We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The high overall plant-based diet index (PDI) is considered to protect against type 2 diabetes in the general population. However, whether the PDI affects gestational diabetes mellitus (GDM) risk among pregnant women is still unclear. We evaluated the association between PDI and GDM risk based on a Chinese large prospective cohort – the Tongji Maternal and Child Health Cohort. Dietary data were collected at 13–28 weeks of pregnancy by a validated semi-quantitative FFQ. The PDI was obtained by assigning plant food groups positive scores while assigning animal food groups reverse scores. GDM was diagnosed by a 75 g 2-h oral glucose tolerance test at 24–28 weeks of gestation. Logistic regression models were fitted to estimate OR of GDM, with associated 95 % CI, comparing women in different PDI quartiles. Among the total 2099 participants, 169 (8·1 %) were diagnosed with GDM. The PDI ranged from 21·0 to 52·0 with a median of 36·0 (interquartile range (IQR) 33·0–39·0). After adjusting for social-demographic characteristics and lifestyle factors etc., the participants with the highest quartile of PDI were associated with 57 % reduced odds of GDM compared with women in the lowest quartile of PDI (adjusted OR 0·43; 95 % CI 0·24, 0·77; Pfor trend = 0·005). An IQR increment in PDI was associated with 29 % decreased odds of GDM (adjusted OR 0·71; 95 % CI 0·56, 0·90). Findings suggest that adopting a plant-based diet during pregnancy could reduce GDM risk among Chinese women, which may be valuable for dietary counselling during pregnancy.
Hypertension represents one of the most common pre-existing conditions and comorbidities in Coronavirus disease 2019 (COVID-19) patients. To explore whether hypertension serves as a risk factor for disease severity, a multi-centre, retrospective study was conducted in COVID-19 patients. A total of 498 consecutively hospitalised patients with lab-confirmed COVID-19 in China were enrolled in this cohort. Using logistic regression, we assessed the association between hypertension and the likelihood of severe illness with adjustment for confounders. We observed that more than 16% of the enrolled patients exhibited pre-existing hypertension on admission. More severe COVID-19 cases occurred in individuals with hypertension than those without hypertension (21% vs. 10%, P = 0.007). Hypertension associated with the increased risk of severe illness, which was not modified by other demographic factors, such as age, sex, hospital geological location and blood pressure levels on admission. More attention and treatment should be offered to patients with underlying hypertension, who usually are older, have more comorbidities and more susceptible to cardiac complications.
Understanding the patterns of treatment response is critical for the treatment of patients with schizophrenia; one way to achieve this is through using a longitudinal dynamic process study design.
Aims
This study aims to explore the response trajectory of antipsychotics and compare the treatment responses of seven different antipsychotics over 6 weeks in patients with schizoprenia (trial registration: Chinese Clinical Trials Registry Identifier: ChiCTR-TRC-10000934).
Method
Data were collected from a multicentre, randomised open-label clinical trial. Patients were evaluated with the Positive and Negative Syndrome Scale (PANSS) at baseline and follow-up at weeks 2, 4 and 6. Trajectory groups were classified by the method of k-means cluster modelling for longitudinal data. Trajectory analyses were also employed for the seven antipsychotic groups.
Results
The early treatment response trajectories were classified into a high-trajectory group of better responders and a low-trajectory group of worse responders. The results of trajectory analysis showed differences compared with the classification method characterised by a 50% reduction in PANSS scores at week 6. A total of 349 patients were inconsistently grouped by the two methods, with a significant difference in the composition ratio of treatment response groups using these two methods (χ2 = 43.37, P < 0.001). There was no differential contribution of high- and low trajectories to different drugs (χ2 = 12.52, P = 0.051); olanzapine and risperidone, which had a larger proportion in the >50% reduction at week 6, performed better than aripiprazole, quetiapine, ziprasidone and perphenazine.
Conclusions
The trajectory analysis of treatment response to schizophrenia revealed two distinct trajectories. Comparing the treatment responses to different antipsychotics through longitudinal analysis may offer a new perspective for evaluating antipsychotics.
Shifts in the maternal gut microbiota have been implicated in the development of gestational diabetes mellitus (GDM). Understanding the interaction between gut microbiota and host glucose metabolism will provide a new target of prediction and treatment. In this nested case-control study, we aimed to investigate the causal effects of gut microbiota from GDM patients on the glucose metabolism of germ-free (GF) mice. Stool and peripheral blood samples, as well as clinical information, were collected from 45 GDM patients and 45 healthy controls (matched by age and prepregnancy body mass index (BMI)) in the first and second trimester. Gut microbiota profiles were explored by next-generation sequencing of the 16S rRNA gene, and inflammatory factors in peripheral blood were analyzed by enzyme-linked immunosorbent assay. Fecal samples from GDM and non-GDM donors were transferred to GF mice. The gut microbiota of women with GDM showed reduced richness, specifically decreased Bacteroides and Akkermansia, as well as increased Faecalibacterium. The relative abundance of Akkermansia was negatively associated with blood glucose levels, and the relative abundance of Faecalibacterium was positively related to inflammatory factor concentrations. The transfer of fecal microbiota from GDM and non-GDM donors to GF mice resulted in different gut microbiota colonization patterns, and hyperglycemia was induced in mice that received GDM donor microbiota. These results suggested that the shifting pattern of gut microbiota in GDM patients contributed to disease pathogenesis.
This study aimed to identify clinical features for prognosing mortality risk using machine-learning methods in patients with coronavirus disease 2019 (COVID-19). A retrospective study of the inpatients with COVID-19 admitted from 15 January to 15 March 2020 in Wuhan is reported. The data of symptoms, comorbidity, demographic, vital sign, CT scans results and laboratory test results on admission were collected. Machine-learning methods (Random Forest and XGboost) were used to rank clinical features for mortality risk. Multivariate logistic regression models were applied to identify clinical features with statistical significance. The predictors of mortality were lactate dehydrogenase (LDH), C-reactive protein (CRP) and age based on 500 bootstrapped samples. A multivariate logistic regression model was formed to predict mortality 292 in-sample patients with area under the receiver operating characteristics (AUROC) of 0.9521, which was better than CURB-65 (AUROC of 0.8501) and the machine-learning-based model (AUROC of 0.4530). An out-sample data set of 13 patients was further tested to show our model (AUROC of 0.6061) was also better than CURB-65 (AUROC of 0.4608) and the machine-learning-based model (AUROC of 0.2292). LDH, CRP and age can be used to identify severe patients with COVID-19 on hospital admission.
The poultry red mite, Dermanyssus gallinae, is currently the most common ectoparasite affecting egg-laying hens. Since continuous culture of D. gallinae on birds is a biologically and economically costly endeavour, storage techniques for mites are urgently needed. Effects of temperature on adult and nymph survival were first studied to optimize storage conditions. Then, fecundity of D. gallinae was studied after mites were stored at optimal storage conditions. Results showed the survival rates of protonymphs (42.11%), deutonymphs (8.19%) and females (19.78%) at 5°C after 84 days were higher than those at 0, 25 and 30°C. Thereafter the fecundity and the capability of re-establishing colonies of D. gallinae were evaluated after they were stored for 40 and 80 days at 5°C. After storage, the mean number of eggs showed no statistical difference between treated (5°C for 40 or 80 days) and control groups (25°C for 7 days), while the hatching rates of eggs were in all cases above 97%. The dynamic changes of mite populations and egg numbers showed similar trends to the control group after the stored adult or nymph mites were fed on chicks. Dermanyssus gallinae can be successfully stored at 5°C for 80 days with no interference with the fecundity of mites, and the stored mites could re-establish colonies successfully. Adults and nymphs were two main stages with capability for low temperature storage. These results suggest that low temperature storage is a viable option for colony maintenance of D. gallinae under laboratory conditions.
The surface energy budget over the Antarctic sea ice from 8 April 2016 through 26 November 2016 are presented. From April to October, Sensible heat flux (SH) and subsurface conductive heat flux (G) were the heat source of surface while latent heat flux (LE) and net radiation flux (Rn) were the heat sink of surface. Our results showed larger downward SH (due to the warmer air in our site) and upward LE (due to the drier air and higher wind speed in our site) compared with SHEBA data. However, the values of SH in N-ICE2015 campaign, which located at a zone with stronger winds and more advection of heat in the Arctic, were comparable to our results under clear skies. The values of aerodynamic roughness length (z0m) and scalar roughness length for temperature (z0h), being 1.9 × 10−3 m and 3.7 × 10−5 m, were suggested in this study. It is found that snow melting might increase z0m. Our results also indicate that the value of log(z0h/z0m) was related to the stability of stratification. In addition, several representative parameterization schemes for z0h have been tested and a couple of schemes were found to make a better performance.
A nanoparticle-based drug delivery system is first established by mesoporous silica encapsulating amino acid–intercalated layered double hydroxide (LDH) to construct nanocomposites AA-LDH@MS. The amino acids including phenylalanine (Phe) and histidine (His) with aromatic groups are intercalated into LDH as the cores Phe-LDH and His-LDH. These nanocomposites AA-LDH@MS display multispaces of the interlayer spaces of LDH and porous channels of mesoporous silica to load drugs. Moreover, amino acid molecules provide the interaction sites to improve effectively loading amounts of drugs. 5-Fluorouracil (5-FU) is used as the cargo molecules to observe the delivery in vitro. The results indicate that the maximum loading amounts of drugs are up to 392 mg/g at 60 °C for 12 h in the nanocomposite Phe-LDH@MS. All the nanocomposites exhibit the sustained release of 5-FU at pH 4 and pH 7.4. The Korsmeyer–Peppas model is used to fit the kinetic plot of the drug release in vitro, which concludes that 5-FU release from AA-LDH@MS belongs to Fickian diffusion.
In this work, a novel shape-stabilized phase change material, composed of n-octadecane, expanded graphite (EG), and sodium chloride (NaCl), was prepared by a convenient method. In the composite, EG was used as the matrix material and NaCl served as the nucleating agent. Effects of the additional amount of NaCl on the thermal properties of the composite were investigated by DSC and TG. The melting and crystallization enthalpies of the composite are −160.23 J/g and 162.80 J/g, respectively; the supercooling degree of the composite decreased to 3.77 °C when compared to 7.58 °C of the pure n-octadecane. Furthermore, the thermal cycling performances became better, and the thermal decomposition temperature improved to 150 °C. The composite exhibited high latent heat, low supercooling degree, good thermal cycling performance, and enhanced thermal stability, making it a potential material for the thermal energy storage application in the field of thermal regulation.
Novel microencapsulated n-octadecane with natural silk fibroin (SF) shell attached with silver nanoparticles (AgNPs) on its surface was synthesized in oil-in-water emulsion via a self-assembly method. No additional reductant was used in the in situ preparation of AgNPs due to the inherent reduction property of tyrosine (Tyr) residues in SF. The microstructures and particle sizes of the resultant microcapsules were investigated by using a scanning electron microscope (SEM) and a laser scattering particle size distribution analyzer. The resulting microcapsules exhibited a regular spherical morphology with a 4–5 μm narrow diameter distribution range. And the AgNPs attached to the surface exhibited an even distribution. According to the analytical results of DSC, TGA, and infrared system, the SF-AgNPs microcapsule presents enhanced thermal stability and obvious thermal regulation properties. In addition, it was found that the SF-AgNP microcapsule also exhibited a good antibacterial activity against both Gram-positive bacteria (Staphylococcus aureus), and Gram-negative bacteria (Escherichia coli). The SF-AgNPs microcapsule synthesized in this study could be a potential candidate for thermal regulation and healthcare applications.
In situ U–Pb and Hf analyses were used for crustal zircon xenocrysts from Triassic kimberlites exposed in the Rangnim Massif of North Korea to identify components of the basement hidden in the deep crust of the Rangnim Massif and to clarify the crustal evolution of the massif. The U–Pb age spectrum of the zircons has a prominent population at 1.9–1.8 Ga and a lack of Archaean ages. The data indicate that the deep crust and basement beneath the Rangnim Massif are predominantly of Palaeoproterozoic age, consistent with the ages of widely exposed Palaeoproterozoic granitic rocks. In situ zircon Hf isotope data show that most of the Palaeoproterozoic zircon xenocrysts have negative ϵHf(t) values (−9.7 to +0.7) with an average Hf model age of 2.86 ± 0.02 Ga (2σ), which suggests that the Palaeoproterozoic basement was not juvenile but derived from the reworking of Archaean rocks. Considering the existence of Archaean remanent material in the Rangnim Massif and their juvenile features, a strong crustal reworking event is indicated at 1.9–1.8 Ga, during which time the pre-existing Archaean basement was exhausted and replaced by a newly formed Palaeoproterozoic basement. These features suggest that the Rangnim Massif constitutes the eastern extension of the Palaeoproterozoic Liao–Ji Belt of the North China Craton instead of the Archaean Liaonan Block as previously thought. A huge Palaeoproterozoic orogen may exist in the eastern margin of the Sino-Korean Craton.
Detailed structural, volcanic, and sedimentary investigations of the crustal response to the emplacement of the Middle–Late Permian Emeishan large igneous province show that a rifting system developed prior to the main stage of flood basalt eruptions, in the form of sedimentary breccias, clastic sedimentary deposits and mafic hydromagmatic units. Detrital zircon grains from sandstones yield ~750–800 Ma LA-ICP-MS 206Pb/238U age clusters, showing that material was sourced from the Yangtze crystalline basement. Gabbros and pegmatites intruded along the normal faults of the rift system yield zircon ages of 264–260 Ma, and thus constrain the timing of rifting. N–S-trending rift zones developed along the western flank of the Pan-Xi palaeo-uplift, with NE–SW- and NNE–SSW-trending rifts on the eastern side and along the western and eastern margins of the Yangtze Block. The rifting progressed in pulses, with an initial phase of normal faulting followed by rapid deposition of breccias. Later there was lower-energy deposition of sandstone, with accompanying rhyolitic eruptions. This was followed by low-energy sedimentation of mudstones and dolomites, with accompanying hydromagmatic deposits. Rift system formation was constrained by a combination of far- and near-field tectonic stresses due to plate motions and lithospheric interaction with initial Emeishan volcanism.
The ZnO/g-C3N4 binary heterostructures were formed by two steps, then the firm connection between ZnO NRs and lamellar g-C3N4 was characterized through powder XRD, FESEM with EDS, TEM, XPS, and Thermogravimetric analysis. Then the gas sensing performances of ZnO/g-C3N4 nanoheterostructures were analyzed systematically by using ethanol as a molecular probe. The results revealed that the fabricated compositive sensor not only exhibited quick response/recovery characteristics in the whole operating temperature (OT) range of 200–300 °C but also got a maximum response of 14.29 toward 100 ppm of ethanol at the optimal OT of only 260 °C. Moreover, such heterostructures also demonstrated good selectivity and superb reproducibility to acetone among all the tested toxic gases, especially higher response and faster response–recovery speeds than the pristine ZnO sensor. The above ZnO/g-C3N4 heterostructures may also supply other novel applications in the aspects of lithium-ion batteries, photocatalysis, optical devices, and so on.
Previous studies show inconsistent associations between α-linolenic acid (ALA) and risk of CHD. We aimed to examine an aggregate association between ALA intake and risk of CHD, and assess for any dose–response relationship. We searched the PubMed, EMBASE and Web of Science databases for prospective cohort studies examining associations between ALA intake and CHD, including composite CHD and fatal CHD. Data were pooled using random-effects meta-analysis models, comparing the highest category of ALA intake with the lowest across studies. Subgroup analysis was conducted based on study design, geographic region, age and sex. For dose–response analyses, we used two-stage random-effects dose–response models. In all, fourteen studies of thirteen cohorts were identified and included in the meta-analysis. The pooled results showed that higher ALA intake was associated with modest reduced risk of composite CHD (risk ratios (RR)=0·91; 95 % CI 0·85, 0·97) and fatal CHD (RR=0·85; 95 % CI 0·75, 0·96). The analysis showed a J-shaped relationship between ALA intake and relative risk of composite CHD (χ2=21·95, P<0·001). Compared with people without ALA intake, only people with ALA intake <1·4 g/d showed reduced risk of composite CHD. ALA intake was linearly associated with fatal CHD – every 1 g/d increase in ALA intake was associated with a 12 % decrease in fatal CHD risk (95 % CI −0·21, −0·04). Though a higher dietary ALA intake was associated with reduced risk of composite and fatal CHD, the excess composite CHD risk at higher ALA intakes warrants further investigation, especially through randomised controlled trials.
Whether there are distinct subtypes of schizophrenia is an important issue to advance understanding and treatment of schizophrenia.
Aims
To understand and treat individuals with schizophrenia, the aim was to advance understanding of differences between individuals, whether there are discrete subtypes, and how fist-episode patients (FEP) may differ from multiple episode patients (MEP).
Method
These issues were analysed in 687 FEP and 1880 MEP with schizophrenia using the Positive and Negative Syndrome Scale for (PANSS) schizophrenia before and after antipsychotic medication for 6 weeks.
Results
The seven Negative Symptoms were correlated with each other and with P2 (conceptual disorganisation), G13 (disturbance of volition), and G7 (motor retardation). The main difference between individuals was in the cluster of seven negative symptoms, which had a continuous unimodal distribution. Medication decreased the PANSS scores for all the symptoms, which were similar in the FEP and MEP groups.
Conclusions
The negative symptoms are a major source of individual differences, and there are potential implications for treatment.
On April 25, 2015, a massive 8.1-magnitude earthquake struck Nepal at 2:11 pm (Beijing time). The 68-member-strong China International Search & Rescue Team (CISAR) left for Nepal at 6 am, April 26, to help with relief work. The CISAR was the first foreign team to rescue a survivor who was trapped beneath the rubble in the Gongabu area after the earthquake. On May 8, the team fulfilled the search-and-rescue mission and returned to Beijing. During the 2 weeks of rescue work, the team treated more than 3700 victims and cleared approximately 430 buildings. In this rescue mission, 10 experienced medical officers (including nine doctors and a nurse) from the General Hospital of Chinese People’s Armed Police Force (PAP) comprised the medical team of CISAR. In this report, we focus on the medical rescues by CISAR and discuss the characteristics of the medical rescue in Nepal. (Disaster Med Public Health Preparedness. 2018;12:536–538)
Titanium oxide photoelectrodes have been used for water splitting for a few decades, but have low solar-to-hydrogen efficiencies. Perovskite halides (e.g., CH3NH3PbI3) have recently emerged as an efficient light absorber system. We try to combine the two materials to create new photoelectrodes to achieve a higher efficiency for hydrogen production. The photoelectrodes are investigated for water-splitting hydrogen production under Xe light irradiation by photoelectrochemical (PEC) reaction. Since perovskite halides are favorable light harvesters under UV and visible light irradiation, the composite films of titania and perovskite halide would achieve efficient water splitting. The hydrogen production rate using the composite films is higher than that using anatase TiO2 electrode. However, the composite films are not stable in water under light irradiation and the perovskite halide gradually decomposes into lead halide.
Early identification of patients with bipolar disorder during their first depressive episode is beneficial to the outcome of the disorder and treatment, but traditionally this has been a great challenge to clinicians. Recently, brain-derived neurotrophic factor (BDNF) has been suggested to be involved in the pathophysiology of bipolar disorder and major depressive disorder (MDD), but it is not clear whether BDNF levels can be used to predict bipolar disorder among patients in their first major depressive episode.
Aims
To explore whether BDNF levels can differentiate between MDD and bipolar disorder in the first depressive episode.
Method
A total of 203 patients with a first major depressive episode as well as 167 healthy controls were recruited. After 3 years of bi-annual follow-up, 164 patients with a major depressive episode completed the study, and of these, 21 were identified as having bipolar disorder and 143 patients were diagnosed as having MDD. BDNF gene expression and plasma levels at baseline were compared among the bipolar disorder, MDD and healthy control groups. Logistic regression and decision tree methods were applied to determine the best model for predicting bipolar disorder at the first depressive episode.
Results
At baseline, patients in the bipolar disorder and MDD groups showed lower BDNF mRNA levels (P<0.001 and P = 0.02 respectively) and plasma levels (P = 0.002 and P = 0.01 respectively) compared with healthy controls. Similarly, BDNF levels in the bipolar disorder group were lower than those in the MDD group. These results showed that the best model for predicting bipolar disorder during a first depressive episode was a combination of BDNF mRNA levels with plasma BDNF levels (receiver operating characteristics (ROC) = 0.80, logistic regression; ROC = 0.84, decision tree).
Conclusions
Our findings suggest that BDNF levels may serve as a potential differential diagnostic biomarker for bipolar disorder in a patient's first depressive episode.
The crystal structure of a-plane GaN/ZnO heterostructures on r-plane sapphire was investigated by using the XRD and TEM measurment. It was found the formation of (220) ZnGa2O4 and crystal orientation of semipolar (10
$\bar 1$
3) GaN at GaN/ZnO interface. The epitaxial relation of normal surface direction are the sapphire (1
$\bar 1$
02) // a-GaN (11
$\bar 2$
0) and ZnGa2O4 (220) // semi-polar GaN (10
$\bar 1$
$\bar 3$
). Beside, the emission peak energy of ZnO appears shift about 60 meV in the GaN/ZnO/GaN heterostructures due to the re-crystallization of ZnO layer with Ga or N atom and the formation of the localized state.