We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The epidemiology of community-onset Staphylococcus aureus infections is evolving. We performed a multihospital, retrospective study of pediatric community-onset S. aureus susceptibilities between 2015 and 2020. Oxacillin and clindamycin susceptibility remained lower at 67% and 75%, respectively. Tetracycline and trimethoprim-sulfamethoxazole susceptibility remained high at >90%. Oxacillin susceptibility was highest in invasive infections.
The optimal timing of blood culture (BCx) sets collection has not been evaluated with continuous BCx detection systems. The yield of BCx was similar between short intervals (median, 3 minutes) and longer intervals (median, 16 or 43 minutes) among 5,856 BCx, except for improved polymicrobial bacteremia detection with long-interval BCx.
To utilise a community-based participatory approach in the design and implementation of an intervention targeting diet-related health problems on Navajo Nation.
Design:
A dual strategy approach of community needs/assets assessment and engagement of cross-sectorial partners in programme design with systematic cyclical feedback for programme modifications.
Setting:
Navajo Nation, USA.
Participants:
Navajo families with individuals meeting criteria for programme enrolment. Participant enrolment increased with iterative cycles.
Results:
The Navajo Fruit and Vegetable Prescription (FVRx) Programme.
Conclusions:
A broad, community-driven and culturally relevant programme design has resulted in a programme able to maintain core programmatic principles, while also allowing for flexible adaptation to changing needs.
To examine neonatal risk factors associated with recurrent Staphylococcus aureus colonization and to determine the genetic relatedness of S. aureus strains cultured from neonates before and after decolonization.
Study design
Single-center retrospective cohort study of neonates admitted to the neonatal intensive care unit (NICU) from April 2013 to December 2015, during which weekly nasal cultures from hospitalized NICU patients were routinely obtained for S. aureus surveillance.
Setting
Johns Hopkins Hospital’s 45-bed level IV NICU in Baltimore, Maryland.
Methods
Demographics and clinical data were collected on all neonates admitted to the NICU with S. aureus nasal colonization who underwent mupirocin-based decolonization during the study period. A decolonized neonate was defined as a neonate with ≥1 negative culture after intranasal mupirocin treatment. Pulsed-field gel electrophoresis was used for strain typing.
Results
Of 2,060 infants screened for S. aureus, 271 (13%) were colonized, and 203 of these 271 (75%) received intranasal mupirocin. Of those treated, 162 (80%) had follow-up surveillance cultures, and 63 of these 162 infants (39%) developed recurrent colonization after treatment. The S. aureus strains were often genetically similar before and after decolonization. The presence of an endotracheal tube or nasal cannula/mask was associated with an increased risk of recurrent S. aureus colonization (hazard ratio [HR], 2.65; 95% confidence interval [CI], 1.19–5.90; and HR, 2.21; 95% CI, 1.02–4.75, respectively).
Conclusion
Strains identified before and after decolonization were often genetically similar, and the presence of invasive respiratory devices increased the risk of recurrent S. aureus nasal colonization in neonates. To improve decolonization efficacy, alternative strategies may be needed.
The ideal sampling method and benefit of qualitative versus quantitative culture for carbapenem-resistant Enterobacteriaceae (CRE) recovery in hospitalized patient rooms and bathrooms is unknown. Although the use of nylon-flocked swabs improved overall gram-negative organism recovery compared with cellulose sponges, they were similar for CRE recovery. Quantitative culture was inferior and unrevealing beyond the qualitative results.
To determine the prevalence and acquisition of extended-spectrum β-lactamases (ESBLs), plasmid-mediated AmpCs (pAmpCs), and carbapenemases (“MDR Enterobacteriaceae”) colonizing children admitted to a pediatric intensive care unit (PICU).
DESIGN
Prospective study.
SETTING
40-bed PICU.
METHODS
Admission and weekly thereafter rectal surveillance swabs were collected on all pediatric patients during a 6-month study period. Routine phenotypic identification and antibiotic susceptibility testing were performed. Enterobacteriaceae displaying characteristic resistance profiles underwent further molecular characterization to identify genetic determinants of resistance likely to be transmitted on mobile genetic elements and to evaluate relatedness of strains including DNA microarray, multilocus sequence typing, repetitive sequence-based PCR, and hsp60 sequencing typing.
RESULTS
Evaluating 854 swabs from unique children, the overall prevalence of colonization with an MDR Enterobacteriaceae upon admission to the PICU based on β-lactamase gene identification was 4.3% (n=37), including 2.8% ESBLs (n=24), 1.3% pAmpCs (n=11), and 0.2% carbapenemases (n=2). Among 157 pediatric patients contributing 603 subsequent weekly swabs, 6 children (3.8%) acquired an incident MDR Enterobacteriaceae during their PICU stay. One child acquired a pAmpC (E. coli containing blaDHA) related to an isolate from another patient.
CONCLUSIONS
Approximately 4% of children admitted to a PICU were colonized with MDR Enterobacteriaceae (based on β-lactamase gene identification) and an additional 4% of children who remained in the PICU for at least 1 week acquired 1 of these organisms during their PICU stay. The acquired MDR Enterobacteriaceae were relatively heterogeneous, suggesting that a single source was not responsible for the introduction of these resistance mechanisms into the PICU setting.
Staphylococcus aureus is a common cause of healthcare-associated infections in neonates.
OBJECTIVE
To examine the impact of methicillin-susceptible S. aureus (MSSA) decolonization on the incidence of MSSA infection and to measure the prevalence of mupirocin resistance.
METHODS
We retrospectively identified neonates admitted to a tertiary care neonatal intensive care unit (NICU) from April 1, 2011, through September 30, 2014. We compared rates of MSSA-positive cultures and infections before and after implementation of an active surveillance culture and decolonization intervention for MSSA-colonized neonates. We used 2 measurements to identify the primary outcome, NICU-attributable MSSA: (1) any culture sent during routine clinical care that grew MSSA and (2) any culture that grew MSSA and met criteria of the National Healthcare Safety Network’s healthcare-associated infection surveillance definitions. S. aureus isolates were tested for mupirocin susceptibility. We estimated incidence rate ratios using interrupted time-series models.
RESULTS
Before and after the intervention, 1,523 neonates (29,220 patient-days) and 1,195 neonates (22,045 patient-days) were admitted to the NICU, respectively. There was an immediate reduction in the mean quarterly incidence rate of NICU-attributable MSSA-positive clinical cultures of 64% (incidence rate ratio, 0.36 [95% CI, 0.19–0.70]) after implementation of the intervention, and MSSA-positive culture rates continued to decrease by 21% per quarter (incidence rate ratio, 0.79 [95% CI, 0.74–0.84]). MSSA infections also decreased by 73% immediately following the intervention implementation (incidence rate ratio, 0.27 [95% CI, 0.10–0.79]). No mupirocin resistance was detected.
CONCLUSION
Active surveillance cultures and decolonization may be effective in decreasing S. aureus infections in NICUs.
Infect. Control Hosp. Epidemiol. 2016;37(4):381–387
Combination antibiograms can be used to evaluate organism cross-resistance among multiple antibiotics. As combination therapy is generally favored for the treatment of carbapenemase-producing Enterobacteriaceae (CPE), combination antibiograms provide valuable information about the combination of antibiotics that achieve the highest likelihood of adequate antibiotic coverage against CPE.
Infect. Control Hosp. Epidemiol. 2015;36(12):1458–1460
Clostridium difficile infection (CDI) in hospitalized patients is generally attributed to the current stay, but recent studies reveal high C. difficile colonization rates on admission.
OBJECTIVE
To determine the rate of colonization with toxigenic C. difficile among intensive care unit patients upon admission as well as acquired during hospitalization, and the risk of subsequent CDI.
METHODS
Prospective cohort study from April 15 through July 8, 2013. Adults admitted to an intensive care unit within 48 hours of admission to the Johns Hopkins Hospital, Baltimore, Maryland, were screened for colonization with toxigenic C. difficile. The primary outcome was risk of developing CDI.
RESULTS
Among 542 patients, 17 (3.1%) were colonized with toxigenic C. difficile on admission and an additional 3 patients were found to be colonized during hospitalization. Both colonization with toxigenic C. difficile on admission and colonization during hospitalization were associated with an increased risk for development of CDI (relative risk, 10.29 [95% CI, 2.24–47.40], P=.003; and 15.66 [4.01–61.08], P<.001, respectively). Using multivariable analysis, colonization on admission and colonization during hospitalization were independent predictors of CDI (relative risk, 8.62 [95% CI, 1.48–50.25], P=.017; and 10.93 [1.49–80.20], P=.019, respectively), while adjusting for potential confounders.
CONCLUSIONS
In intensive care unit patients, colonization with toxigenic C. difficile is an independent risk factor for development of subsequent CDI. Further studies are needed to identify populations with higher toxigenic C. difficile colonization rates possibly benefiting from screening or avoidance of agents known to promote CDI.
Infect. Control Hosp. Epidemiol. 2015;36(11):1324–1329
We evaluated the impact of nursing education and stewardship interventions on Clostridium difficile testing and treatment appropriateness. Diarrhea documentation increased for those with positive tests (45% to 70%); pretreatment laxative use decreased (50% to 19%). Appropriate treatment increased for severe infection (57% to 93%), but all asymptomatically colonized patients were treated.
In units that bathe patients daily with chlorhexidine gluconate (CHG), organisms causing central line–associated bloodstream infections (CLABSIs) were more likely to have reduced CHG susceptibility than organisms causing CLABSIs in units that do not bathe patients daily with CHG (86% vs 64%; P = .028). Surveillance is needed to detect reduced CHG susceptibility with widespread CHG use.
Infect Control Hosp Epidemiol 2014;35(9):1183-1186
To characterize the epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) transmission and infections in a level IIIC neonatal intensive care unit (NICU) and identify barriers to MRSA control.
Setting and Design.
Retrospective cohort study in a university-affiliated NICU with an MRSA control program including weekly nares cultures of all neonates and admission nares cultures for neonates transferred from other hospitals or admitted from home.
Methods.
Medical records were reviewed to identify neonates with NICU-acquired MRSA colonization or infection between April 2007 and December 2011. Compliance with hand hygiene and an MRSA decolonization protocol were monitored. Relatedness of MRSA strains were assessed using pulsed-field gel electrophoresis (PFGE).
Results.
Of 3,536 neonates, 74 (2.0%) had a culture grow MRSA, including 62 neonates with NICU-acquired MRSA. Nineteen of 74 neonates (26%) had an MRSA infection, including 8 who became infected before they were identified as MRSA colonized, and 11 of 66 colonized neonates (17%) developed a subsequent infection. Of the 37 neonates that underwent decolonization, 6 (16%) developed a subsequent infection, and 7 of 14 (50%) that remained in the NICU for 21 days or more became recolonized with MRSA. Using PFGE, there were 14 different strain types identified, with USA300 being the most common (31%).
Conclusions.
Current strategies to prevent infections—including active identification and decolonization of MRSA-colonized neonates—are inadequate because infants develop infections before being identified as colonized or after attempted decolonization. Future prevention efforts would benefit from improving detection of MRSA colonization, optimizing decolonization regimens, and identifying and interrupting reservoirs of transmission.
We evaluated 222 hospitalized patients whose clinical isolates were tested using standard methods and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF). MALDI-TOF could have reduced time to appropriate therapy for 28.8% and 44.6% patients based on the treating physician's choices and stewardship team recommendations, respectively. Clinicians should be aware of scenarios in which MALDI-TOF can optimize antibiotic therapy.