We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The use of molecular markers is one of the most sensitive, powerful technologies for genetic purity assessment of seed lots. In this study, we aimed to develop a set of insertion and deletion (InDel) markers, through bioinformatics approaches, that may effectively distinguish three representative japonica rice (Oryza sativa L.) varieties, Nipponbare, Taichung 65 and Zhonghua11. The published whole-genome sequences of these varieties were aligned using BWA-MEM, followed by manual inspection for InDels of more than ten base pairs in size with the tview function of SAMtools. A set of ten InDel markers were thus identified and then validated by PCR in the three japonica rice varieties and their intercross F1 hybrids. Results showed that the InDel markers developed in this study could reliably distinguish these three japonica rice varieties. These molecular markers together with the detection method developed here can be applied to DNA-based genetic purity evaluation in rice breeding.
Sleep disturbance is an important factor in the pathophysiology and progression of psychiatric disorders, but whether it is a cause, or a downstream effect is still not clear.
Methods
To investigate causal relationships between three sleep-associated traits and seven psychiatric diseases, we used genetic variants related to insomnia, chronotype and sleep duration to perform a two-sample bidirectional Mendelian randomisation analysis. Summary-level data on psychiatric disorders were extracted from the Psychiatric Genomics Consortium. Effect estimates were obtained by using the inverse-variance-weighted (IVW), weights modified IVW, weighted-median methods, MR-Egger regression, MR pleiotropy residual sum and outlier (MR-PRESSO) test and Robust Adjusted Profile Score (RAPS).
Results
The causal odds ratio (OR) estimate of genetically determined insomnia was 1.33 (95% confidence interval (CI) 1.22–1.45; p = 5.03 × 10−11) for attention-deficit/hyperactivity disorder (ADHD), 1.31 (95% CI 1.25–1.37; p = 6.88 × 10−31) for major depressive disorder (MDD) and 1.32 (95% CI 1.23–1.40; p = 1.42 × 10−16) for post-traumatic stress disorder (PTSD). There were suggestive inverse associations of morningness chronotype with risk of MDD and schizophrenia (SCZ). Genetically predicted sleep duration was also nominally associated with the risk of bipolar disorder (BD). Conversely, PTSD and MDD were associated with an increased risk of insomnia (OR = 1.06, 95% CI 1.03–1.10, p = 7.85 × 10−4 for PTSD; OR = 1.37, 95% CI 1.14–1.64; p = 0.001 for MDD). A suggestive inverse association of ADHD and MDD with sleep duration was also observed.
Conclusions
Our findings provide evidence of potential causal relationships between sleep disturbance and psychiatric disorders. This suggests that abnormal sleep patterns may serve as markers for psychiatric disorders and offer opportunities for prevention and management in psychiatric disorders.
Tuberculosis (TB) remains a global public health threat. Misdiagnosis and delayed therapy of sputum smear-negative TB can affect the treatment outcomes and promote pathogen transmission. The application of Xpert MTB/RIF assay in bronchoalveolar lavage fluid (BALF) has been recommended but needs clinical evidence. We carried out a prospective study in the Nanjing Public Health Medical Center from September 2018 to August 2019. Pulmonary tuberculosis (PTB) patients were enrolled in the study if they had negative results of sputum smear. We compared the performance of Xpert MTB/RIF assay in sputum and BALF using sputum culture as the reference. In addition to this, we applied parallel tests using sputum culture, sputum-based Xpert MTB/RIF assay and BALF-based Xpert MTB/RIF assay to jointly detect smear-negative PTB using clinical diagnosis as the reference. With mycobacterial culture as the reference standard, Xpert MTB/RIF of BALF showed a higher sensitivity (14/16, 87.5%), but a relatively lower specificity (57/92, 62.0%). Xpert MTB/RIF of sputum showed relatively lower sensitivity (6/10, 60.0%) and higher specificity (63/88, 71.6%). Compared with sputum culture, Xpert MTB /RIF assay reduced the median detection time of MTB from 30 to 0 days, which significantly shortened the diagnosis time of the smear-negative TB patients. Among the combined detections, the positive detection proportion was improved with significant differences comparing with sputum culture only, from 11.1% (10/90) to 46.7% (42/90) (P < 0.05). Our study showed Xpert MTB/RIF in BALF had a better performance in detecting MTB of smear-negative patients.
A homogeneous structured CoCrNi medium-entropy alloy was synthesized by gas atomization and spark plasma sintering (SPS). The mechanical properties, corrosion resistance, and magnetic properties were reported in this study. The as-atomized CoCrNi MEA powder, with a spherical morphology in shape and a mean particle diameter of 61 μm, consisted of a single face-centered cubic (FCC) phase with homogeneous distributions of Co, Cr, and Ni elements. Also, the cross-sectional microstructure of powder particles gradually transformed from fully cellular structure into equiaxed-type structure with increasing particle size. After being sintered by SPS, the CoCrNi MEA consisted of a single FCC phase with a mean grain size of 20.8 μm. Meanwhile, the CoCrNi MEA can capable of offering an ultimate tensile strength of 799 MPa, yield strength of 352 MPa, elongation of 53.6%, and hardness of 195.3 HV. In addition, this MEA showed superior corrosion resistance to that of 304 SS (stainless steel) in both 0.5 mol/L HCl and 1 mol/L NaOH solutions. The magnetization loop indicated that this MEA has good soft magnetic properties.
High-fidelity simulations of wave breaking processes are performed with a focus on the small-scale structures of breaking waves, such as bubble/droplet size distributions. Very large grids (up to 12 billion grid points) are used in order to resolve the bubbles/droplets in breaking waves at the scale of hundreds of micrometres. Wave breaking processes and spanwise three-dimensional interface structures are identified. It is speculated that the Görtler type centrifugal instability is likely more relevant to the plunging wave breaking instabilities. Detailed air entrainment and spray formation processes are shown. The bubble size distribution shows power-law scaling with two different slopes which are separated by the Hinze scale. The droplet size distribution also shows power-law scaling. The computational results compare well with the available experimental and computational data in the literature. Computational difficulties and challenges for large grid simulations are addressed.
Fast linear transformer driver (FLTD) has some advantages in repetitive operation compared with traditional pulsed power generators. However, different types of gas switches applied in the field of pulsed power technology in recent years cannot reach the requirements of repetitive operation of FLTD. Therefore, the capability of repetitive operation of a multigap gas switch has been investigated in a circuit similar to the basic discharge loop named as brick in this paper. The switch has been triggered more than 2000 times and the distribution of delay time and switch jitter are analyzed and reported. Also, the self-breakdown voltages of the switch during different segments of the triggered breakdown experiment have been tested. The experimental results indicate that the delay time obeys the Gauss distribution and the jitter of 2000 times of discharge is about 2.3 ns.
The patterned nc-Si/a-SiNx:H superlattices were fabricated by using laser interference crystallization method and investigated with atomic force microscope (AFM), micro-Raman spectroscope, cross-section transmission electron microscope (TEM) and high resolution electron microscope (HREM). We found that after laser irradiation, self-assembled Si nanocrystallites (nc-Si) are formed within the initial a-Si:H sublayers, moreover, in the plane parallel to the surface of the films, these nc-Si orderly distribute in the certain regions with the same periodicity of 2.0 µm as phase shifting mask grating. Based on the structural analyses, the crystallization mechanism and the origin of the self-assembled phenomena are briefly discussed.