We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Multilayer dielectric gratings typically remove multiple-grating pillars after picosecond laser irradiation; however, the dynamic formation process of the removal is still unclear. In this study, the damage morphologies of multilayer dielectric gratings induced by an 8.6-ps laser pulse were closely examined. The damage included the removal of a single grating pillar and consecutive adjacent grating pillars and did not involve the destruction of the internal high-reflection mirror structure. Comparative analysis of the two damage morphological characteristics indicated the removal of adjacent pillars was related to an impact process caused by the eruption of localized materials from the left-hand pillar, exerting impact pressure on its adjacent pillars and eventually resulting in multiple pillar removal. A finite-element strain model was used to calculate the stress distribution of the grating after impact. According to the electric field distribution, the eruptive pressure of the dielectric materials after ionization was also simulated. The results suggest that the eruptive pressure resulted in a stress concentration at the root of the adjacent pillar that was sufficient to cause damage, corresponding to the experimental removal of the adjacent pillar from the root. This study provides further understanding of the laser-induced damage behavior of grating pillars and some insights into reducing the undesirable damage process for practical applications.
Despite increasing knowledge on the neuroimaging patterns of eating disorder (ED) symptoms in non-clinical populations, studies using whole-brain machine learning to identify connectome-based neuromarkers of ED symptomatology are absent. This study examined the association of connectivity within and between large-scale functional networks with specific symptomatic behaviors and cognitions using connectome-based predictive modeling (CPM).
Methods
CPM with ten-fold cross-validation was carried out to probe functional networks that were predictive of ED-associated symptomatology, including body image concerns, binge eating, and compensatory behaviors, within the discovery sample of 660 participants. The predictive ability of the identified networks was validated using an independent sample of 821 participants.
Results
The connectivity predictive of body image concerns was identified within and between networks implicated in cognitive control (frontoparietal and medial frontal), reward sensitivity (subcortical), and visual perception (visual). Crucially, the set of connections in the positive network related to body image concerns identified in one sample was generalized to predict body image concerns in an independent sample, suggesting the replicability of this effect.
Conclusions
These findings point to the feasibility of using the functional connectome to predict ED symptomatology in the general population and provide the first evidence that functional interplay among distributed networks predicts body shape/weight concerns.
Given a graph
$H$
and a positive integer
$n$
, the Turán number
$\mathrm{ex}(n,H)$
is the maximum number of edges in an
$n$
-vertex graph that does not contain
$H$
as a subgraph. A real number
$r\in (1,2)$
is called a Turán exponent if there exists a bipartite graph
$H$
such that
$\mathrm{ex}(n,H)=\Theta (n^r)$
. A long-standing conjecture of Erdős and Simonovits states that
$1+\frac{p}{q}$
is a Turán exponent for all positive integers
$p$
and
$q$
with
$q\gt p$
.
In this paper, we show that
$1+\frac{p}{q}$
is a Turán exponent for all positive integers
$p$
and
$q$
with
$q \gt p^{2}$
. Our result also addresses a conjecture of Janzer [18].
Neuroimaging studies on major depressive disorder (MDD) have identified an extensive range of brain structural abnormalities, but the exact neural mechanisms associated with MDD remain elusive. Most previous studies were performed with voxel- or surface-based morphometry which were univariate methods without considering spatial information across voxels/vertices.
Methods
Brain morphology was investigated using voxel-based morphometry (VBM) and source-based morphometry (SBM) in 1082 MDD patients and 990 healthy controls (HCs) from the REST-meta-MDD Consortium. We first examined group differences in regional grey matter (GM) volumes and structural covariance networks between patients and HCs. We then compared first-episode, drug-naïve (FEDN) patients, and recurrent patients. Additionally, we assessed the effects of symptom severity and illness duration on brain alterations.
Results
VBM showed decreased GM volume in various regions in MDD patients including the superior temporal cortex, anterior and middle cingulate cortex, inferior frontal cortex, and precuneus. SBM returned differences only in the prefrontal network. Comparisons between FEDN and recurrent MDD patients showed no significant differences by VBM, but SBM showed greater decreases in prefrontal, basal ganglia, visual, and cerebellar networks in the recurrent group. Moreover, depression severity was associated with volumes in the inferior frontal gyrus and precuneus, as well as the prefrontal network.
Conclusions
Simultaneous application of VBM and SBM methods revealed brain alterations in MDD patients and specified differences between recurrent and FEDN patients, which tentatively provide an effective multivariate method to identify potential neurobiological markers for depression.
The present study evaluated effects of dietary supplementation with tryptophan (Trp) on muscle growth, protein synthesis and antioxidant capacity in hybrid catfish Pelteobagrus vachelli♀ × Leiocassis longirostris♂. Fish were fed six different diets containing 2·6 (control), 3·1, 3·7, 4·2, 4·7 and 5·6 g Trp/kg diet for 56 d, respectively. Results showed that dietary Trp significantly (1) improved muscle protein content, fibre density and frequency of fibre diameter; (2) up-regulated the mRNA levels of PCNA, myf5, MyoD1, MyoG, MRF4, IGF-I, IGF-II, IGF-IR, PIK3Ca, TOR, 4EBP1 and S6K1; (3) increased phosphorylation levels of AKT, TOR and S6K1; (4) decreased contents of MDA and PC, and increased activities of CAT, GST, GR, ASA and AHR; (5) up-regulated mRNA levels of CuZnSOD, CAT, GST, GPx, GCLC and Nrf2, and decreased Keap1 mRNA level; (6) increased nuclear Nrf2 protein level and the intranuclear antioxidant response element-binding ability, and reduced Keap1 protein level. These results indicated that dietary Trp improved muscle growth, protein synthesis as well as antioxidant capacity, which might be partly related to myogenic regulatory factors, IGF/PIK3Ca/AKT/TOR and Keap1/Nrf2 signalling pathways. Finally, based on the quadratic regression analysis of muscle protein and MDA contents, the optimal Trp requirements of hybrid catfish (21·82–39·64 g) were estimated to be 3·94 and 3·93 g Trp/kg diet (9·57 and 9·54 g/kg of dietary protein), respectively.
The South Qinling block, a segment of the Yangtze craton involved in the Qinling–Dabie orogen, is critical for understanding the tectonic evolution of eastern China. However, the tectonic setting of the South Qinling block and the northern margin of the Yangtze block during middle Neoproterozoic time has long been the subject of debate, with two distinctly different models (continental rift or volcanic arc) proposed. Here, a comprehensive study of zircon U–Pb geochronology and geochemistry has been carried out on the Chengwan granitic pluton from the Suizao terrane in the South Qinling block. The granites are monzogranite and syenogranite in lithology, and are mainly composed of potash feldspar, quartz, plagioclase and biotite. This suite has long been regarded as a Palaeozoic magmatic pluton, but zircon U–Pb ages of 809 ± 9 Ma and 816 ± 4 Ma are obtained in this study. The granites are metaluminous to strongly peraluminous with high alkali contents, and exhibit highly fractionated features, including high SiO2, low Zr/Hf ratios, rare earth element tetrad effects and enrichment of K and Rb. They show Hf–Nd isotopic decoupling, which may be genetically related to their petrogenetic process. Based on the geochemical features and the positive εHf(t) values of the zircons, it is indicated that the granites may have been derived from partial melting of juvenile tonalitic rocks by biotite breakdown under fluid-absent conditions. The Chengwan granite geochemically belongs to the A2-subtype granites, suggesting that it might have formed in a post-orogenic tectonic setting. The highly fractionated A-type granite in this study may represent extensional collapse shortly after the collisional events in the South Qinling block, and thus indicate a tectonic regime switch, from compression to extension, as early as middle Neoproterozoic time. Integrating our new data with documented magmatic, metamorphic and sedimentary events during middle Neoproterozoic time in the region may support a continental rift model, and argues against arc models.
The dependence of fishbone cycle on energetic particle intensity has been investigated in EAST low-magnetic-shear plasmas. It is observed that the fishbone mode growth rate, saturation amplitude as well as fishbone cycle frequency clearly increase with increasing neutral beam injection (NBI) power. Moreover, enhanced electron density and temperature perturbations as well as energetic particle loss were observed with greater injected NBI power. Simulation results using M3D-K code show that as the NBI power increases, the resonant frequency and the energy of the resonant particles become higher, and the saturation amplitude of the mode also changes, due to the non-perturbative energetic particle contribution. The relationship between the calculated energetic particle pressure ratio and fishbone cycle frequency is obtained as ${f_{\textrm{FC}}} = 2.2{(1000{\beta _{\textrm{ep,calc}}} - 0.1)^{5.9 \pm 0.5}}$. Results consistent with the experimental observations have been achieved based on a predator–prey model.
Having enterprises engaged in environmentally friendly behavior is an important part of reducing negative environmental impacts. This study makes a quantitative analysis against the backdrop of China's transitional economic system. The results show that politically-connected enterprises significantly reduce environmental expenditure, but this only holds for state-owned enterprises; private enterprises with political connections spend significantly more. Analysis of the efficiency of environmental expenditure indicates that, for private enterprises, environmental spending is used as a way to maintain political connections, with rent-seeking as the likely motivation. Politically-connected private enterprises have not reduced their emissions to the same extent as state-owned enterprises, despite increased expenditure. Given the scale of environmental degradation in China during a period of massive economic and social upheaval, the results of this analysis provide a quantitative case for policy change: governments should shift focus to the results that environmental spending produces.
In the current research, a 60-d experiment was conducted with the purpose of exploring the impacts of methionine (Met) on growth performance, muscle nutritive deposition, muscle fibre growth and type I collagen synthesis as well as the related signalling pathway. Six diets (iso-nitrogenous) differing in Met concentrations (2·54, 4·85, 7·43, 10·12, 12·40 and 15·11 g/kg diets) were fed to 540 grass carp (178·47 (SD 0·36) g). Results showed (P < 0·05) that compared with Met deficiency, optimal level of dietary Met (1) increased feed intake, feed efficiency, specific growth rate and percentage weight gain (PWG); (2) increased fish muscle protein, lipid and free amino acid contents and improved fish muscle fatty acid profile as well as increased protein content in part associated with the target of rapamycin complex 1 (TORC1)/S6K1 signalling pathway; (3) increased the frequency distribution of muscle fibre with >50 µm of diameter; (4) increased type I collagen synthesis partly related to the transforming growth factor-β1/Smads and CK2/TORC1 signalling pathways. In conclusion, dietary Met improved muscle growth, which might be due to the regulation of muscle nutritive deposition, muscle fibre growth and type I collagen synthesis-related signal molecules. Finally, according to PWG and muscle collagen content, the Met requirements for on-growing grass carp (178–626 g) were estimated to be 9·56 g/kg diet (33·26 g/kg protein of diet) and 9·28 g/kg diet (32·29 g/kg of dietary protein), respectively.
Many emotional experiences such as anxiety and depression are influenced by negative affect (NA). NA has both trait and state features, which play different roles in physiological and mental health. Attending to NA common to various emotional experiences and their trait-state features might help deepen the understanding of the shared foundation of related emotional disorders.
Methods
The principal component of five measures was calculated to indicate individuals' NA level. Applying the connectivity-based correlation analysis, we first identified resting-state functional connectives (FCs) relating to NA in sample 1 (n = 367), which were validated through an independent sample (n = 232; sample 2). Next, based on the variability of FCs across large timescale, we further divided the NA-related FCs into high- and low-variability groups. Finally, FCs in different variability groups were separately applied to predict individuals' neuroticism level (which is assumed to be the core trait-related factor underlying NA), and the change of NA level (which represents the state-related fluctuation of NA).
Results
The low-variability FCs were primarily within the default mode network (DMN) and between the DMN and dorsal attention network/sensory system and significantly predicted trait rather than state NA. The high-variability FCs were primarily between the DMN and ventral attention network, the fronto-parietal network and DMN/sensory system, and significantly predicted the change of NA level.
Conclusions
The trait and state NA can be separately predicted by stable and variable spontaneous FCs with different attentional processes and emotion regulatory mechanisms, which could deepen our understanding of NA.
The experiment was conducted to investigate the effects of dietary threonine (Thr) on growth performance and muscle growth, protein synthesis and antioxidant-related signalling pathways of hybrid catfish Pelteobagrus vachelli♀ × Leiocassis longirostris♂. A total of 1200 fish (14·19 (se 0·13) g) were randomly distributed into six groups with four replicates each, fed six diets with graded level of Thr (9·5, 11·5, 13·5, 15·4, 17·4 and 19·3 g/kg diets) for 56 d. Results showed (P < 0·05) that dietary Thr (1) increased percentage weight gain, specific growth rate, feed efficiency and protein efficiency ratio; (2) up-regulated growth hormone (GH), insulin-like growth factor 1 (IGF-1), proliferating cell nuclear antigen, myogenic regulation factors (MyoD, Myf5, MyoG and Mrf4) and myosin heavy chain (MyHC) mRNA levels; (3) increased muscle protein content via regulating the protein kinase B/target of rapamycin signalling pathway and (4) decreased malondialdehyde and protein carbonyl contents, increased catalase, glutathione-S-transferase, glutathione reductase and GSH activities, up-regulated mRNA levels of antioxidant enzymes related to NFE2-related factor 2 and γ-glutamylcysteine ligase catalytic subunit. These results suggest that Thr has a potential role to improve muscle growth and protein synthesis, which might be due to the regulation of GH-IGF system, muscle growth-related gene, antioxidative capacity and protein synthesis-related signalling pathways. Based on the quadratic regression analysis of specific growth rate, the Thr requirement of hybrid catfish (14·19–25·77 g) was estimated to be 13·77 g/kg of the diet (33·40 g/kg of dietary protein).
The present study investigated the effects of condensed tannins (CT) on intestinal immune function in on-growing grass carp (Ctenopharyngodon idella). A total of 540 healthy grass carp were fed six diets containing different levels of CT (0, 10·00, 20·00, 30·00, 40·00 and 50·00 g/kg diet) for 70 d and then challenged with Aeromonas hydrophila for 14 d. The results showed that, compared with the control group, dietary CT (1) induced intestinal histopathological lesions and aggravated enteritis; (2) decreased lysozyme and acid phosphatase activities, complement 3 (C3), C4 and IgM contents and down-regulated the Hepcidin, liver-expressed antimicrobial peptide (LEAP)-2A, LEAP-2B, Mucin2 and β-defensin-1 mRNA levels in the proximal intestine (PI), mid intestine (MI) and distal intestine (DI) (P < 0·05); (3) down-regulated the mRNA levels of anti-inflammatory cytokines transforming growth factor (TGF)-β1, TGF-β2 (not in MI and DI), IL-4/13A (not IL-4/13B), IL-10 and IL-11 partly correlated with target of rapamycin (TOR) signalling; and (4) up-regulated the mRNA levels of pro-inflammatory cytokines interferon-γ2, IL-1β, IL-6, IL-8 (not in PI), IL-12p35, IL-12p40, IL-15 and IL-17D partly related to NF-κB signalling in the intestine of on-growing grass carp. Overall, the results indicated that CT could impair the intestinal immune function, and its potential regulation mechanisms were partly associated with the TOR and NF-κB signalling pathways. Finally, based on the percentage weight gain and enteritis morbidity, the maximum allowable levels of CT for on-growing grass carp (232·22–890·11 g) were estimated to be 18·6 and 17·4 g/kg diet, respectively.
Imaging studies have shown that the subcallosal region (SCR) volume was decreased in patients with major depressive disorder (MDD). However, whether the volumetric reductions in the SCR are due to thinning of the cortex or a loss of surface area (SA) remains unclear. In addition, the relationship between cortical measurements of the SCR and age through the adult life span in MDD remains unclear.
Methods
We used a cross-sectional design from 114 individuals with MDD and 112 matched healthy control (HC) individuals across the adult life span (range: 18–74 years). The mean cortical volume (CV), SA and cortical thickness (CT) of the SCR were computed using cortical parcellation based on FreeSurfer software. Multivariate analyses of covariance models were performed to compare differences between the MDD and HC groups on cortical measurements of the SCR. Multiple linear regression models were used to test age-by-group interaction effects on these cortical measurements of the SCR.
Results
The MDD had significant reductions in the CV and SA of the left SCR compared with HC individuals after controlling of other variables. The left SCR CV and SA reductions compared with matched controls were observed only in early adulthood patients. We also found a significant age-related CT reduction in the SCR both in the MDD and HC participants.
Conclusions
The SCR volume reduction was mainly driven by SA in MDD. The different trajectories between the CT and SA of the SCR with age may provide valuable information to distinguish pathological processes and normal ageing in MDD.
Chitooligosaccharides (COS) are multi-functional foods and nutrients and environmentally friendly biological abiotic-resistance inducing agents for plants. In the current study, the effects and possible mechanisms of COS on improving the cold resistance of rice (II YOU 1259) seedlings were investigated. Compared with the control, a COS pre-soaking treatment enhanced photosynthesis, reduced oxidation damage and led to accumulation of more osmotic regulation substances under chilling treatment. In addition, a novel Deg/HtrA family serine endopeptidase (DegQ) gene, related to COS enhanced rice cold resistance, was identified. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that transcription of DegQ and psbA (D1 protein encoding gene) were up-regulated in a time-dependent manner by COS treatment under cold stress. With increasing expression of the D1 protein, chlorophyll b content was enhanced correspondingly. The current results suggest that COS could enhance cold stress tolerance of rice by repairing the photodamaged photosystem II, altering osmotic regulation and reducing oxidation damage.
Northeastern China is a region of high tick abundance, multiple tick-borne pathogens and likely human infections. The spectrum of diseases caused by tick-borne pathogens has not been objectively evaluated in this region for clinical management and for comparison with other regions globally where tick-transmitted diseases are common. Based on clinical symptoms, PCR, indirect immunofluorescent assay and (or) blood smear, we identified and described tick-borne diseases from patients with recent tick bite seen at Mudanjiang Forestry Central Hospital. From May 2010 to September 2011, 42% (75/180) of patients were diagnosed with a specific tick-borne disease, including Lyme borreliosis, tick-borne encephalitis, human granulocytic anaplasmosis, human babesiosis and spotted fever group rickettsiosis. When we compared clinical and laboratory features to identify factors that might discriminate tick-transmitted infections from those lacking that evidence, we revealed that erythema migrans and neurological manifestations were statistically significantly differently presented between those with and without documented aetiologies (P < 0.001, P = 0.003). Twelve patients (6.7%, 12/180) were co-infected with two tick-borne pathogens. We demonstrated the poor ability of clinicians to identify the specific tick-borne disease. In addition, it is necessary to develop specific laboratory assays for optimal diagnosis of tick-borne diseases.
A comprehensive geochronological and geochemical study was carried out on the gneissic monzogranites, porphyritic granodiorites and charnockites in the Gaozhou complex of the Yunkai massif in the southern part of the South China block to better understand the Early Palaeozoic tectonic regime of the South China block. Laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS) U–Pb dating of zircons indicates an age of 453.2 ± 5.1 Ma to the formation of the gneissic monzogranites, whereas the porphyritic granodiorites and charnockites were generated at 437.0 ± 1.5 Ma and 435.2 ± 2.2 Ma, respectively. The gneissic monzogranites show geochemical features consistent with the high-K, calc-alkaline rock series and are strongly peraluminous. They have SiO2 contents ranging from 67.75 to 69.65 wt. % and relatively low CaO contents (1.66–1.94 wt. %). Their REE patterns are fractionated with enriched LREEs and negative Eu anomalies. The samples also show enrichment in LILEs (e.g. Rb and K) and Pb, and depletion in Sr, Ba and HFSEs (e.g. Nb, Ta, Ti and P). They have εNd(t) values of −8.2 to −7.7. Conversely, the porphyritic granodiorites and charnockites are characterized as medium-K, calc-alkaline rock series and weakly to strongly peraluminous. They exhibit pronounced depletions in HFSEs and positive Pb anomalies. Compared to the earlier gneissic monzogranites, these rocks have relatively lower SiO2 (65.50–69.36 wt. %), but higher CaO contents (3.34–4.05 wt. %), and have slightly lower εNd(t) values (−9.1 to −8.4). Petrography and geochemical compositions of the gneissic monzogranites indicate that they are S-type granite and likely formed by partial melting of Neoproterozoic to Early Palaeozoic immature metagreywackes; whereas The porphyritic granodiorites and charnockites are A-type granite and likely derived from low degrees of partial melting of the dry, granulitic residue depleted by prior extraction of granitic melt. The new data for the Caledonian granitoids in the Yunkai massif suggest that they were formed in a post-collisional tectonic setting. They represent the earliest post-collisional alkaline magmatism reported so far in the Yunkai massif, and thus indicate a tectonic regime switch, from compression to extension, as early as the Late Ordovician to Early Silurian (~450–435 Ma).
This study aimed to investigate the impacts of dietary threonine on intestinal immunity and inflammation in juvenile grass carp. Six iso-nitrogenous semi-purified diets containing graded levels of threonine (3·99–21·66 g threonine/kg) were formulated and fed to fishes for 8 weeks, and then challenged with Aeromonas hydrophila for 14 d. Results showed that, compared with optimum threonine supplementation, threonine deficiency (1) decreased the ability of fish against enteritis, intestinal lysozyme activities (except in the distal intestine), acid phosphatase activities, complement 3 (C3) and C4 contents and IgM contents (except in the proximal intestine (PI)), and it down-regulated the transcript abundances of liver-expressed antimicrobial peptide (LEAP)-2A, LEAP-2B, hepcidin, IgZ, IgM and β-defensin1 (except in the PI) (P<0·05); (2) could up-regulate intestinal pro-inflammatory cytokines TNF-α, IL-1β, IL-6, IL-8 and IL-17D mRNA levels partly related to NF-κB signalling; (3) could down-regulate intestinal anti-inflammatory cytokine transforming growth factor (TGF)-β1, TGF-β2, IL-4/13A (not IL-4/13B) and IL-10 mRNA levels partly by target of rapamycin signalling. Finally, on the basis of the specific growth rate, against the enteritis morbidity and IgM contents, the optimum threonine requirements were estimated to be 14·53 g threonine/kg diet (4·48 g threonine/100 g protein), 15.05 g threonine/kg diet (4·64 g threonine/100 g protein) and 15·17 g threonine/kg diet (4·68 g threonine/100 g protein), respectively.
The prevalence of CHD has been well described worldwide except in Tibet. This study aimed to illustrate the prevalence and composition of CHD in Tibetan children according to altitude.
Methods and results
In the first part, we prospectively recruited 7088 unselected Tibetan children (4–17 years) from south-west Tibet. The total prevalence of CHD increased from 4.6/1000 below 4200 m to 13.4/1000 above 4700 m, with a female-to-male ratio of 1.3:3.1. The total prevalence and female prevalence of patent ductus arteriosus increased more than 10-fold. Females living above 4700 m had exceptionally high prevalence of patent ductus arteriosus (14.9/1000). The prevalence of atrial septal defect was comparable among different altitudes (3.3–3.8/1000). The prevalence of ventricular septal defect was 1.3/1000 below 4700 m, and no cases were found above this altitude. In the second part, we retrospectively reviewed the clinical data of 383 CHD children in Tibet and 73 children at lower altitudes. The percentage of isolated ventricular septal defect decreased from 54.8 to 3.1%, and the percentage of isolated patent ductus arteriosus increased from 8.2 to 68.4% with elevation. Children living below 4200 m (10.4–13.7%) had a larger proportion of complex CHD than those above this altitude (2.0–3.1%). Of the 20 Tibetan children with complex CHD, 14 (70.0%) lived below 4200 m.
Conclusions
A wide variation in CHD prevalence and composition existed in Tibetan children among different altitudes.
Palaeoproterozic metasedimentary rocks, also referred to as khondalites, characterized by Al-rich minerals, are extensively exposed in the nucleus of the Yangtze craton, South China block. Samples of garnet–sillimanite gneiss in the khondalite suite were collected from the Kongling complex for Nd isotopic and elemental geochemical study. These rocks are characterized by variable SiO2 contents ranging from 35.71 to 58.07 wt%, and have low CaO (0.45–0.84 wt%) but high Al2O3 (18.56–29.04 wt%), Cr (174–334 ppm) and Ni (42.5–153 ppm) contents. They have high CIW (Chemical Index of Weathering) values (90.4–94.7), indicating intense chemical weathering of the source material. The samples display light rare earth elements (LREE) enrichment with negative Eu anomalies (Eu/Eu*=0.40–0.68), and have flat heavy rare earth elements (HREE) patterns. The high contents of transition elements (e.g. Cr, Ni, Sc, V) and moderately radiogenic Nd isotopic compositions suggest that the paragneisses might be those of first-cycle erosion products of predominantly mafic rocks mixing with small amounts of felsic moderately evolved Archaean crustal source. Geochemical and Nd isotopic compositions reveal that at least some of the protoliths of Kongling khondalite were sourced from local pre-existing mafic igneous rocks in a continental arc tectonic setting. Combined with documented zircon U–Pb geochronological data, we propose that the Palaeoproterozoic high-pressure granulite-facies metamorphism, rapid weathering, erosion and deposition of the khondalites in the interior of the Yangtze craton might be related to a Palaeoproterozoic collisional orogenic event during 2.1–1.9 Ga, consistent with the worldwide contemporary orogeny, implying that the Yangtze craton may have been an important component of the Palaeoprotorozoic Columbia supercontinent.