We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The relationship of a diet low in fibre with mortality has not been evaluated. This study aims to assess the burden of non-communicable chronic diseases (NCD) attributable to a diet low in fibre globally from 1990 to 2019.
Design:
All data were from the Global Burden of Disease (GBD) Study 2019, in which the mortality, disability-adjusted life-years (DALY) and years lived with disability (YLD) were estimated with Bayesian geospatial regression using data at global, regional and country level acquired from an extensively systematic review.
Setting:
All data sourced from the GBD Study 2019.
Participants:
All age groups for both sexes.
Results:
The age-standardised mortality rates (ASMR) declined in most GBD regions; however, in Southern sub-Saharan Africa, the ASMR increased from 4·07 (95 % uncertainty interval (UI) (2·08, 6·34)) to 4·60 (95 % UI (2·59, 6·90)), and in Central sub-Saharan Africa, the ASMR increased from 7·46 (95 % UI (3·64, 11·90)) to 9·34 (95 % UI (4·69, 15·25)). Uptrends were observed in the age-standardised YLD rates attributable to a diet low in fibre in a number of GBD regions. The burden caused by diabetes mellitus increased in Central Asia, Southern sub-Saharan Africa and Eastern Europe.
Conclusions:
The burdens of disease attributable to a diet low in fibre in Southern sub-Saharan Africa and Central sub-Saharan Africa and the age-standardised YLD rates in a number of GBD regions increased from 1990 to 2019. Therefore, greater efforts are needed to reduce the disease burden caused by a diet low in fibre.
Cancer remains the leading cause of death worldwide, and metastasis is still the major cause of treatment failure for cancer patients. Epithelial–mesenchymal transition (EMT) has been shown to play a critical role in the metastasis cascade of epithelium-derived carcinoma. Tumour microenvironment (TME) refers to the local tissue environment in which tumour cells produce and live, including not only tumour cells themselves, but also fibroblasts, immune and inflammatory cells, glial cells and other cells around them, as well as intercellular stroma, micro vessels and infiltrated biomolecules from the nearby areas, which has been proved to widely participate in the occurrence and progress of cancer. Emerging and accumulating studies indicate that, on one hand, mesenchymal cells in TME can establish ‘crosstalk’ with tumour cells to regulate their EMT programme; on the other, EMT-tumour cells can create a favourable environment for their own growth via educating stromal cells. Recently, our group has conducted a series of studies on the interaction between tumour-associated macrophages (TAMs) and colorectal cancer (CRC) cells in TME, confirming that the interaction between TAMs and CRC cells mediated by cytokines or exosomes can jointly promote the metastasis of CRC by regulating the EMT process of tumour cells and the M2-type polarisation process of TAMs. Herein, we present an overview to describe the current knowledge about EMT in cancer, summarise the important role of TME in EMT, and provide an update on the mechanisms of TME-induced EMT in CRC, aiming to provide new ideas for understanding and resisting tumour metastasis.
Chronic tubulointerstitial nephropathy (CTIN) is one of the most common kidney diseases. However, treatment for CTIN has multiple limits. Adjuvant therapy through nutritional regulation has become a hot research topic at present. Icariin (ICA), an extraction of Chinese herbal medicine epimedium, has many pharmacological functions including anti-inflammation and tonifying kidney. Selenomethionine (SeMet) possesses the effects of antioxidant and lightening nephrotoxicity. However, little is known about the combined nephroprotection of them. This study was investigated to evaluate the joint effects of ICA and SeMet on CTIN and explore the mechanism. Based on a novel CTIN model developed in our previous study, mice were randomly divided into five groups (a: control; b: model; c: model + ICA; d: model + SeMet; e: model + ICA + SeMet). Renal tubule epithelial cells were treated with cyclosporine A and ochratoxin A without/with ICA or/and SeMet. The results showed that ICA or/and SeMet ameliorated CTIN by inhibiting the uptrends of blood urine nitrogen, serum creatinine, urine protein, urine gravity, histopathological damage degree and collagen I deposition. ICA or/and SeMet also increased cell proliferation and decreased apoptosis and the expression of transforming growth factor-beta 1 and α-smooth muscle actin. Emphatically, ICA and SeMet joint had better nephroprotection than alone in most indexes including fibrosis. Furthermore, ICA and SeMet joint decreased the activation of toll-like receptor 4 (TLR4)/NFκB pathway induced by CTIN. TLR4 overexpression counteracted the joint protection of ICA and SeMet. Therefore, ICA and SeMet in combination could protect against CTIN through blocking TLR4/NFκB pathway. The study will provide novel insights to explore an adjuvant therapeutic orientation.
The current study evaluated the associations between different forms and sources of Fe and breast cancer risk in Southern Chinese women.
Design:
Case–control study. We collected data on the consumption of Fe from different forms and food sources by using a validated FFQ. Multivariable logistic regression and restricted cubic spline (RCS) analysis was used to reveal potential associations between Fe intake and breast cancer risk.
Setting:
A case-control study of women at three major hospitals in Guangzhou, China.
Participants:
From June 2007 to March 2019, 1591 breast cancer cases and 1622 age-matched controls were recruited.
Results:
In quartile analyses, Fe from plants and Fe from white meat intake were inversely associated with breast cancer risk, with OR of 0·65 (95 % CI 0·47, 0·89, Ptrend = 0·006) and 0·76 (95 % CI 0·61, 0·96, Ptrend = 0·014), respectively, comparing the highest with the lowest quartile. No associations were observed between total dietary Fe, heme or non-heme Fe, Fe from meat or red meat and breast cancer risk. RCS analysis demonstrated J-shaped associations between total dietary Fe, non-heme Fe and breast cancer, and reverse L-shaped associations between heme Fe, Fe from meat and Fe from red meat and breast cancer.
Conclusion:
Fe from plants and white meat were inversely associated with breast cancer risk. Significant non-linear J-shaped associations were found between total dietary Fe, non-heme Fe and breast cancer risk, and reverse L-shaped associations were found between heme Fe, Fe from meat or red meat and breast cancer risk.
To detect low concentrations of formaldehyde selectively, the sensing properties of SnO2 nanostructured are enhanced by modifying with p-type semiconductor NiO. In this study, a nanostructured SnO2/NiO composite was prepared by a simple hydrothermal method. The X-ray photoelectron spectroscopy (XPS) peak in 532.4 eV proved that the existence of the SnO2/NiO composite structure increased the amount of adsorbed oxygen O− and O2− significantly. Gas-sensing tests showed that these mixed phases SnO2/NiO are highly promising for gas sensor applications, as the gas response for formaldehyde was significantly enhanced in gas response, selectivity at an operating temperature of 230 °C. The sensor fabricated by SnO2/NiO composite can detect as low as 1 ppm of formaldehyde at 230 °C, and the corresponding response is 1.57. The results of physicochemical properties tests of the samples show that the enhancement in sensitivity and selectivity is attributed to the oxygen vacancies and heterojunction between SnO2 and NiO. The SnO2/NiO composites can be applied to sensitive materials of formaldehyde sensors.
Women experience both physical and psychological changes during different phases of the menstrual cycle (MC), which can affect their decision making. The present study aims to investigate the impact of the MC on women’s preferences for conspicuous consumption. In three studies, women in the low-fertility phase were found to be more inclined toward conspicuous consumption, with the MC effect on conspicuous consumption being mediated by the extent of pride. We assumed that women in the low-fertility phase would feel less proud due to an evolutionary drive and that they would consume conspicuous products as a means of compensation. Meanwhile, women who were only children did not manifest such behavior. We infer that women from one-child families may have a greater sense of security and confidence, which buffers the mediating effect. This research contributes to both evolutionary psychology and marketing research and provides new insights for future studies.
Population decline among Asian horseshoe crabs in Asia is increasingly reported, but knowledge of their population and ecological status in China is limited. We conducted community interviews in 30 fishing villages around Beibu Gulf in Guangxi, China, to collect distribution information about the potential spawning/nursery grounds of Tachypleus tridentatus and Carcinoscorpius rotundicauda, and any imminent threats to their populations. Based on the results from 400 respondents we identified 45 potential spawning/nursery grounds distributed widely along the shores of Beibu Gulf. We visited 10 of these sites and verified the presence of juvenile horseshoe crabs by field surveys. Nearly all respondents reported an overall depletion in horseshoe crab populations from these 45 sites, which they attributed mainly to unsustainable fishing practices. Respondents who reported having seen horseshoe crab mating pairs on shores were mostly older people, which may suggest a considerable reduction in horseshoe crabs coming to the shores to spawn in recent years. The mean daily harvest of adult T. tridentatus offshore, as indicated by fishers, has declined from c. 50–1,000 in the 1990s to 0–30 individuals during 2011–2016. Our Wisdom of Crowds approach, supported by confirmatory field surveys, is a cost-effective method for assessing the population status of horseshoe crabs, and the level of threat they face. Similar approaches with other species are likely to be particularly valuable in the Asia–Pacific region, where well-structured population monitoring is largely unaffordable.
Suprathermal electrons produced by laser–plasma interactions at 0.53-μm laser wavelength have been investigated using 19 electron spectrometers. The targets were 2- and 10-μm-thick Al foils, while the laser average intensities were 2 × 1013 and 7 × 1014 W/cm2. A double temperature distribution was observed in the electron energy spectrum: the lower electron temperature was below 25 keV, whereas the higher was ~50 keV. The angular distribution of the total suprathermal electron energy approximately obeyed the Gaussian distribution, peaking along the k vector of the incident laser beam for perpendicular incidence. Furthermore, the conversion rate of laser energy into escaped suprathermal electron energy over the π sr solid angle was ~10−4 at $\sim \!\!10^{14} \; {\rm W}/{\rm c}{\rm m}^{\rm 2}$, increasing almost linearly with the laser intensity.
A facile synthesis procedure of nitrogen-self-doped porous carbon (NPC) derived from abundant natural biological materials has been presented. The pyrolysis temperature and the weight ratio of Co3O4 to carbon play a key role in determining microscopic structure and electrochemical performances of the final materials. The ordered mesostructures with nanopores in the channel walls provided support for immobilization of well-dispersed Co3O4 nanoparticles. They also served as a highly conductive substrate for effectively alleviating severe particle aggregation during the charge/discharge processes, which prevented capacity fading from deteriorated electric contact between the components. Taking advantage of the interconnected porous structures and high specific surface area (1799 m2/g) of carbon substrate, the Co3O4/NPC composite as anode in lithium-ion battery delivers a stable reversible capacity of 903 mA h/g after 400 cycles. It is expected that by loading other electrode active materials on such carbon material, the manufacture of the promising anode materials with excellent cycle stability is highly possible.
The propagation of a pre-existing center crack in single crystal tungsten under cyclic loading was examined by molecular dynamics (MD) simulations at various temperatures. The results indicated that the deformation mechanism and fracture behavior at crack tip were differences for variously oriented cracks. The [001](010) crack propagated as the form of the formation of slip, while the deformation mechanisms of [10−1](101) crack were blunting voids at 300 K. At higher temperature, many more slip systems were activated resulting in the change of mode of crack propagation. Simulated results showed that the effect of temperature on deformation mechanism and fracture behavior of [001](010) crack was more sensitive than that of [10−1](101) crack. Meanwhile, the influence of a 5〈310〉{110} model grain boundary (GB) on crack propagation was also discussed. Detailed analysis showed that the grain boundary resisted the crack growth by changing the deformation mechanisms and the path of crack propagation at crack tip before the crack reached the grain boundary, and had an important influence on the crack growth rate.
Tungstate based phosphors have efficient absorption in the UV region and can be used for UV-pumped light emitting. For novel and effective materials and synthesis methods in this system, a series of Eu3+ and Tb3+ co-doped NaY(WO4)2 phosphors have been synthesized via the molten salt method. The powder X-ray diffraction (PXRD) patterns, scanning electronic microscope (SEM), and photoluminescent spectra have been characterized for the prepared samples. The results show the flux (NaCl) not only decreases the reaction temperature (700–900 °C) than the normal solid state synthesis (∼1000 °C), but also controls the morphology of the products. The shape and size of products can be changed simply and effectively by the reaction conditions, such as temperature and heating time. It is also found that the emission colors of the samples can be tuned from red to green by simply adjusting the doping concentrations of Eu3+ and Tb3+ ions under the same wave length excitation, which has potential applications for multi-color display and illumination as a single-component phosphor.
We investigated the boron isotopic composition in loess–paleosol sequences in five different profiles in the Chinese Loess Plateau. Three possible boron sources are identified: atmospheric input, carbonates, and weathered silicate rocks. Variations of [Sr], [B], δ11B and the magnetic susceptibility correlate well with the pedogenetic intensity in three out of the five studied profiles, where pedogenesis under a cold–dry climate indicates lower δ11B, lower [B], lower magnetic susceptibility and higher [Sr] values. Exceptions to the variations between the δ11B and other known proxies were observed in arenaceous soils and the Red Clay sequence: the former suggested that vertical redistribution probably occurred with the boron migration, and the latter indicated an unknown mechanism of susceptibility enhancement. A better correlation between the δ11B and magnetic susceptibility and the quantitative estimation of boron budget from each source confirms the influence of paleoenvironmental changes on boron geochemical cycle. Significant positive correlations in Sr/Ca vs. B/Ca and Mg/Ca vs. B/Ca reflect consistent enrichment behavior of those mobile elements into calcium carbonate. The preliminary results imply that boron isotopic compositions in soils can be a potential geochemical proxy to reconstruct the paleoenvironmental changes in loess–paleosol sequences.
Five orthopteran specimens from the uppermost Middle–lowermost Upper Jurassic of Daohugou, Inner Mongolia, China are described and attributed to the genus Sigmaboilus Fang, Zhang & Wang, 2007 (Prophalangopsidae); and a new species, S. calophlebius sp. nov., is established herein. The diagnostic characters for Sigmaboilus are revised and a key to species of Sigmaboilus, based on male forewings, is provided. Intraspecific variation in forewings of this genus is also discussed.
Orthocoelium streptocoelium is a common paramphistome species parasitizing the rumen and/or reticulum of small ruminants, leading to significant losses. This study first determined the complete mitochondrial (mt) genome of O. streptocoelium. The complete mt genome of O. streptocoelium was amplified, sequenced, assembled, analysed and then compared with those of other digeneans. The entire mt genome of O. streptocoelium is 13,800 bp in length, which is smaller than those of other digeneans except for Opisthorchis viverrini. This mt genome contains 12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and two non-coding regions. The arrangement of the O. streptocoelium mt genome is the same as those of other digeneans except for Schistosoma haematobium and Schistosoma spindale. Phylogenetic analyses based on concatenated amino acid sequences of the 12 protein-coding genes representing 16 digeneans were conducted to assess the relationship of O. streptocoelium with other digeneans. The result indicated that O. streptocoelium is closely related to Paramphistomum cervi and Fischoederius elongates, which is in accordance with their relationships by taxonomy. This complete mt genome of O. streptocoelium enriched the mitochondrial genome data of paramphistomes and provided important molecular markers for diagnostics and studies of population variation, epidemiology, ecology and evolution of O. streptocoelium and other digeneans.
With the 3D data of SDSS-IV MaNGA (Bundy et al. 2015) spectra and multi-wavelength SED modeling, we expect to have a better understanding of the distribution of dust, gas and star formation of galaxy mergers. For a case study of the merging galaxy Mrk848, we use both UV-to-IR broadband SED and the MaNGA integral field spectroscopy to obtain its star formation histories at the tail and core regions. From the SED fitting and full spectral fitting, we find that the star formation in the tail regions are affected by the interaction earlier than the core regions. The core regions show apparently two times of star formation and a strong burst within 500Myr, indicating the recent star formation is triggered by the interaction. The star formation histories derived from these two methods are basically consistent.
This paper develops a model to assess the quantitative effects of entry costs and financial frictions on cross-country income and total factor productivity (TFP) differences, with a primary focus on the interaction between entry costs and financial frictions. The model is calibrated to match the establishment-level statistics for the U.S. economy, assuming a perfect financial market. The simulations based on the calibrated model show that entry costs and financial frictions together account for 55% and 46% of the cross-country variation in output and TFP in the data. Moreover, a substantial portion of the variation is accounted for by the interaction between entry costs and financial frictions. The main mechanism is that financial frictions amplify the effect of entry costs.
The fabrication of Ce3+-doped lutetium oxyorthosilicate (Lu2SiO5:Ce, LSO:Ce) scintillation ceramics was investigated by pressureless sintering starting from synthetic submicrometer polycrystalline LSO:Ce powder. It was found that translucent LSO ceramics were densified successfully with relative density of 99.5% under sintering condition of 1720 °C for 4 h. As-sintered LSO ceramics were pore-free with average grain size of 5 μm and exhibited a translucent state. The broad emission spectra centered at 419 nm of the LSO:Ce ceramics under vacuum ultraviolet (VUV) and UV excitation at room temperature. Under x-ray excitation, the overall emission intensity of obtained LSO ceramics achieved twice of that of bismuth germanium oxide (also known as bismuth germanate) single crystal at room temperature. Under excitation of 356 nm and emission of 420 nm, the luminescence decay time of the obtained LSO scintillation ceramics reached only 21.2 ns. The light yield of the LSO ceramics was 21,300 ph/MeV, which reached 91% of that of LSO single crystal.
This work presents the preparation and characterization of N-doped TiO2 nanocrystals obtained by a solid-state reaction in vacuum with urea as the nitrogen source. The particle sizes of the products are smaller than 20 nm from the x-ray powder diffraction patterns and the transmission electron microscopy images. Different from the reported samples obtained in air or under dry N2 or NH3 gas flow, the doped nitrogen exists mainly as absorbed NOx groups but as smaller incorporated species in the nanocrystals, which is supported by the results from x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and ultraviolet–visible diffuse reflectance spectroscopy. Dependent on the nitrogen amount, the surface photovoltage (SPV) response reaches the maximum at the mediate molar ratio of 5:4 (urea to TiO2), which can be explained that proper nitrogen concentration can enhance the separation of the photogenerated carriers to improve the SPV intensity, but excess nitrogen can spread the impurity energy levels to narrow energy gaps, which reinforces the combination of the photogenerated electrons and holes and then decreases the SPV signal. The corresponding detailed discussion is also reported.