We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mental health issues increased during the COVID-19 pandemic, especially among children. Our past research efforts found that surveillance data can address a variety of health concerns; that personal psychological awareness impacted ability to cope, and mental health outcomes were improved when survivors were triaged to mental health countermeasures. To build upon our public health efforts we wanted to see if increased screen time due to remote learning caused by the pandemic influenced school aged children’s mental health.
Methods:
With the hypothesis that excessive time spent isolated during remote learning increased the amount of mental health events in children, we conducted a public health surveillance project on actual diagnoses rather than just symptoms, controlling for historical mental health and emotional disorders.
Results:
The entire cohort of children ages 6 to 17 years were studied over time before and during the pandemic for their medically diagnosed mental health and emotional outcomes by the amount of pandemic induced social isolation.
Conclusions:
After controlling for historical diagnoses and the rate of COVID-19, the effect of pandemic induced social isolation had a linear increase on the amount of anxiety, resulting in a four-fold increase in pandemic social isolation-induced anxiety.
Invasive aquatic plants constantly threaten freshwaters and associated environs globally. Water resource managers frequently seek new control tactics to combat invasive macrophytes, especially when the availability of herbicides registered for submersed plant control is limited. The synthetic auxin herbicide, florpyrauxifen-benzyl, recently registered (2018) for aquatic site applications in the United States, has shown success in controlling several invasive aquatic weeds. Studies were conducted to evaluate responses of native and invasive submersed plants to florpyrauxifen-benzyl under growth chamber conditions to provide insight on the selectivity of varying herbicide concentrations in New Zealand. Florpyrauxifen-benzyl concentrations evaluated ranged from 0.01 to 107.86 µg ai L−1, encompassing the maximum use concentration (48 µg L−1) for submersed plant applications. Dose–response metrics indicated the New Zealand native species watermilfoil [Myriophyllum triphyllum Orchard] was highly sensitive to florpyrauxifen-benzyl following a 21-d static exposure, having a dry weight 50% effective concentration (EC50) value of 1.2 µg L−1. The invasive species oxygen-weed [Lagarosiphon major (Ridley) Moss] and Canadian waterweed (Elodea canadensis Michx.) were less sensitive, with dry weight EC50 values of 35.4 and >107.86 µg L−1, respectively. Brazilian waterweed (Egeria densa Planch.) was most tolerant to the tested concentrations, as EC50 values were not achieved. Overall, results indicate florpyrauxifen-benzyl demonstrates potential for controlling L. major, with further large-scale screening required to confirm control among field site applications. As the native species (M. triphyllum) was most sensitive to florpyrauxifen-benzyl compared with the invasive plant evaluated (I/N ratio indicated >31.3 times more sensitive), any targeted concentration used for invasive plant control for field applications would likely injure the native M. triphyllum plants. Future studies should investigate additional native and invasive species for management guidance and consider how exposure times influence plant response using similar florpyrauxifen-benzyl concentrations tested in the present study.
Evidence of Late Triassic large tetrapods from the UK is rare. Here, we describe a track-bearing surface located on the shoreline near Penarth, south Wales, United Kingdom. The total exposed surface is c. 50 m long and c. 2 m wide, and is split into northern and southern sections by a small fault. We interpret these impressions as tracks, rather than abiogenic sedimentary structures, because of the possession of marked displacement rims and their relationship to each other with regularly spaced impressions forming putative trackways. The impressions are large (up to c. 50 cm in length), but poorly preserved, and retain little information about track-maker anatomy. We discuss alternative, plausible, abiotic mechanisms that might have been responsible for the formation of these features, but reject them in favour of these impressions being tetrapod tracks. We propose that the site is an additional occurrence of the ichnotaxon Eosauropus, representing a sauropodomorph trackmaker, thereby adding a useful new datum to their sparse Late Triassic record in the UK. We also used historical photogrammetry to digitally map the extent of site erosion during 2009–2020. More than 1 m of the surface exposure has been lost over this 11-year period, and the few tracks present in both models show significant smoothing, breakage and loss of detail. These tracks are an important datapoint for Late Triassic palaeontology in the UK, even if they cannot be confidently assigned to a specific trackmaker. The documented loss of the bedding surface highlights the transient and vulnerable nature of our fossil resources, particularly in coastal settings, and the need to gather data as quickly and effectively as possible.
Systemic ventricular end-diastolic pressure is an important haemodynamic variable in adult patients with Fontan circulation. Risk factors associated with elevated end-diastolic pressure have not been clearly identified in this population.
Methods:
All patients > 18 years with Fontan circulation who underwent cardiac catheterisation at our centre between 1/08 and 3/19 were included. Relevant patient variables were extracted. Univariate and multivariate general linear models were analysed to identify variables associated with end-diastolic pressure.
Results:
Forty-two patients were included. Median age was 24.0 years (20.9–29.0) with a body mass index of 23.7 kg/m2 (21.5–29.7). 10 (23.8%) patients had a systemic right ventricle. The median (Interquartile range) and mean pulmonary artery pressure were 11.0 mmHg (9.0–12.0) and 16.0 mmHg (13.0–18.0), respectively. On univariate analysis, end-diastolic pressure was positively associated with body mass index (p < 0.01), age > 25 years (p = 0.04), symptoms of heart failure (p < 0.01), systemic ventricular systolic pressure (p = 0.03), pulmonary artery mean pressure (p < 0.01), and taking diuretics (p < 0.01) or sildenafil (p < 0.01). End-diastolic pressure was negatively associated with aortic saturation (p < 0.01). On multivariate analysis, end-diastolic pressure was positively associated with age ≥ 25 years (p < 0.01), and body mass index (p = 0.04).
Conclusions:
In a cohort of adult patients with Fontan circulation undergoing catheterisation, end-diastolic pressure was positively associated with age ≥ 25 years and body mass index on multivariate analysis. Maintaining a healthy body mass index may offer haemodynamic benefit in adults with Fontan physiology.
The regulation of mutual funds in the United States arguably contains the world’s most extensive system of fiduciary protection, buttressed by elaborate liability rules and a host of procedural protections and mandatory disclosure requirements designed to facilitate investor protection and choice. The intensity of this regulatory structure is a subject of perennial debate, as officials and analysts attempt to balance the cost of compliance and oversight against benefits to investors. Government officials have made numerous accommodations to ameliorate the system’s costs and facilitate industry innovations. But, the burdens of this enhanced system of fiduciary protections for mutual funds remain significant and have encouraged industry participants to evade these legal requirements in a number of ways, such as the creation of alternative vehicles for collective investments and the imbedding of regulated mutual funds into other legal structures that escape the full application of the enhanced system of fiduciary protections for mutual funds. This chapter suggests areas where aspects of mutual fund regulation might appropriately be extended to functionally similar investment vehicles.
Smart contracts have been proposed as a means of revolutionizing transacting between human actors and contributing to blockchain platforms substituting for many current institutions. However, the technical nature of blockchain platforms and smart contracts requires levels of certainty and foresight sufficient for contracts to be complete. We examine the technical and economic characteristics of blockchains and smart contracts to identify sources of uncertainty that may pose challenges to the ability of these technologies to displace existing institutional arrangements, in particular, the courts and other arbitration arrangements. Despite the development of alternative automated blockchain institutions such as the Kleros dispute resolution system, the case for smart contracts and blockchain applications to supplant real-world institutions remains weak. Inherent incompleteness due to limits to information availability, human cognition, and communication means that traditional contract governance institutions will continue to complement blockchain smart contract governance arrangements. The more complex and unique the transaction, the higher the value at risk, the harder to anticipate and precisely specify contingencies and measure and observe outcomes. Furthermore, the longer the time frame between agreement and execution, the less likely it is that smart contracting will be more efficient than traditional contracting.
People with neurodevelopmental disorders often present with challenging behaviours and psychiatric illnesses. Diagnosis and treatment require patients, families and healthcare professionals to work closely together in partnership, acknowledging their respective areas of expertise. Good treatment outcomes should also be underpinned by robust research evidence. Key research priorities are highlighted.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
Analytical transmission electron microscopy (ATEM) and X-ray absorption spectroscopy (XAS) have been used to determine the mineralogy of Pb-P deposits in the roots of the heavy metal tolerant grass cultivar Agrostis capillaris L. cv. Parys Mountain. The deposits have a pyromorphite (Pb5(PO4)3Cl)-type structure and composition although some of the Cl may be substituted by OH. Energy-dispersive mapping under the scanning electron microscope demonstrated that the majority of these deposits are present in the outer cell wall of the epidermis (the outermost layer of root cells). The phosphate composition of these grains contrasts with the phytate (C6H18O24P612−) composition of Zn-P deposits observed in similar electron microscopy studies. The physiological role of heavy metal P deposits is unclear. Heavy metal P precipitates may form actively as a tolerance mechanism to heavy metals or passively, sequestering P in a metabolically inactive form.
Mollusc seashells grow through the local deposition and calcification of material at the shell opening by a soft and thin organ called the mantle. Through this process, a huge variety of shell structures are formed. Previous models have shown that these structural patterns can largely be understood by examining the mechanical interaction between the deformable mantle and the rigid shell aperture to which it adheres. In this paper we extend this modelling framework in two distinct directions. For one, we incorporate a mechanical feedback in the growth of the mollusc. Second, we develop an initial framework to couple the two primary and orthogonal modes of pattern formation in shells, which are termed antimarginal and commarginal ornamentation. In both cases we examine the change in shell morphology that occurs due to the different mechanical influences and evaluate the hypotheses in light of the fossil record.
The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (~2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.
In 2013, New York State mandated that, during influenza season, unvaccinated healthcare personnel (HCP) wear a surgical mask in areas where patients are typically present. We found that this mandate was associated with increased HCP vaccination and decreased HCP visits to the hospital Workforce Health and Safety Department with respiratory illnesses and laboratory-confirmed influenza.
Herbicides inhibit biochemical and physiological processes or both with lethal consequences. The target sites of these small molecules are usually enzymes involved in primary metabolic pathways or proteins carrying out essential physiological functions. Herbicides tend to be highly specific for their respective target sites and have served as tools to study these physiological and biochemical processes in plants (Dayan et al. 2010b).
Natural herbicides approved in organic agriculture are primarily
nonselective burn-down essential oils applied POST. Multiple applications
are often required due to their low efficacy. To address this problem, the
in vivo herbicidal activity of manuka oil, the essential oil distilled from
manuka tree (Leptospermum scoparium J.R. and G. Forst), was
tested on selected broadleaf and grass weeds. While manuka oil exhibited
good POST activity when applied in combination with a commercial lemongrass
oil–based herbicide, it ultimately demonstrated interesting PRE activity,
providing control of large crabgrass seedlings at a rate of 3 L
ha−1. Manuka oil and its main active ingredient,
leptospermone, were stable in soil for up to 7 d and had half-lives of 18
and 15 d, respectively. The systemic activity of manuka oil addresses many
of the current limitations associated with natural herbicides. Additionally,
its soil persistence opens up a multitude of new possibilities for the use
of manuka oil as a tool for weed management and may be a potential bridge
between traditional and organic agriculture.
The Zadko telescope is a 1 m f/4 Cassegrain telescope, situated in the state of Western Australia about 80-km north of Perth. The facility plays a niche role in Australian astronomy, as it is the only meter class facility in Australia dedicated to automated follow-up imaging of alerts or triggers received from different external instruments/detectors spanning the entire electromagnetic spectrum. Furthermore, the location of the facility at a longitude not covered by other meter class facilities provides an important resource for time critical projects. This paper reviews the status of the Zadko facility and science projects since it began robotic operations in March 2010. We report on major upgrades to the infrastructure and equipment (2012–2014) that has resulted in significantly improved robotic operations. Second, we review the core science projects, which include automated rapid follow-up of gamma ray burst (GRB) optical afterglows, imaging of neutrino counterpart candidates from the ANTARES neutrino observatory, photometry of rare (Barbarian) asteroids, supernovae searches in nearby galaxies. Finally, we discuss participation in newly commencing international projects, including the optical follow-up of gravitational wave (GW) candidates from the United States and European GW observatory network and present first tests for very low latency follow-up of fast radio bursts. In the context of these projects, we outline plans for a future upgrade that will optimise the facility for alert triggered imaging from the radio, optical, high-energy, neutrino, and GW bands.
Two-sided oxidation experiments were recently conducted at 1000-1200°C in flowing steam with samples of sponge-based Zr-1Nb alloy E110. Although the old electrolytic E110 tubing exhibited a high degree of susceptibility to nodular corrosion and experienced breakaway oxidation rates in relatively short time, the new sponge-based E110 has demonstrated steam oxidation behavior comparable to Zircaloy-4. The sponge-based E110 followed the parabolic law, and the derived oxidation rate constant is in good agreement with the Cathcart-Pawel (CP) correlation at 1100-1200°C. For 1000°C oxidation, the weight-gain of sponge-based E110 is much lower than Zircaloy-4. No breakaway oxidation was observed at 1000°C up to 8000 s. Ring compression tests were conducted to evaluate the residual ductility of oxidized samples at room temperature and at 135°C. All sponge-based E110 specimens were still ductile at 135°C after being oxidized up to 20% equivalent cladding reacted at 1000-1200°C. Metallographic examinations were performed on oxidized E110 specimens to correlate material performance with microstructure.
Cave bears, an extinct subgenus (Spelearctos) of Ursus, were versatile enough to inhabit large areas of the northern hemisphere during the middle and late Pleistocene, yet they had evolved a specialized dentition that emphasized grinding functions, implying a heavy dietary reliance on tough, fibrous foods (i.e., plants). Isotope studies have yielded conflicting results on cave bear diet, however, often without consideration of the provenance of the samples or the possible contradictions that taphonomic and morphologic evidence might pose to dietary interpretations. It is likely that cave bear habits varied somewhat in response to environmental circumstance, and the limits on their abilities to do so remain unknown. If the larger goal of paleontological inquiry is to reconstruct the adaptations of cave bear species, then variation and commonalities among populations must be tracked closely, and the disparate lines of evidence currently available examined together on a case by case basis. Clearly, no single analytical technique can achieve this. By way of example we present the results of a cross-disciplinary collaboration that combines osteometric, isotopic, and taphonomic approaches to studying the paleoecology of a bear assemblage from Yarimburgaz Cave in northwest Turkey. Reference information on the linkages between diet, hibernation, and population structure in modern bears provides test implications for the investigation. Osteometric techniques demonstrate the presence of two coextant middle Pleistocene bear species in the sample–Ursus (Spelearctos) deningeri, a form of cave bear, and U. arctos or brown bear–the former abundant in the sample, the latter rare. An attritional mortality pattern for the bears and the condition of their bones show that most or all of the animals died in the cave from nonviolent causes in the context of hibernation. The study also elucidates several characteristics of the cave bear population in this region. Osteometric techniques show that the adult sex ratio of the cave bears is only slightly skewed toward females. This pattern lies near one extreme of the full range of possible outcomes in modern bear species and can only reflect a strong dietary dependence on seasonally available plants and invertebrates, showing that hibernation was a crucial overwintering strategy for both sexes; the results specifically contradict the possibility of regular, heavy emphasis on large game (hunted or scavenged) as a winter food source. The nature of wear and breakage to the adult cave bear teeth indicates that food frequently was obtained from cryptic sources, requiring digging and prying, and that extensive mastication was necessary, leading to complete obliteration of some cheek tooth crowns in old individuals. The patterns of tooth damage during life corroborate the dietary implications of the adult sex ratio and also argue for a diet rich in tough, abrasive materials such as nuts, tubers, and associated grit. The carbon and oxygen isotopic compositions of cave and brown bear tooth enamel from the site are virtually identical, and there is no evidence of a strong marine signal in either species, despite the cave's proximity to a modern estuary of the Sea of Marmara; nitrogen isotope ratios could not be examined because of poor protein preservation. The isotope results suggest that both bear species were highly omnivorous in the region during the middle Pleistocene and obtained nearly all of their food from terrestrial and fresh-water habitats. Bone pathologies, usually originating from trauma, occur in some of the adult bears, testifying to long lifespans of some individuals in this fossil population. The Yarimburgaz cave bears also exhibit great size dimorphism between the sexes, based on weight-bearing carpal bone dimensions, with adult males attaining roughly twice the body mass of adult females.