This work not only provides an efficient capture agent for charged dyes, but also offers a deep insight into the underlying removal mechanism.
The sudden outbreak of the COVID-19 pandemic has caused tremendous challenges to the medical system. The government and hospitals have taken robust measures to curb the spread of the deadly virus. Its impact on routine medical services is gradually being taken seriously.
Objective:
To identify the impact of the novel Coronavirus pandemic on emergency department (ED) patient flow and the performance of the routine ED service.
Methods:
This retrospective cohort study was undertaken in a tertiary public teaching hospital ED in Chengdu, China. ED data of patients were routinely collected to compare demographic, clinical characteristics and outcomes during an 8-week period from January 1, 2019 to February 25, 2020. Data were analyzed with the chi-square statistical test.
Results:
Over the study periods, there were 31855 and 25244 patients presented to the ED in 2019 and 2020 respectively. During the pandemic period in 2020, the daily number of average ED visits was lower than that in 2019 (430 ± 134.9 versus 572 ± 38.6, P = 0.00), with fewer triage 1&2 cases (145 ± 33.3 versus 178 ± 15.0, P = 0.00). Nevertheless, the mortality increased remarkably during the pandemic period in 2020 (0.2% versus 0.1%, P = 0.009), with higher APACHE II scores (28 versus 19, P = 0.022) and shorter ED elapsed time (0.2 versus 1.4 days, P = 0.016) among these death cases.
Conclusions:
The COVID-19 pandemic had an evident impact on the patient’s behavioral patterns and routine emergency services, which caused higher ED mortality.
No relevant studies have yet been conducted to explore which measurement can best predict the survival time of patients with cancer cachexia. This study aimed to identify an anthropometric measurement that could predict the 1-year survival of patients with cancer cachexia. We conducted a nested case–control study using data from a multicentre clinical investigation of cancer from 2013 to 2020. Cachexia was defined using the Fearon criteria. A total of 262 patients who survived less than 1 year and 262 patients who survived more than 1 year were included in this study. Six candidate variables were selected based on clinical experience and previous studies. Five variables, BMI, mid-arm circumference, mid-arm muscle circumference, calf circumference and triceps skin fold (TSF), were selected for inclusion in the multivariable model. In the conditional logistic regression analysis, TSF (P = 0·014) was identified as a significant independent protective factor. A similar result was observed in all patients with cancer cachexia (n 3084). In addition, a significantly stronger positive association between TSF and the 1-year survival of patients with cancer cachexia was observed in participants aged > 65 years (OR: 0·94; 95 % CI 0·89, 0·99) than in those aged ≤ 65 years (OR: 0·96; 95 % CI 0·93, 0·99; Pinteraction = 0·013) and in participants with no chronic disease (OR: 0·92; 95 % CI 0·87, 0·97) than in those with chronic disease (OR: 0·97; 95 % CI 0·94, 1·00; Pinteraction = 0·049). According to this study, TSF might be a good anthropometric measurement for predicting 1-year survival in patients with cancer cachexia.
The function and change of global soil carbon (C) reserves in natural ecosystems are key regulators of future carbon-climate coupling. Microbes play a critical role in soil carbon cycling and yet there is poor understanding of their roles and C metabolism flexibility in many ecosystems. We wanted to determine whether vegetation type and climate zone influence soil microbial community composition (fungi and bacteria) and carbon resource preference. We used a biomarker (phospholipid fatty acids, PLFAs), natural abundance 13C and 14C probing approach to measure soil microbial composition and C resource use, along a 1900–4167-m elevation gradient on Mount Gongga (7556 m asl), China. Mount Gongga has a vertical mean annual temperature gradient of 1.2–10.1°C and a diversity of typical vegetation zones in the Tibetan Plateau. Soils were sampled at 10 locations along the gradient capturing distinct vegetation types and climate zones from lowland subtropical-forest to alpine-meadow. PLFA results showed that microbial communities were composed of 2.1–51.7% bacteria and 2.0–23.2% fungi across the elevation gradient. Microbial biomass was higher and the ratio of soil fungi to bacteria (F/B) was lower in forest soils compared to meadow soils. δ13C varied between −33‰ to −17‰ with C3 plant carbon sources dominant across the gradient. Soil organic carbon (SOC) turnover did not vary among three soils we measured from three forest types (i.e., evergreen broadleaved subtropical, mixed temperate, coniferous alpine) and dissolved organic carbon (DOC) turnover decreased with soil elevation. Forest soil microbial PLFA 14C and δ13C measurements showed that forest type and climate were related to different microbial C use. The 14C values of microbial PLFAs i15, a15, 16:1, br17 decreased with elevation while those of C16:0, cyC17, and cyC19 did not show much difference among three forest ecosystems. Bacteria and bacillus represented by C16:1 and brC17 showed considerable microbial C metabolism flexibility and tended to use ancient carbon at higher altitudes. Anaerobes represented by cyC17 and cyC19 showed stronger C metabolism selectivity. Our findings reveal specific C source differences between and within soil microbial groups along elevation gradients.
Environmental hypoxia exposure causes fertility problems in human and animals. Compelling evidence suggests that chronic hypoxia impairs spermatogenesis and reduces sperm motility. However, it is unclear whether paternal hypoxic exposure affects fertilization and early embryo development. In the present study, we exposed male mice to high altitude (3200 m above sea level) for 7 or 60 days to evaluate the effects of hypoxia on sperm quality, zygotic DNA methylation and blastocyst formation. Compared with age-matched controls, hypoxia-treated males exhibited reduced fertility after mating with normoxic females as a result of defects in sperm motility and function. Results of in vitro fertilization (IVF) experiments revealed that 60 days’ exposure significantly reduced cleavage and blastocyst rates by 30% and 70%, respectively. Immunohistochemical staining of pronuclear formation indicated that the pronuclear formation process was disturbed and expression of imprinted genes was reduced in early embryos after paternal hypoxia. Overall, the findings of this study suggested that exposing male mice to hypoxia impaired sperm function and affected key events during early embryo development in mammals.