We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Aberration correction in the analytical transmission electron microscope is most closely associated with improvements in high-resolution imaging. In this paper, the combination of that technology with new system designs, which optimize both electron optics and x-ray detection, is shown to provide more than a tenfold increase in performance over the last 25 years.
A wide range of X-ray detectors and geometries are available today on transmission/scanning transmission analytical electron microscopes. While there have been numerous reports of their individual performance, no single experimentally reproducible metric has been proposed as a basis of comparison between the systems. In this paper, we detail modeling, experimental procedures, measurements, and specimens which can be used to provide a manufacturer-independent assessment of the performance of an analytical system. Using these protocols, the geometrical collection efficiency, system peaks, and minimum detection limits can be independently assessed and can be used to determine the best conditions to conduct modern hyperspectral and/or spectrally resolved tomographic analyses for an individual instrument. A simple analytical formula and specimen is presented which after suitable system calibrations can be used to experimentally determine the X-ray detector solid angle.
We present a specimen preparation procedure for atom-probe tomography using SemGlu from Kleindiek Nanotechnik, an adhesive that hardens under electron beam irradiation. The SemGlu adhesive is used in place of focused-ion-beam-induced deposition of organo-metallic Pt, W, or C to form a bond between the sample and the substrate during the specimen preparation procedure. We demonstrate the utility of this adhesive-based specimen preparation technique with a correlated atom-probe tomography-scanning transmission electron microscopy study of the iron-nickel alloy kamacite (ferrite, ɑ-iron) in the Bristol iron meteorite and two steel specimens.
The capability to perform liquid in situ transmission electron microscopy (TEM) experiments provides an unprecedented opportunity to examine the real-time processes of physical and chemical/electrochemical reactions during the interaction between metal surfaces and liquid environments. This work describes the requisite steps to make the technique fully analytical, from sample preparation, through modifications of the electrodes, characterization of electrolytes, and finally to electrochemical corrosion experiments comparing in situ TEM to conventional bulk cell and microcell configurations.
In recent years, an increasing number of studies utilizing in situ liquid and/or gaseous cell scanning/transmission electron microscopy (S/TEM) have been reported. Because of the difficulty in the preparation of suitable specimens, these environmental S/TEM studies have been generally limited to studies of nanoscale structured materials such as nanoparticles, nanowires, or sputtered thin films. In this paper, we present two methodologies which have been developed to facilitate the preparation of electron-transparent samples from conventional bulk metals and alloys for in situ liquid/gaseous cell S/TEM experiments. These methods take advantage of combining sequential electrochemical jet polishing followed by focused ion beam extraction techniques to create large electron-transparent areas for site-specific observation. As an example, we illustrate the application of this methodology for the preparation of in situ specimens from a cold-rolled Type 304 austenitic stainless steel sample, which was subsequently examined in both 1 atm of air as well as fully immersed in a H2O environment in the S/TEM followed by hyperspectral imaging. These preparation techniques can be successfully applied as a general procedure for a wide range of metals and alloys, and are suitable for a variety of in situ analytical S/TEM studies in both aqueous and gaseous environments.
Modern analytical electron microscopes equipped with silicon drift detectors now allow for a wide range of geometrical configurations capable of performing quantitative X-ray spectrometry. Recent work has improved the collection solid angles of these detectors, however, the impact of increasing the solid angle on detection sensitivity as measured by the peak/background ratio has not been addressed. This work compares theoretical and experimental peak/background ratios for incident electron energies in the range of 20–200 keV, with X-ray detectors in both conventional orientations (on the electron entrance surface) as well as new geometries (the electron exit surface). The implications of these parameters on detectability limits for the next generations of “Lab-in-the-Gap” analytical microscope are also considered. It was found that theoretical calculations of the angular distribution of bremsstrahlung and their effects on the peak/background ratio match well with experimental measurements, and indicate that new geometries which can result in large solid angles provided an added benefit in addition to increased characteristic signal, namely increased sensitivity for the analyst.