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Submerged vegetation plays a subtle role in exchanging the fluid mass and energy in
the vegetated flow zone, where the swaying motions of flexible plants are the important
source of turbulent kinetic energy production. Flume experiments were conducted to
study the modes, characteristics and factors of swaying of individual submerged flexible
plants. A modified plant model in a new form, representing the highly flexible vegetation
with clustered leaves, was employed. A ‘rigid-like’ synchronous swaying mode and a
‘whip-like’ asynchronous flapping mode are found to appear alternately for the individual
plants. The interaction between these modes depends on the resulting local flow structure
affected by the plants. Compared with a plant in isolation with the same flow Reynolds
number, the swaying motions of a plant within the vegetation patch are less frequent
but more prone to the synchronous mode. The eigen frequency of the motions increases
linearly with an increase in flow Reynolds number in the range of 2 × 104–5 × 104, but the
normalised amplitude reaches a saturation at a high flow Reynolds number. Moreover, the
in-line and spanwise motions have a 2 : 1 frequency ratio for an ‘8’ shaped trajectory on
the horizontal plane and a 1 : 1 ratio for a ‘0’ shaped circular trajectory, or a combination
of both.

Key words: swimming/flying, shallow water flows

1. Introduction

Aquatic vegetation, ubiquitous in the fluvial, marshy and coastal areas, provides
cost-effective and sustainable ecosystem services from the perspective of sea-level rise
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and climate change (Costanza et al. 1997; Nepf 2012; Temmerman et al. 2013). From
the perspective of hydrodynamics, aquatic vegetation greatly affects the fluid mass and
momentum exchange. It dampens flow and waves by imposing drag and alters the velocity
field (Luhar & Nepf 2013; Lei & Nepf 2019a). Besides, it improves the water quality by
filtering oxygen, nutrients and sediments (Carpenter & Lodge 1986; Mass et al. 2010),
forms the foundation for many food webs (Chambers 1987) and sequesters a larger amount
of carbon than rainforests (Fourqurean et al. 2012). Importantly, Koch et al. (2006)
reported that the vegetated flows remain the most complex phenomenon to describe and
to understand. Therefore, vegetated flow has been a topic of continued interest not only to
fluid mechanists but also to multidisciplinary communities.

The submerged flexible vegetation, in particular, exhibits a strong three-dimensional
nature due to the coupling effects of flow–vegetation interaction. It either shows a
more streamlined posture, namely reconfiguration under the action of current (Vogel
1994; Luhar & Nepf 2011) or waves (Luhar, Infantes & Nepf 2017). This phenomenon
reduces the drag compared with rigid vegetation and also affects the light availability and
the mass/momentum exchange processes (Koehl 1984; Hurd 2000; Zimmerman 2003).
The interactions between flow and submerged flexible vegetation have received specific
attention in the past decades. Raupach, Finnigan & Brunet (1996) introduced the mixing
layer analogy to the terrestrial vegetation, explaining the coherent eddies on the top of the
canopy, which was later extended to the aquatic vegetation by Ghisalberti & Nepf (2002).
According to the analogy, the free shear layer at the flow–canopy interface gives rise to
the Kelvin–Helmholtz (KH) vortices, which dominate the mass and momentum exchange
(Nepf & Ghisalberti 2008). The KH vortices result in the waving motion of the flexible
vegetation, termed the monami (Ackerman & Okubo 1993). This coherent waving motion
of flexible vegetation has been investigated in the field (Fonseca & Kenworthy 1987;
Grizzle et al. 1996; Wallace, Luketina & Cox 1998), in the laboratory (Ikeda & Kanazawa
1996; Ghisalberti & Nepf 2002; Nezu & Sanjou 2008; Okamoto, Nezu & Sanjou 2016)
and numerically (Singh et al. 2016; O’Connor & Revell 2019; Wong, Trinh & Chapman
2020; Tschisgale et al. 2021).

Since the on-site studies are limited due to difficulties in accessibility, more laboratory
and numerical studies were carried out during the last two decades. A key factor therein
is the representativeness of either the living or artificial models used in off-site studies.
For the laboratory experimental studies, living and bionic flexible vegetation models are
often used to study the resistance to the flow and the flow structures (Kouwen & Unny
1973; Nepf & Vivoni 2000; Jarvela 2002; Yang, Cao & Knight 2007; Ferro 2019; Scheres,
Schuttrumpf & Felder 2020), while those biomimetic models with complex morphology
are not appropriate for detailed studies on a specific vegetation element (or a plant) due
to the difficulties in measurement and performing theoretical modelling. Concerning the
dynamics of flexible bodies, abstracted model elements in the forms of nylon filaments,
polyethylene thin blades and strip plates are usually employed (Ghisalberti & Nepf 2002;
Nezu & Sanjou 2008; Luhar & Nepf 2011). With regard to the numerical simulations,
vegetation is usually modelled as elastic cantilever beams, wall-mounted flexible flaps and
plates (Leclercq & de Langre 2016; O’Connor & Revell 2019; Wong et al. 2020; Tschisgale
et al. 2021). Since most of these studies have focused on the general characteristics and
different waving modes of the finite patch or infinite vegetation meadow, further study on a
single plant is essential for a better understanding of the waving mechanism of vegetation
meadows.

Herein, our concern is the swaying characteristics of a single submerged flexible
plant. This is essentially a classical problem of fluid–structure interaction involving
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a larger scope of research. Taneda (1968) investigated the waving motion of flags
including the frequency and oscillation modes. Later, Argentina & Mahadevan (2005)
gave an explanation for the flutter of a flag. Banerjee, Connell & Yue (2015) developed
three-dimensional wave models. Alben, Shelley & Zhang (2002, 2004) showed how the
flexible bodies bend and reconfigure in a two-dimensional flow. Zhang et al. (2000) and
Alben, Shelley & Zhang (2008) studied the flapping states of a flag and a filament. Besides,
interactions of a pair of filaments and sheets were studied by several researchers (Zhang
et al. 2000; Ristroph & Zhang 2008; Elfring & Lauga 2011; Zhang, He & Zhang 2020).
Nepf’s group conducted a series of flume experiments on the dynamics of individual
flexible blades induced by the currents and waves, and theoretically modelled them (Luhar
& Nepf 2011, 2016; Lei & Nepf 2019a,b; Zhang & Nepf 2020, 2021). They suggested that
the drag can be described by an effective blade length and its posture can be controlled
by the Cauchy and buoyancy numbers. Previous studies provide a good understanding
to the motions of various flexible bodies within the fluid. Until now, most of these
motions have been confined to either the horizonal or longitudinal plane, i.e. in two
dimensions. It is, however, worth noting that there remains a research gap in illustrating the
three-dimensional behavioural features of vegetation from the perspective of experimental
and theoretical modelling.

Considering the large deformation and the drag and buoyancy, we develop a new
physical plant model consisting of a series of pellets. Compared with the aforementioned
models, the pellets connected by a fine string not only play an important role in biomimetic
terms (mimicking the submerged flexible plant with a thin stem and clumped leaves) but
also give a convenience of spatial tracking and theoretical modelling. The model in this
form was numerically developed and validated by Wang et al. (2022a,b) based on the
large eddy simulation and the immersed boundary method. They considered the impact
of vegetation swaying and vibration on turbulence at a patch scale. They found that the
vegetation swaying has a more severe impact on the vortex structure and intensity than the
vegetation tilt, and will increase the magnitude and the distribution range of the turbulent
kinetic energy.

This study focuses on the characteristics of the swaying motion of a single plant alone
and within a vegetation patch arranged in an experimental flume. It is worth mentioning
that there have been a number of studies concerning the vortex-induced vibration of a
tethered sphere in waves and uniform flow. Earlier studies explored the dynamics of a
buoyant sphere moored by a single line in shallow water waves in the streamwise and
spanwise directions (Harleman & Shapiro 1960; Shi-Igai & Kono 1969). Williamson &
Govardhan (1997), Govardhan & Williamson (1997, 2005) and Jauvtis, Govardhan &
Williamson (2001) experimentally studied the vibration of a tethered sphere in a uniform
flow. They found that the data collapsed when the sphere response amplitude was plotted
against the reduced velocity (VR = Ub/fnD, where Ub is the area-averaged flow velocity,
fn is the natural frequency and D is the sphere diameter). They also distinguished several
vibration states, named modes I–IV in accordance with an increase in reduced velocity.
More research concerning the wake structures and vortex dynamics of a tethered sphere
was carried out subsequently based on the flow visualisation techniques, like tomographic
particle image velocimetry and numerical simulations (Hout, Krakovich & Gottlieb 2010;
Rajamuni, Thompson & Hourigan 2020; Kovalev, Eshbal & Van Hout 2022). However,
the dynamics of a series of pellets of a plant in an open-channel flow, as considered in this
study, is quite complex, because every single pellet is subject to a different hydrodynamics
in the boundary layer flow and manifests its own degree of freedom.
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This experimental study makes an initial attempt to understand the swaying dynamics of
a single submerged flexible plant alone and within the vegetation patch. The experimental
set-up and measurements are described in § 2, and the swaying characteristics of the plant
in isolation and within the vegetation patch are discussed in §§ 3 and 4, respectively. The
underlying mechanism of two modes and comparison of the plant in isolation and within
the vegetation patch are analysed in § 5. Finally, the conclusions are drawn in § 6. The
outcomes of this study can be applied not only to the aquatic vegetation but also to the
large-amplitude vibrations of tethered structures like buoys and tethered balloons.

2. Experiments

The instantaneous velocity components of the flow (u, v, w) in a Cartesian coordinate
system correspond to the streamwise, spanwise (i.e. transverse) and vertical directions (x,
y, z), respectively. With regard to the origin of the coordinate system, x = 0 is located in
front of the vegetation model, y = 0 at the spanwise flume centreline and z = 0 at the flume
bottom. To be specific, both y = 0 and z = 0 are located at the axis of symmetry of the
flume.

2.1. Vegetation model modification
The fully submerged aquatic plants have little need for stiff or woody tissue as they are
able to maintain their position within the water due to their inherent buoyancy, which
counteracts their weight (Corker 2022). As a result, their cells are usually more flexible
than the terrestrial plant cells (Okuda 2002). Therefore, a larger degree of deformation
of the aquatic plants is commonly found. Another distinctive feature is that a number
of fully submerged plants have finely dissected leaves, which can reduce drag in rivers
and provide a larger surface area for photosynthesis and an exchange of minerals and
gasses (Sculthorpe 1967). Besides, the leaves are usually arranged radially from the
branching points. In other words, there are clusters of finely forked leaves extending
from the stem, forming a general spherical shape. While the functions of stems and
roots of terrestrial plants are to absorb nutrition from the substrate, for aquatic plants,
their main function is anchorage so their shapes are evolved to be relatively thin and
soft. Overall, the aforementioned features characterise typical kinds of submerged flexible
plants possessing clumped dissected leaves connected by a thin stem and involving a large
degree of deformation. Typical examples are Cabomba caroliniana and Ceratophyllum
demersum, as shown in figure 1.

In this study, an effective model was developed representing the abovementioned plants,
and each plant model was simplified as a series of wooden pellets. Specifically, five pellets
(mass density of pellet, ρp = 700 kg m−3 and pellet diameter, D = 10 ± 0.5 mm) were
connected by a fine rope (rope diameter, Dr = 0.3 mm) at 0.02 m interval, which made the
plant height h 0.1 m in the still water. Each pellet was disposed by a waterproof material
to avoid the large variation of the density during the experiments (�ρp/ρp < 10 %, where
�ρp is the variation of mass density of pellet). This structure was a good representation
since all the necessary forces like inertial, buoyance and drag forces, which dominated the
mass and momentum interactions with ambient water, were properly dealt with. Compared
with the cantilever beams, wall-mounted flexible flaps and plates used in the previous
studies, this model manifested a strong three-dimensional nature and a large deformation
of the flexible plants, and was convenient to measure the vegetation dynamics. It is worth
noting that the restoring force, a force, normally provided by the Young’s modulus of
the stem for the traditional flexible vegetation, mainly arises from the buoyancy of the
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(b)(a) (c)

50 mm

Figure 1. Herbarium photographs of (a) Cabomba caroliniana (scaled), (b) Ceratophyllum demersum
(Bugbee et al. 2018) and (c) the modified vegetation model used in this study.

Flow

Fbuoy

Fdrag

Ti

Ti+1

(b)(a) (c)

Fgrav1st

5th

xy

z

Pellet no.

ūū

Figure 2. Idealised sketch of the ‘pellets string’ subject to (a) the open-channel flow, (b) the altered flow and
(c) the forces induced to a pellet, where Fbuoy is the buoyant force, Fdrag is the drag force, Fgrav is the gravity
force and Ti and Ti+1 are the inward and outward tensile forces, respectively.

densely dissected leaves in this model. Therefore, for simplicity, it was reasonable to use
the totally flexible rope as a representation of the highly flexible thin stem for the prototype
vegetation, as considered in this study.

With the modified physical model used in the flume, the scientific problem in this study
comes down to the dynamics of a string of pellets in an open-channel flow. There are
two flow features − a boundary layer flow for a single plant in isolation (figure 2a) and
a redirected flow for a vegetation patch of stringed pellets (figure 2b). The pellets of each
plant were numbered as one to five from bottom to top for the convenience of description,
and each pellet is subject to the gravity, buoyancy and drag induced by the flow and the
stress by the strings (figure 2c).

Since the prototype and the model both interacted with the flow of water, the scaling
parameters for fluid were unity (λρf = λµ = λg = 1). However, the length scale (λl) was set
to be 0.2, considering the experimental conditions like flume geometry. Froude similarity
was applied here as the situation is similar to the fluid flow applications near a stream
boundary in Lambert (2006), where the gravity effects dominate the viscous forces.
Relevant parameters and scaling results are summarised in table 1.
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Category Parameter Symbol Dimension Scaling factor

Plant geometry Length l L λl = 0.2
Mass m M λm = 0.23

Density ρp ML–3 λρp = 1.0
Force F MLT–2 λF = 0.23

Fluid Velocity u LT–1 λµ = 0.20.5

Density ρf ML–3 λρf = 1.0
Viscosity μ ML–1T–1 λµ = 1.0
Acceleration g LT–2 λg = 1.0

Plant response Time t T λt = 0.20.5

Frequency f T–1 λf = 0.2−0.5

Table 1. Scaling factors for the system under Froude similarity.

2.2. Experimental apparatus and set-up
Experiments were conducted in a 16 m long, 0.5 m wide and 0.5 m deep glass-wall
rectangular flume at the State Key Laboratory of Hydro-Science and Engineering,
Tsinghua University, Beijing, as shown in figure 3(a). The slope was adjustable via a
lifting gear and was maintained as 0.0025, which is common for alluvial rivers. A flow
straightener was installed at the inlet to avoid large-scale motions and swirls in the entry
flow. A steady, uniform recirculating flow condition was realised by a centrifugal pump,
controlled by a frequency converter through computer, where a linear relationship between
frequency and discharge was established. The flow discharge was measured by using an
electromagnetic flowmeter fitted on the recirculating pipe. The flow levels were recorded
by two water gauges. The measuring section, where a fully developed flow was achieved,
was located at 10 m downstream of the flow entrance.

Considering the redirecting effects of the submerged vegetation patch on the flow, the
local flow intensity that the plants within the vegetation patch are subjected to can be
quite different from the flow with a plant element in isolation for the same incoming
flow. Hence, the swaying characteristics of both the isolated plant in the open-channel
flow and the plants in the vegetation patch are investigated. Two sets of arrangements
were created in the flume: (i) a single plant model was attached to the flume bottom
on the flume axis of symmetry (figure 3b, designated as S), and (ii) a vegetation patch
was fabricated with plants mounted at 50 mm intervals extended wall-to-wall spanwise,
creating a 1 m long and 0.5 m wide vegetation canopy (figure 3c, designated as P). The
vegetation distribution density was 400 stems m−2, i.e. the solid volume fraction occupied
by the plants, ϕ = 0.0047. The ϕ value was in accordance with the ϕ range of marsh
grasses (Nepf 2012), but slightly smaller than that of seagrasses. This arrangement allowed
measurement of the behaviours of a single plant conveniently. For both the arrangements,
the waving dynamics of a single plant was explored, designated as S for a plant in isolation
and P for a vegetation patch. The pellets marked in red in figure 3 are the tracking objects
in each experiment. All five pellets of a plant were traced to determine their complete
behavioural features. The tracer pellets were dyed black with waterproof paint in contrast
with the white background.

Four flow discharges (Q = 0.025–0.10 m3 s−1) were run for two arrangements,
designated as S1–S4 and P1–P4 for a plant in isolation and a vegetation patch cases,
respectively. For the plant in isolation (S1–S4), the plant element was located at the
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x
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z

ū

Electromagnetic

flowmeter

Pump

Top camera

Recording area

Water gauge Acoustic Doppler

velocimetry

Flow

Tail gateFlow

straightener

Lift gear

Inlet

tank

Outlet

tank

10 m 1 m 5 m

(b)

(a)

(c)

Figure 3. Schematic views of (a) the experimental flume (not to scale), and two arrangements: (b) plant in
isolation (for case S1–S4) and (c) vegetation patch (for case P1–P4). The pellets in red colour are the tracking
objects in each experiment.

centreline (y = 0) of the spanwise section of the flume. In addition to S1, another set of
additional experiments were carried out with the isolated plant at different locations in the
spanwise section of the flume, y = 0.25, 0.5, 0.75 and 1.0H, designated as A1–A4. The
flow depth H was set as 0.20 m, having a relative submergence (the ratio of flow depth H
to plant height h) of 2.0, which was consistent with a shallow relative submergence range
of H/h < 5. For a shallow relative submergence, many submerged plants are sustained due
to the limited light penetration. Besides, this submergence also fits in with the results
of the field survey by the Connecticut Agricultural Experiment Station (Bugbee et al.
2018). The flow Reynolds numbers Re (= Q(Bν)–1, where B is the flume width and ν is
the kinematic viscosity of water) ranged 2 × 104–5 × 104 and the flow Froude number
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Case B (m) H (m) Q (m3 s−1) Ub (m s−1) Re Fr

S1, P1 0.50 0.20 0.010 0.10 2 × 104 0.07
S2, P2 0.015 0.15 3 × 104 0.11
S3, P3 0.020 0.20 4 × 104 0.14
S4, P4 0.025 0.25 5 × 104 0.18
A1–A4 0.010 0.10 2 × 104 0.07

Table 2. Experimental conditions.
Note: S, P and A are the abbreviations of cases with vegetation in the form of single element, patch and the

additional ones.

Fr (= Ub(gH)–0.5, where Ub is the area-averaged velocity, i.e. Q(BH)–1, and g is the
gravitational acceleration) varied in the range 0.07–0.18. Experimental conditions are
furnished in table 2.

2.3. Measurement
Three-dimensional velocity statistics were measured by using a down-looking acoustic
Doppler velocimeter, named Vectrino, manufactured by Nortek. The sampling duration of
Vectrino was 2 min with a rate of 100 Hz and a vertical measuring interval of 20 mm. Due
to the limitation of Vectrino, the velocity measurement was not possible 50 mm below the
free surface and 10 mm above the bed, thus allowing measurements at eight points across
the depth for each sampling position.

The plants’ movements were captured by a Nikon D7200 camera from the top at a frame
rate of 30 Hz in 1920 × 1080 pixels. This temporal resolution of image sampling was
adequate for capturing a typical pellet oscillation at a frequency of 1–3 Hz. In addition, the
spatial resolution was adequate for the detection of pellets’ movement. For each case, the
sampling duration of the videos were 10 min, which covered at least 600 typical oscillation
periods, and this could be considered to be adequate from a statistical standpoint.

The camera was mounted on the tripod with a 3-way pan-tilt head (Benro, GD3WH),
which offered an ideal view for the recording areas and a minimum scale of one degree for
adjustment. A calibration plate was shot at different vertical locations for post-calibration
of the videos, i.e. different scales apply to five pellets of each plant model when calculating
tracks. An extended field depth, or a small enough aperture (the inverse of the f -number,
where f is the aperture number of the camera), was set to have a clear sight of all five
pellets in the same viewing field. However, it was too small of an aperture to meet the
requirement of collecting enough light into the lens, which might subsequently cause an
increase in noise in the image. A proper f -number was chosen with a balance between clear
and low noise shooting. Moreover, two lamp panels were placed at both the fluid sides to
illuminate the shooting area. The experiments were carried out in a dark environment to
get the same light for all the cases.

2.4. Data processing
The scaling and lens distortion calibration were carried out before further data processing.
The video recording of the swaying motions of the pellets was processed by a MATLAB
code using the image processing toolbox. There were three steps to track the pellets’
trajectories. First, the video footage was streamed and cropped into pictures frame by
frame, where a later step was performed on each image. Second, the images were
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Figure 4. Raw and posted instantaneous images showing the pellets and the detection results. (a) Raw image
showing the overlapping of pellets for a small discharge, (b) the posted and detection result of (a), and (c) the
top pellet partly shaded by the upstream plant for a large discharge.

transferred to grey, and then the grey scale was stretched, which contained the bottom 1 %
and the top 1 % of all pixel values. Median filtering was performed, obtaining the median
value in a proper size of neighbourhood of the corresponding pixel. Thereafter, circular
Hough transform was applied to find circles in the images, and the proper sensitivity and
radius range for the function were set for different cases (Atherton & Kerbyson 1999). In
addition, a property detecting function ‘regionprops’ was employed to verify the results
from the abovementioned detection, including the properties, bounding box, centroid and
circularity.

The key challenge of the detection was whether one pellet was partly or completely
overlapped by a surrounding pellet. Such situation could appear in two flow conditions. For
the small discharge (Q = 0.010 m3 s−1), the pellets of a plant were partly overlapped with
each other, as shown in figure 4(a). They could be individually detected by setting a higher
sensitivity for the circular Hough transform accumulator array, as shown in figure 4(b).
On the other hand, for the large discharge (Q = 0.025 m3 s−1), the bottom pellet might
be shaded by a top pellet of the neighbouring plant in the upstream direction. When
the bottom pellet was half shaded, as shown in figure 4(c), the image dilation method
was applied to the picture before further detection (Gonzalez, Woods & Eddins 2011).
However, in some occasional cases where the bottom pellet was mostly or completely
shaded, which was difficult to detect, the position of the shaded pellet could be linearly
interpolated by the neighbouring two instances of the same pellet following the time
sequence.

For the velocity sampling, a signal to noise ratio greater than 18 dB and a correlation
greater than 85 % were ensured during the measurements. In addition, spikes in the records
were removed and replaced by using the phase-space method proposed by Goring &
Nikora (2002). Welch’s overlapped segment-averaging method was employed to obtain
the spectrum for flow and plant motions (Welch 1967). A Hamming window was applied
for each segment before performing a discrete Fourier transform to avoid spectral leakage
(Buxton, De Kat & Ganapathisubramani 2013; Duan et al. 2020). By transforming the
discrete time-series dataset into a Fourier series with N terms, the amplitude–frequency
characteristic curve was obtained. The plant trajectory spectrum was calculated with
20 segments that overlapped by 50 % from the 10 min dataset. The flow spectrum was
extracted with as many segments from the 30 min dataset.

Continuous wavelet transform (CWT) was used to examine the time-varying frequency
spectrum characteristics of non-stationary signals. Generalised Morse wavelets were
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employed as a superfamily of analytic wavelets (Lilly & Olhede 2012). The CWT was
applied to obtain the time-series frequency spectrum and was enabled us to distinguish the
peak frequency at different moments in this study.

2.5. Uncertainty analysis
For the instantaneous motions of each pellet obtained from the video measurements, the
uncertainties mainly originated from three aspects: (i) the frame distortion, originating
from the lens and the free surface fluctuations, could be properly dealt with through the
calibration process; (ii) the noise that occurred when shooting the video could not be
avoided due to the restriction of the camera, but was kept as low as possible through a
proper choice of aperture (the inverse of the f -number); (iii) the random error in estimating
the centroid of the tracking circles is a problem of the circular Hough transform algorithm.
The random error for the motion tracking in total was estimated to be less than 5 % of the
pellet diameter.

As for the flow turbulence statistics, the presence of spikes, Doppler noise and filtering
effects due to acoustic Doppler velocimetry sampling strategy could strongly affect the
turbulence characterisation on the basis of the recorded signals (Romagnoli, Garcia &
Lopardo 2012). The relative error contribution of each source to raw longitudinal variance
is computed following the procedure noted in Romagnoli et al. (2012). The relative
confidence interval for the corrected longitudinal variance ranges between 15 % and 10 %.
It shows that the requirement for an adequate signal postprocessing technique has been
reached for reliable turbulence statistics.

3. Swaying characteristics of a single plant in isolation

3.1. Spatial characteristics of synchronous and asynchronous swaying modes
The trajectories of the pellets of an isolated plant were captured and plotted. Figure 5
shows a representative time-series segment of a plant for a discharge of Q (with a bulk-
or area-averaged velocity, Ub = 0.10 m s−1 and a flow Reynolds number, Re = 2 × 104)
for case S1. The time series (tUb/H) of the normalised streamwise and spanwise
displacements, �x/D and �y/D, are plotted in figure 5(a,b), respectively. Here, t is the
time, and �x and �y are the streamwise and spanwise displacements, respectively. As
expected, the displacement grows as the pellet location elevates. Notably, the amplitude
of the 5th pellet’s (i.e. the top pellet) displacement reaches half of the diameter in
both the streamwise and spanwise directions. However, it is obvious that the spanwise
oscillations are more sinusoidal and energetic than the streamwise oscillations. The details
are discussed in the succeeding section. The local time-average streamwise velocity
distribution that each pellet receives is shown in figure 5(c), which preserves a typical
logarithmic law in a boundary layer flow.

Zoomed-in segments of time series are shown below figure 5(a,b) illustrating the
simultaneous motions of five pellets in detail. The streamwise oscillations of five pellets
are in good synchronous phase with each other, while the spanwise oscillations exhibit
both synchronous and asynchronous swaying behaviours. To be specific, there are two
alternately appearing spanwise swaying modes: (i) the ‘rigid-like’ swaying with a large
amplitude at a low frequency, where five pellets wave synchronously (enclosed by a
rectangle with sides of blue broken lines), and (ii) the ‘whip-like’ swaying with smaller
amplitudes at a higher frequency (enclosed by a rectangle with sides of red broken lines).
For the asynchronous swaying, the top pellet waves in the opposite direction of the bottom
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Figure 5. Time series (tUb/H) of (a) normalised streamwise and (b) spanwise displacements (�x/D and �y/D,
respectively) of five pellets of the plant in case S1. Zoomed-in segments are shown below (a) and (b). (c) The
normalised time-averaged velocity distribution in a boundary layer flow for case S1. Spanwise trajectories in
(b) display both synchronous and asynchronous swaying modes of the pellets of the plant (enclosed by the
dashed rectangles).

three pellets, while the 4th pellet behaves like a standing point oscillating with a small
amplitude. These two different spanwise modes of the flexible plant are the focus of
this study. The following sections provide the further analysis of the characteristics of
the two modes and their possible underlying origins in terms of the hydrodynamics.

Figure 6 shows the characteristics of the two swaying modes for case S1, where left panel
corresponds to the synchronous swaying and right panel corresponds to the asynchronous
swaying. Experimental snapshots from the top are displayed in figure 6(a). The images
visually illustrate the ‘rigid-like’ synchronous and ‘whip-like’ asynchronous swaying
types of the plant.

The time series representing the typical synchronous and asynchronous swaying modes
were extracted from figure 5. In figure 6(b), the horizontal position of pellets during
one period was interpolated and compiled in the form of trajectory envelope, where two
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ẏ/

U
b

–1

1

0

2 3 41 0 2 3 41

0

–0.5 –0.5 –0.5 –0.50.5 0.5 0.5 0.5 0.5

Figure 6. Characteristics of synchronous and asynchronous swaying modes for case S1. (a) Images of
experimental snapshots from the top view, (b) trajectories envelope of an individual plant and (c) phase plots
of five pellets. The left and right panels correspond to the synchronous and asynchronous swaying modes,
respectively.

neutral positions with a half-period gap are shown including the instantaneous velocity
vectors. The trajectories of ‘rigid-like’ swaying are, in general, a radical pattern, while the
‘whip-like’ swaying shows a fish-shaped pattern, implying that a node appears at the 4th
pellet. Although it is not directly related, a similar analogy can be extended from Taneda’s
(1968) work, where the oscillation modes of the flags of different lengths are classified
as no-node, one-node and two-node flutters. The phase plots of each pellet, shown in
figure 6(c), further depict the difference between two modes based on the normalised
spanwise pellet velocity �ẏ/Ub and spanwise pellet displacement �y/D, where �ẏ is
the spanwise pellet velocity. It can be inferred that the 4th pellet in asynchronous mode
oscillates within a small range (both velocity and displacement), and acts like a node in
the whipping motion.

To further understand the spatial and velocity distributions of the pellets, the trajectories
of the whole sampling records were categorised through the spanwise swaying direction of
different pellets of the plant. The sign of the product of spanwise velocities of the 3rd and
5th pellets decides the specific swaying mode. The negative sign implies that two pellets
move in different spanwise directions, i.e. the plant sways asynchronously, and the positive
sign represents the synchronous swaying.

Figure 7(a) presents the maps of the two-dimensional normalised probability density
PD/pmax (on horizontal plane) of the categorised trajectories for case S1, which is
supplemented by the corresponding spanwise probability distribution of each pellet
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Figure 7. (a) Maps of the two-dimensional normalised probability density (on horizontal plane), (b) spanwise
probability density distribution and (c) histograms of the velocity of the categorised trajectories for case S1.
The left and right panels in (a) and (b), top and bottom subgraphs in (c) correspond to the synchronous and the
asynchronous swaying modes, respectively. Zoomed-in spanwise distributions on semi-log planes are shown
in (b).

(figure 7b). Here, PD is the probability density and pmax is the maximum value of PD.
It is evident that the spanwise distribution of each pellet for the two modes shows an
opposite tendency. Specifically, the top three pellets in the synchronous swaying (solid
line on left panel) display a two-peak distribution, while for the asynchronous swaying
(right panel), the top three pellets’ peaks are at the neutral position. For the bottom two
pellets, the scenario is reversed. Spanwise distributions are also plotted on semi-log planes
and zoomed-in (in insets) to get larger views of the peaks for different pellets.

Histograms of the velocity for each pellet shown in figure 7(c) further demonstrate the
tendencies of the two modes for case S1. The synchronous swaying shows a radical shaped
tendency of the five pellets. As the pellet location moves up, the amplitude range of the
spanwise velocity of individual pellet increases. The asynchronous case exhibits a fish-like
tendency, where the 4th pellet serves as a node in the whip-like swaying, and thus shows
a small range of velocity.
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Figure 8. The PSD of the spanwise displacement �y of each pellet for case S1, where Syy represents the PSD
of the transverse displacement component �y. Smoothed spectra are obtained from the Gaussian denoised
(high-frequency) time series followed by a 2 % bandwidth moving filter (Baars, Hutchins & Marusic 2016).

3.2. Spectral and time–frequency analyses of the plant swaying
To get a picture of the frequencies of the two swaying modes over the time, the
power spectral density (PSD) and the time-frequency wavelet scaling of the spanwise
displacement �y are presented.

Since the spanwise oscillations are more sinusoidal and energetic, figure 8 presents the
PSD of the spanwise displacement �y of each pellet for case S1. The peaks in the spectrum
reveal the typical frequency and the magnitude of each pellet motion (marked by the black
dotted lines). There are two peaks appearing in the spectra for all the pellets except for
the 4th one that possesses a single peak in its spectrum. For the pellets with two peaks,
the main peak is inferred from the magnitudes of the PSD (Syy). The peaks of all the
pellets appear at 1.25 and 2.35 Hz, while the main peak of each pellet transits from the
low-frequency 1.25 Hz for the top three pellets (5th to 3rd pellets) to the high-frequency
2.35 Hz for the bottom two pellets (2nd and 1st pellets). A possible reason for the transits
of the main peak for different pellets is that the maximum swaying amplitude differs, as
shown in figure 7. The maximum amplitude for the 2nd pellet appears in asynchronous
mode and that for the 5th one is the opposite. The question arises whether these two peaks
and the features in the spectra are related to the different swaying modes mentioned in the
previous section. For further analysis, the time–frequency scaling for the spanwise time
series for case S1 was obtained using the CWT, and the corresponding scalogram was
plotted as a function of time and frequency, as shown in figure 9.

The general scalogram of the 5th pellet of case S1 is demonstrated in figure 9(a). The
two highlighted bands in the scalogram exemplify the alternately appearing two peaks
of the spectrum along the sampling time series. This further implies that the spanwise
swaying of the plant in this case is a non-stationary process. Two typical segments of
the scalogram are zoomed-in for a closer look, as shown in figure 9(b) (i). Moreover,
the corresponding segments of scalograms of the 3rd and 4th pellets are supplemented
in figure 9(b) (ii) and (iii). Scalograms for the 3rd and 5th pellets clearly show a
frequent transition between two frequency peaks, 1.25 and 2.35 Hz. In contrast, for the
4th pellet, only the peak at a smaller frequency (1.25 Hz) is evident in the scalogram.
Furthermore, the zoomed-in scalograms proved that the two peaks of the spectra in
figure 8 come from the alternate high-frequency and low-frequency motions of the pellets.
Additionally, the corresponding trajectory segments (spanwise displacement) shown in
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Figure 9. (a) Scalogram as a function of time and frequency obtained from the spanwise displacement series
of the 5th pellet of case S1, (b) scalograms of two typical segments zoomed-in from (a) in (i), and the
corresponding scalograms of the 3rd and 4th pellets supplemented in (ii) and (iii), respectively. Alternate
bands of two peaks are marked by the red and white broken lines. (c) The corresponding raw signal segments
(spanwise displacement) of (b). The synchronous and asynchronous swaying modes are enclosed by rectangles.

figure 9(c) corroborate that the two alternate peaks in the scalograms originate from
the alternate synchronous and asynchronous swaying motions of the plant. In short,
the low-frequency peak corresponds to the ‘rigid-like’ swaying with a large amplitude,
where five pellets wave synchronously, while the high-frequency peak corresponds to the
‘whip-like’ swaying with a smaller amplitude, where the top pellet waves in opposite
direction of the bottom three pellets.

It further elucidates the features of the spectra in figure 8. The second peak of the 4th
pellet disappears for the reason that it acts as a node in the asynchronous swaying mode and
oscillates with a very small amplitude. The transit of the main peak from low frequency
to high frequency can be attributed to the bottom two pellets which oscillate with a larger
amplitude in the asynchronous swaying mode compared with the synchronous swaying
mode.

Instant spectra of two selected typical moments (183 and 207 s) are extracted from
the time–frequency scalograms (figure 9a), representing the asynchronous and the
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Figure 10. Transition of two swaying modes. (a) Time series of spanwise trajectory showing the transition
from the asynchronous swaying to the synchronous swaying. (b) Instant spectrum extracted from the
time–frequency scalograms of two selected moments (183 and 207 s). The main peak in (b) transits from a
higher frequency to a lower frequency, but the spectrum of the 4th pellet does not show the high-frequency
peak at 183 s.

synchronous swaying modes, as shown in figure 10. Besides the 4th pellet, all the
other pellets exhibit a clear transition from the high-frequency peak (in blue) to the
low-frequency peak (in red), and the 4th pellet shows a single peak at low frequency arising
from the synchronous swaying (in yellow).

3.3. Effects of flow Reynolds number
The two modes discussed in the preceding sections belong to case S1, where the two
modes appear alternately and the synchronous swaying governs. Figure 11(a–d) shows
the spectra of the streamwise and spanwise motions of the top 5th pellet with an increase
in flow Reynolds number, corresponding to cases S1–S4. As the flow Reynolds number
increases, the plant swaying is more frequent, and the main peak of the spanwise spectrum
(in red) transits from the low-frequency to the high-frequency spectrum, implying that the
asynchronous swaying gradually takes the dominant role. In other words, as the incoming
flow intensifies, the plant in isolation is more inclined to vibrate in an asynchronous mode
than to wave in a regular synchronous mode.

It is worth mentioning that, as the flow Reynolds number increases, two peaks emerge
in the spectrum of the streamwise motion. These peaks correspond to exactly twice the
frequency of the respective peaks in the spanwise spectrum. This is in conformity with the
result obtained by Williamson & Govardhan (1997), who also found that the streamwise
frequency is twice the spanwise frequency for a tethered sphere in a uniform flow. The
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Figure 11. The PSD of the 5th pellet for the cases with an increase in flow Reynolds number. Here, Sxx and
Syy represent the PSDs of the streamwise and transverse displacement components, �x and �y, and are shown
in blue and red lines, respectively. Panels (a–d) correspond to cases S1–S4.

underlying physical processes are further discussed in the following section in the context
of plants in a vegetation patch.

4. Swaying characteristics of the plants within a vegetation patch

4.1. Flow adjustment and transition of plants swaying along the vegetation patch
Time-averaged streamwise velocity distributions along the vegetation patch for case P1
are shown in figure 12(a). A clear trend of transition from a boundary layer velocity
distribution (i.e. the logarithmic law) to a mixing layer distribution (i.e. the hyperbolic
tangent law) is displayed. The resistance of the vegetation patch causes a decrease in
velocity within the canopy (below the black broken line). Thus, the velocity above the
interface increases according to the mass conservation principle, resulting in an inflection
point in the velocity distribution near the interface, forming a strong shear layer.

It is apparent that the time-averaged velocity adjusts until a hyperbolic tangent velocity
distribution develops at a streamwise distance x = 3H. The swaying characteristics of the
plants, located at x = 0, 1.25H, 2.5H and 3.75H, along the vegetation patch are analysed
in sequence (figure 12b). Unlike the fluid evolvement, the swaying characteristics of the
plants experience a very short spatial adjustment. As discussed in the preceding section,
the second peak in the spanwise spectrum corresponds to the asynchronous swaying mode.
It is evident that the second spectral peak at the leading edge of the patch (x = 0) shrinks

971 A14-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

58
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.587


J. Fu, G. He, L. Huang, S. Dey and H. Fang

(i) x = 0

(ii) x = 1.25H

(iii) x = 2.5H

(iv) x = 3.75H

0.5 1.51.00.5 1.51.00.5 1.51.0

z/H

0.5 1.51.0

0.75

0.25

0.50

xy

z

Flow

0.050.1 0.15

–1 0 1 2 3 4 5 x/H

(a)

(b)

2.16
1.08    2.08    

1.08
SxxSyy
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Figure 12. (a) Time-averaged streamwise velocity distributions along the vegetation patch for case P1.
(b) The PSD of the 5th pellet of the plants located at x = 0, 1.25H, 2.5H and 3.75H in the vegetation patch.
Left and right panels represent the spanwise and streamwise motions, respectively. Due to the limitation of the
down-look Vectrino probe, the flow zone of 5 cm below the free surface could not be measured. The plant
marked in red is selected as the typical plant for further analysis in § 4.2.

rapidly along the x-direction, and almost disappears after the 3rd row (x = 0.5H, not shown
in the figure), as shown in the left panel of figure 12(b). After a short distance of adjustment
at the leading edge, the plants’ swaying characteristics show a uniform spatial feature
within the vegetation patch. To explain this further, the first three rows of plants facing
the approaching flow wave in both synchronous and asynchronous modes alternately. The
other plants within the vegetation patch share a similar spectrum with the same eigen
frequency and wave in a synchronous mode.
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Figure 13. (a) Spanwise trajectories of the top pellet of the plant selected from the vegetation patch for
different flow Reynolds numbers with an increase in sequence from (i) to (iv) corresponding to P1–P4,
respectively. (b) The scalograms as a function of time and frequency obtained from the trajectories in (a).

4.2. Synchronisation effects of the patch on a single plant swaying
Based on the fully developed spectra in figure 12(b), we select a typical plant from
the vegetation patch at x = 3.75H (marked in red in figure 12a) for the plant swaying
analysis with an increase in flow Reynolds number. Figure 13(a,b) illustrates the spanwise
trajectories of the top pellet (the 5th pellet) and the corresponding time–frequency wavelet
scaling scalograms, respectively. For a low flow intensity (figure 13a i, case P1), the
spanwise motion of the plant shows a regular and sinusoidal feature. Compared with the
plant in isolation in § 3 (case S1), the plant in the vegetation patch only waves in the
synchronous mode with a lower frequency, but with a relatively large amplitude.

As the flow Reynolds number increases, the periodicity of the spanwise swaying
decreases and the swaying becomes gradually irregular (figure 13a ii–iv). At the same
time, the ‘whip-like’ asynchronous swaying mode emerges and intensifies. However, even
for the largest discharge, the low-frequency synchronous swaying plays a predominant role.
Hence, the plant within the vegetation patch tends to wave in a synchronous mode rather
than an asynchronous mode. This tendency might be accredited to the synchronisation
effects of the surrounding plants. Elfring & Lauga (2011) argued that the adjacent flexible
sheets either wave in phase or opposite phase, leading to a minimum energy dissipation.

4.3. Relation between streamwise and spanwise motions
Figure 14(a) shows the spectra of the streamwise and spanwise motions of the 5th pellet
of the selected plant in case P1, where one and two peaks appear in the spectra of the
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Figure 14. (a) The PSD of the 5th pellet of the plant selected from the vegetation patch for case P1. The red
and blue spectra correspond to the streamwise and spanwise motions, respectively. (b) The scalograms as a
function of time and frequency obtained from the same pellet. One and two highlighted bands correspond to
the peaks of the spanwise and streamwise motions in (a), respectively.

spanwise and the streamwise motions, respectively. Besides, there is a perfect one-time
and two-time relation between the frequency of the peaks in these spectra. Unlike the two
alternately appearing peaks in the spanwise motion spectra of the single plant in case S1,
the two peaks in the streamwise motion spectra here appear simultaneously (also see the
two highlighted bands in the streamwise scalogram in figure 14b).

To achieve the relation between streamwise and spanwise motions, a close look at the
trajectories of the plant is required. As discussed in § 4.2, only the synchronous swaying
mode exists in this case, where each pellet shows a similar behaviour. Hence, for brevity,
only the top pellet (the 5th pellet) is selected for the analysis. In the context of ocean
engineering concerning the dynamics of a tethered sphere, Williamson & Govardhan
(1997) conducted experiments and reported that the in-line oscillations were phase locked
with the spanwise oscillations and vibrate at twice the frequency of the spanwise motion.
This conclusion can be drawn based on a simple physical ground, i.e. the conditions
affecting the in-line vibrations when the sphere is displaced to +y are same as when it
is displaced to –y. In particular, within one period of spanwise motion, there are two
symmetric periods of streamwise motions for +y and –y, which forms an ‘8’ shaped
trajectory on the xy plane. This explains the two-time relation between two spectra, i.e.
the 1.02 Hz peak in spanwise and 2.05 Hz in streamwise spectra.

For the origin of the low-frequency peak (enclosed by a rectangle with sides of blue
broken lines in figure 14a), it is attributed to the fact that the pellet waves in a circular
track, hence forming a 1 : 1 relation in two directions. For a better visual illustration,
a closer look at the time-series trajectories is necessary. The time series of streamwise
and spanwise displacement trajectories of the top pellet of the selected plant are shown
in figure 15(a), and the corresponding velocity series (�ẏ/Ub, �ẋ/Ub) are derived from
tracking the trajectories as shown in figure 15(b). Here, �ẋ is the streamwise velocity of
the pellet. With an effect of high-pass filtering, the velocity series show a more energetic
relation between the periodicity of the two directions.

Five segments were extracted for analysing the relation between the streamwise and
spanwise motions of the pellets. Figure 15(c) shows that the pellet trajectories on the
xy plane are normally not an ‘8’ shaped (ii, iv), but are often stretched in the spanwise
direction and shifted to the streamwise direction (i, iii, v). Hence, if we only consider the
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Figure 15. Trajectories of the top pellet of the selected plant for case P1: (a) normalised streamwise and
spanwise displacement trajectories and (b) time series of normalised pellet velocity components (�ẏ/Ub,
�ẋ/Ub). (c) Segment trajectories of the pellet on the xy plane obtained from (a). (d) Three typical trace patterns
extracted from (c), and velocity series segment of the fully stretched pattern is supplemented in (d). The flow
is from left to right for (c) and (d). The displayed trajectories are stretched in the ±y directions.

stretching in the spanwise direction, besides the ‘8’ shaped trajectory (I), typically two
kinds of stretched shapes of the trajectories on the xy plane, namely, the partially stretched
(II) and the fully stretched (III), are observed (figure 15d). For the fully stretched swaying,
the corresponding velocity segment was zoomed-in and shown in figure 15(d), it is clear
that periods of approximately 0.5 and 1 s occur simultaneously in the streamwise direction,
and a period of approximately 1 s exists in the spanwise direction. Therefore, unlike the
simple case of only one tethered sphere used by Williamson & Govardhan (1997), the
model plant employed in this study is more intricate and less regular. The ‘once’ and
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‘twice’ relation between spanwise and streamwise swaying are attributed to the stretched
pattern deviating from the ‘8’ shaped trajectory.

5. Further discussion

5.1. The underlying mechanism of two swaying modes
Characteristics of the synchronous and asynchronous spanwise swaying modes observed
in this study are analysed in the preceding section. However, the underlying mechanism of
the two modes remains unknown and open for further examination. Here, possible reasons
are illustrated below.

As a classic problem of fluid–structure interactions, the motions of a flexible body in
the fluid are always thought to be relevant to the shedding pattern of the wake vortices,
i.e. fluid-induced vibration. Different patterns of vortex shedding determine the vibrating
behaviours of the body (Govardhan & Williamson 2005), and ample research has been
carried out on this topic through flow visualisation techniques and theoretical analyses.
However, the flexible body and the flow, in this study, add to the complexity for three
reasons and hence may bring bimodal responses to the plants. First, for the plant in
isolation, the possible existence of intermittent special vortices from the incoming flow
might lead to different swaying motions of the plant, such as the streamwise rotating
vortices (Zhong et al. 2016) and the secondary flow (Dey 2014). Second, for the plant
within the vegetation patch, the vibration of the plant is affected by the wakes and vortices
of the surrounding plants instead of its own wake, referred to as wake-induced vibration
(Lin et al. 2021). Third, the plant, in this study, is actually a series of flexible bodies
if we take each pellet as a tethered sphere, and this undoubtedly brings up a higher
degree of freedom of the flexible body and makes the swaying behaviour more complex.
Moreover, there can be differences due to the distributed vortex-induced forces exciting
several natural frequencies instead of a single natural frequency as in the case of a rigid
cylinder (Lin et al. 2021).

The vortical structure In depth scale in a vegetated flow can be one of the reasons that
leads to different swaying modes. Considering the flow aspect ratio B/H in the flume as
2.5 (<6), corresponding to a narrow channel (Dey 2014), the velocity distributions in the
spanwise sections were derived. Figure 16(a) provides a view of the ‘dip phenomenon’
because of the switching of the peak flow velocity below the free surface and the
prevalence of the secondary currents of Prandtl’s second kind (Dey 2014). It depicts
that the flow intensity is non-uniform in the spanwise direction. In addition, a set of
experiments (A1–A4) supplementing case S1 was carried out to study the effects of the
flow non-uniformity in the flume. Isolated plants were placed at different locations along
the spanwise direction starting from the flume centreline to the sidewall, designated as
(i)–(v) in figure 16(b). The spectra of the spanwise motions at different locations are
presented in figure 16(c). It is apparent that there are two peaks encapsulating the existence
of two waving modes for all locations. However, the eigen frequency of the plant located at
the flume centreline is higher than that located near the flume sidewall for both the peaks.
This feature can be ascribed to the streamwise flow intensity being stronger at the flume
centreline than in the vicinity of the flume sidewall. Another important fact is that, for
the plant at the flume centreline (i), the synchronous swaying mode is predominant, while
for the plant located near the flume sidewall (v), the asynchronous swaying mode is the
governing mechanism. In essence, the asynchronous swaying gradually takes the dominant
role as the plant location is closer to the flume sidewall.
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Figure 16. (a) Normalised time-averaged velocity map overlapped on the velocity vectors on the yz plane
obtained from the point velocity statistics (half-sectional view) of case S1. The blank space refers to the
unmeasured flow zone. (b) Five plants located along the spanwise direction of the flume in the supplementary
experiments with the isolated plant (S1, A1–A4). (c) The frequency spectra of the spanwise motions of plants
at different spanwise locations given in (b).

5.2. Comparison of a plant swaying in isolation and within a vegetation patch
A series of experiments was carried out in the flume with two sets of plant/vegetation
configurations, namely, isolated plant, designated as S, and the vegetation patch,
designated as P. Statistics of the frequency peaks ( f 1 and f 2) in the spectra and the
normalised amplitude A* (= 20.5�yrms/D, where �yrms is the root-mean-square of the
spanwise displacement) of the spanwise motion for two configurations are presented in
figure 17 and table 3. As depicted in figure 17, the frequency peaks increase, as the
flow Reynolds number increases. Over a range of frequencies, they grow linearly, but the
normalised amplitude reaches a saturation at a high flow Reynolds number.

For the same flow Reynolds number, the eigen frequencies for the plant in the vegetation
patch are smaller than a single plant in isolation, showing less frequent and more regular
swaying features, as discussed in § 4.2. This tendency can be attributed to the adjustment
effects of the vegetation patch on the flow and the sheltering effects of the plants on
each other within the vegetation patch. As shown in figure 12(a), the flow is redirected
to the overlying flow layer above the canopy of the vegetation patch, i.e. the flow strength
intensifies in the overlying layer but weakens within the vegetation patch. Hence, even for
the same flow Reynolds number, the flow intensity within the vegetated area is weaker
than that at an isolated plant. Therefore, the plant in isolation in an open-channel flow

971 A14-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

58
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.587


J. Fu, G. He, L. Huang, S. Dey and H. Fang

0

0.25

0.50

0.75

1.00

0

1

2

3

4

1 2 3 4 5 6

S-f 1 S-f 2

P-f 1 P-f 2
P-AmpS-Amp

Re

f (
H

z)

A*

(×104)

Figure 17. The frequency f and the normalised amplitude A* (= 20.5�yrms/D) of the spanwise motion plotted
against the flow Reynolds number Re. Here, S stands for the isolated plant (in red), P refers to the plant selected
from the vegetation patch (in blue), f 1 represents the low-frequency peak of the spectrum (triangle), f 2 signifies
the high-frequency peak of the spectrum (square) and ‘Amp’ means the normalised amplitude (fork with error
bar).

Re Isolated plant A plant in vegetation patch

f 1 (Hz) f 2 (Hz) A* f 1 (Hz) f 2 (Hz) A*

2 × 104 1.25 2.35 0.34 1.02 2.05 0.67
3 × 104 1.46 2.49 0.51 1.26 2.26 0.85
4 × 104 1.70 2.72 0.63 1.44 2.55 0.90
5 × 104 1.90 3.05 0.64 1.67 2.64 0.92

Table 3. Frequency and amplitude statistics of the spanwise motions.

acts like a wall-mounted bluff body subject to the boundary layer flow, while the plants
within the vegetation patch can be viewed as the bed roughness elements, especially when
the plant distribution density is high. This methodology is traditional, but provides an
effective means to relook the earlier studies, concerning the flow resistance in a vegetated
channel.

6. Conclusions

Laboratory experiments on the swaying dynamics of the submerged flexible vegetation
were performed. A newly designed physical model, the ‘pellet-rope series’, was adapted
based on the morphology of prototype plants such as Cabomba caroliniana and
Ceratophyllum demersum. The model was able to manifest the three-dimensional nature
and large deformation of the natural flexible vegetation. This study aims at a further
investigation of the swaying modes and the characteristics of the flexible plant on the
xy plane. A series of experiments was conducted to investigate two sets of configurations:
a single plant alone and within a vegetation patch. The key findings of this study are
summarised as follows.
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Two spanwise modes, namely the synchronous and asynchronous swaying modes, are
recognised for the single flexible plant. They are the ‘rigid-like’ swaying, where five pellets
sway synchronously, and the ‘whip-like’ swaying, where the top and bottom pellets sway in
the opposite spanwise direction. The asynchronous mode sways with a smaller amplitude
and a higher frequency than the synchronous mode. Two modes appear alternately for
the same plant over time, and the intensity of the asynchronous swaying strengthens as
the flow Reynolds number increases. From a hydrodynamic perspective, the underlying
mechanism of the transition between two modes can be related to the vortices passing
over the vegetation patch. Statistics of the velocity confirm the existence of the secondary
currents in the flume with an aspect ratio of 2.5. The characteristics of the spanwise motion
of an isolated plant at different spanwise locations differ. As the plant location is closer
to the sidewall, the asynchronous mode gradually dominates and the frequencies for both
modes reduce.

For the plants within the vegetation patch, two swaying modes can also be found.
Unlike the isolated plant, the synchronous swaying of plants plays the major role over
a range of flow Reynolds number (2 × 104–5 × 104). There is a frequency reduction
for both modes of the plants’ swaying compared with the isolated plant with the same
incoming flow. It can be attributed to the redirected flow through the vegetation patch
area and the sheltering effects of the neighbouring plants. Moreover, the adjustment of the
plants swaying characteristics along the leading edge of the patch is much faster than the
adjustment of the flow structure.

Compared with the vigorous and periodic spanwise swaying, the characteristics of the
streamwise motion are less organised. However, there are frequency ratios of in-line to
spanwise motions: (i) an ‘8’ shaped trajectory showing a 2 : 1 relation on the xy plane,
(ii) a ‘0’ shaped circular trajectory with a 1 : 1 relation or (iii) an intermediate state with a
combination of both (i) and (ii). The third one is more common, because the plant normally
waves in a partially stretched pattern.

In essence, this study focuses on the swaying motions of a single plant both in isolation
and within the vegetation patch, attempting to draw the link between plant motion and flow
structure. As a future scope of study, further investigation on the vortex dynamics of the
vegetated area and the swaying characteristics of the entire vegetated patch may be carried
out. It has a scientific significance from the perspective of the coupling of flow and flexible
structure, and to be specific, the plant swaying-induced flow resistance.
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