We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Potential effectiveness of harvest weed seed control (HWSC) systems depends upon seed shatter of the target weed species at crop maturity, enabling its collection and processing at crop harvest. However, seed retention likely is influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed shatter phenology in thirteen economically important broadleaf weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to four weeks after physiological maturity at multiple sites spread across fourteen states in the southern, northern, and mid-Atlantic U.S. Greater proportions of seeds were retained by weeds in southern latitudes and shatter rate increased at northern latitudes. Amaranthus species seed shatter was low (0 to 2%), whereas shatter varied widely in common ragweed (Ambrosia artemisiifolia L.) (2 to 90%) over the weeks following soybean physiological maturity. Overall, the broadleaf species studied shattered less than ten percent of their seeds by soybean harvest. Our results suggest that some of the broadleaf species with greater seed retention rates in the weeks following soybean physiological maturity may be good candidates for HWSC.
Seed shatter is an important weediness trait on which the efficacy of harvest weed seed control (HWSC) depends. The level of seed shatter in a species is likely influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed shatter of eight economically important grass weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to four weeks after maturity at multiple sites spread across eleven states in the southern, northern, and mid-Atlantic U.S. From soybean maturity to four weeks after maturity, cumulative percent seed shatter was lowest in the southern U.S. regions and increased as the states moved further north. At soybean maturity, the percent of seed shatter ranged from 1 to 70%. That range had shifted to 5 to 100% (mean: 42%) by 25 days after soybean maturity. There were considerable differences in seed shatter onset and rate of progression between sites and years in some species that could impact their susceptibility to HWSC. Our results suggest that many summer annual grass species are likely not ideal candidates for HWSC, although HWSC could substantially reduce their seed output at during certain years.
Associations of socioenvironmental features like urbanicity and neighborhood deprivation with psychosis are well-established. An enduring question, however, is whether these associations are causal. Genetic confounding could occur due to downward mobility of individuals at high genetic risk for psychiatric problems into disadvantaged environments.
Methods
We examined correlations of five indices of genetic risk [polygenic risk scores (PRS) for schizophrenia and depression, maternal psychotic symptoms, family psychiatric history, and zygosity-based latent genetic risk] with multiple area-, neighborhood-, and family-level risks during upbringing. Data were from the Environmental Risk (E-Risk) Longitudinal Twin Study, a nationally-representative cohort of 2232 British twins born in 1994–1995 and followed to age 18 (93% retention). Socioenvironmental risks included urbanicity, air pollution, neighborhood deprivation, neighborhood crime, neighborhood disorder, social cohesion, residential mobility, family poverty, and a cumulative environmental risk scale. At age 18, participants were privately interviewed about psychotic experiences.
Results
Higher genetic risk on all indices was associated with riskier environments during upbringing. For example, participants with higher schizophrenia PRS (OR = 1.19, 95% CI = 1.06–1.33), depression PRS (OR = 1.20, 95% CI = 1.08–1.34), family history (OR = 1.25, 95% CI = 1.11–1.40), and latent genetic risk (OR = 1.21, 95% CI = 1.07–1.38) had accumulated more socioenvironmental risks for schizophrenia by age 18. However, associations between socioenvironmental risks and psychotic experiences mostly remained significant after covariate adjustment for genetic risk.
Conclusion
Genetic risk is correlated with socioenvironmental risk for schizophrenia during upbringing, but the associations between socioenvironmental risk and adolescent psychotic experiences appear, at present, to exist above and beyond this gene-environment correlation.
Ureteroscopy is a minimally invasive surgical procedure for the removal of kidney stones. A ureteroscope, containing a hollow, cylindrical working channel, is inserted into the patient's kidney. The renal space proximal to the scope tip is irrigated, to clear stone particles and debris, with a saline solution that flows in through the working channel. We consider the fluid dynamics of irrigation fluid within the renal pelvis, resulting from the emerging jet through the working channel and return flow through an access sheath. Representing the renal pelvis as a two-dimensional rectangular cavity, we investigate the effects of flow rate and cavity size on flow structure and subsequent clearance time of debris. Fluid flow is modelled with the steady incompressible Navier–Stokes equations, with an imposed Poiseuille profile at the inlet boundary to model the jet of saline, and zero-stress conditions on the outlets. The resulting flow patterns in the cavity contain multiple vortical structures. We demonstrate the existence of multiple solutions dependent on the Reynolds number of the flow and the aspect ratio of the cavity using complementary numerical simulations and particle image velocimetry experiments. The clearance of an initial debris cloud is simulated via solutions to an advection–diffusion equation and we characterise the effects of the initial position of the debris cloud within the vortical flow and the Péclet number on clearance time. With only weak diffusion, debris that initiates within closed streamlines can become trapped. We discuss a flow manipulation strategy to extract debris from vortices and decrease washout time.
To disrupt cycles of health inequity, traceable to dietary inequities in the earliest stages of life, public health interventions should target improving nutritional wellbeing in preconception/pregnancy environments. This requires a deep engagement with pregnant/postpartum people (PPP) and their communities (including their health and social care providers, HSCP). We sought to understand the factors that influence diet during pregnancy from the perspectives of PPP and HSCP, and to outline intervention priorities.
Design:
We carried out thematic network analyses of transcripts from ten focus group discussions (FGD) and one stakeholder engagement meeting with PPP and HSCP in a Canadian city. Identified themes were developed into conceptual maps, highlighting local priorities for pregnancy nutrition and intervention development.
Setting:
FGD and the stakeholder meeting were run in predominantly lower socioeconomic position (SEP) neighbourhoods in the sociodemographically diverse city of Hamilton, Canada.
Participants:
All local, comprising twenty-two lower SEP PPP and forty-three HSCP.
Results:
Salient themes were resilience, resources, relationships and the embodied experience of pregnancy. Both PPP and HSCP underscored that socioeconomic-political forces operating at multiple levels largely determined the availability of individual and relational resources constraining diet during pregnancy. Intervention proposals focused on cultivating individual and community resilience to improve early-life nutritional environments. Participants called for better-integrated services, greater income supports and strengthened support programmes.
Conclusions:
Hamilton stakeholders foregrounded social determinants of inequity as main factors influencing pregnancy diet. They further indicated a need to develop interventions that build resilience and redistribute resources at multiple levels, from the household to the state.
Introduction: Emergency department (ED) buprenorphine/naloxone inductions for opioid use disorder are an effective and safe way to initiate addictions care in the ED. Kelowna General Hospital's ED buprenorphine/naloxone (KEDSS) program was implemented in September 2018 in order to respond to a community need for accessible and evidence-based addictions care. The objective of our program evaluation study was to examine the implementation of the first five months of the KEDSS program through evaluating patient characteristics and service outcomes. Methods: The KEDSS treatment pathway consists of a standardized protocol (pre-printed order set) to facilitate buprenorphine/naloxone induction and stabilization in the acute care setting (ED and inpatient wards) at Kelowna General Hospital, a community academic hospital. All patients referred to the outpatient addictions clinic via the order set during September 2018-January 2019 (the first 5 months) were included in the study population. A retrospective descriptive chart review was completed. Outcome measures included population characteristics (sociodemographic information, clinical characteristics) and service outcomes (number of patients initiated, patient follow-up). Descriptive statistics and bivariate analyses using t-tests or Pearson's χ2 statistic, as appropriate, were conducted to compare the ED-initiated group with the inpatient-initiated group. Results: During the first five months of the KEDSS program, a total of 35 patients (26% female, mean age 36.6 years, 54% homeless) were started on the treatment pathway, 16 (46%) in the ED. Compared to the inpatient-initiated group, the ED-initiated group were less likely to have psychiatric comorbidities (ED 1.0 vs. inpatient 1.5, p = 0.002), require methadone or sustained-release oral morphine (ED 13% vs. inpatient 37%, p = 0.048), and have attended follow-up (ED 56% vs. inpatient 84%, p = 0.004). Conclusion: This study provides a preliminary look at a new opioid agonist therapy (OAT) treatment pathway (KEDSS) at Kelowna General Hospital, and provides insight into the population that is accessing the program. We found that the majority of patients who are started on buprenorphine/naloxone in the ED are seen in follow-up at the addictions clinic. Future work will examine ongoing follow-up and OAT adherence rates in the study population to quantify the program's impact on improving access to addictions treatment within this community hospital setting.
On 30 September 2017, an Air France Airbus A380-800 suffered a failure of its fourth engine while over Greenland. This failure resulted in the loss of the engine fan hub, fan blades and surrounding structure. An initial search recovered 30 pieces of light debris, but the primary part of interest, a ~220 kg titanium fan hub, was not recovered because it had a different fall trajectory than the light debris, impacted into the ice-sheet's snow surface, and was quickly covered by drifting snow. Here we describe the methods used for the detection of the fan hub and details of the field campaigns. The search area included two crevasse fields of at least 50 snow-covered crevasses 1 to ~30 m wide with similar snow bridge thicknesses. After 21 months and six campaigns, using airborne synthetic aperture radar, ground-penetrating radar, transient electromagnetics and an autonomous vehicle to survey the crevasse fields, the fan hub was found within ~1 m of a crevasse at a depth of ~3.3 to 4 m and was excavated with shovels, chain saws, an electric winch, sleds and a gasoline heater, by workers using fall-arrest systems.
This paper considers the significant role of cross-sectional geometry on resistance in co-axial pipe flows. We consider an axially flowing viscous fluid in between two long and thin elliptical coaxial cylinders, one inside the other. The outer cylinder is stationary, while the inner cylinder (rod) is free to move. The rod poses a resistance to the axial flow, while the viscous fluid poses a resistance to any motion of the rod. We show that the equations for flow in the axial direction – driven by a prescribed flux – and for flow within the cross-section of the domain – driven by the motion of the rod – decouple in the asymptotic limit of small cylinder aspect ratio into axial Poiseuille flow and transverse Stokes flow, respectively. The objective of this paper is to calculate numerically the axial and cross-sectional resistances and to determine their dependence on cross-sectional geometry – i.e. rod position and the ellipticities of the rod and bounding cylinder. We characterise axial resistance, first for three reduced parameter spaces that have not been fully analysed in the literature: (i) a circle in an ellipse, (ii) an ellipse in a circle and (iii) an ellipse in an ellipse of equal eccentricity and orientation, before extending our geometric parameter space to determine the overall optimal geometry to minimise axial flow resistance for fixed cross-sectional area. Cross-sectional resistance is characterised via coefficients in a Stokes resistance matrix and we highlight the interdependent effects of cross-sectional ellipticity and boundary interactions.
Foraging strategies in gentoo penguins (Pygoscelis papua) have been well studied (e.g. Croxall et al. 1988, Robinson & Hindell 1996, Lescroël et al. 2004, Takahashi et al. 2008, Xavier et al. 2017). The general consensus is this largest member of the three pygoscelid penguins displays both nearshore benthic and pelagic foraging tactics to consume combinations of crustaceans and fish. In a recent study, Carpenter-Kling et al. (2017) reported that gentoos at sub-Antarctic Marion Island displayed a novel foraging strategy that consisted of alternating typical lengthy foraging trips with much shorter nearshore afternoon trips. They suggest the latter foraging behaviour may be a response to suboptimal feeding conditions caused by local environmental change. This novel discovery reinforces the fact that, despite considerable study, not all foraging tactics in penguins have been documented. In this paper, we describe what we believe to be, yet another undocumented foraging tactic employed by gentoos.
The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together
$60+$
programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories.
The Murchison Widefield Array (MWA) is an electronically steered low-frequency (<300 MHz) radio interferometer, with a ‘slew’ time less than 8 s. Low-frequency (∼100 MHz) radio telescopes are ideally suited for rapid response follow-up of transients due to their large field of view, the inverted spectrum of coherent emission, and the fact that the dispersion delay between a 1 GHz and 100 MHz pulse is on the order of 1–10 min for dispersion measures of 100–2000 pc/cm3. The MWA has previously been used to provide fast follow-up for transient events including gamma-ray bursts (GRBs), fast radio bursts (FRBs), and gravitational waves, using systems that respond to gamma-ray coordinates network packet-based notifications. We describe a system for automatically triggering MWA observations of such events, based on Virtual Observatory Event standard triggers, which is more flexible, capable, and accurate than previous systems. The system can respond to external multi-messenger triggers, which makes it well-suited to searching for prompt coherent radio emission from GRBs, the study of FRBs and gravitational waves, single pulse studies of pulsars, and rapid follow-up of high-energy superflares from flare stars. The new triggering system has the capability to trigger observations in both the regular correlator mode (limited to ≥0.5 s integrations) and using the Voltage Capture System (VCS, 0.1 ms integration) of the MWA and represents a new mode of operation for the MWA. The upgraded standard correlator triggering capability has been in use since MWA observing semester 2018B (July–Dec 2018), and the VCS and buffered mode triggers will become available for observing in a future semester.
Foodborne salmonellosis causes approximately 1 million illnesses annually in the United States. In the summer of 2017, we investigated four multistate outbreaks of Salmonella infections associated with Maradol papayas imported from four Mexican farms. PulseNet initially identified a cluster of Salmonella Kiambu infections in June 2017, and early interviews identified papayas as an exposure of interest. Investigators from Maryland, Virginia and Food and Drug Administration (FDA) collected papayas for testing. Several strains of Salmonella were isolated from papayas sourced from Mexican Farm A, including Salmonella Agona, Gaminara, Kiambu, Thompson and Senftenberg. Traceback from two points of service associated with illness sub-clusters in two states identified Farm A as a common source of papayas, and three voluntary recalls of Farm A papayas were issued. FDA sampling isolated four additional Salmonella strains from papayas sourced from Mexican Farms B, C and D. In total, four outbreaks were identified, resulting in 244 cases with illness onset dates from 20 December 2016 to 20 September 2017. The sampling of papayas and the collaborative work of investigative partners were instrumental in identifying the source of these outbreaks and preventing additional illnesses. Evaluating epidemiological, laboratory and traceback evidence together during investigations is critical to solving and stopping outbreaks.
Recent years have seen an exponential increase in the variety of healthcare data captured across numerous sources. However, mechanisms to leverage these data sources to support scientific investigation have remained limited. In 2013 the Pediatric Heart Network (PHN), funded by the National Heart, Lung, and Blood Institute, developed the Integrated CARdiac Data and Outcomes (iCARD) Collaborative with the goals of leveraging available data sources to aid in efficiently planning and conducting PHN studies; supporting integration of PHN data with other sources to foster novel research otherwise not possible; and mentoring young investigators in these areas. This review describes lessons learned through the development of iCARD, initial efforts and scientific output, challenges, and future directions. This information can aid in the use and optimisation of data integration methodologies across other research networks and organisations.
We apply two methods to estimate the 21-cm bispectrum from data taken within the Epoch of Reionisation (EoR) project of the Murchison Widefield Array (MWA). Using data acquired with the Phase II compact array allows a direct bispectrum estimate to be undertaken on the multiple redundantly spaced triangles of antenna tiles, as well as an estimate based on data gridded to the uv-plane. The direct and gridded bispectrum estimators are applied to 21 h of high-band (167–197 MHz; z = 6.2–7.5) data from the 2016 and 2017 observing seasons. Analytic predictions for the bispectrum bias and variance for point-source foregrounds are derived. We compare the output of these approaches, the foreground contribution to the signal, and future prospects for measuring the bispectra with redundant and non-redundant arrays. We find that some triangle configurations yield bispectrum estimates that are consistent with the expected noise level after 10 h, while equilateral configurations are strongly foreground-dominated. Careful choice of triangle configurations may be made to reduce foreground bias that hinders power spectrum estimators, and the 21-cm bispectrum may be accessible in less time than the 21-cm power spectrum for some wave modes, with detections in hundreds of hours.
We present a workflow to track icebergs in proglacial fjords using oblique time-lapse photos and the Lucas-Kanade optical flow algorithm. We employ the workflow at LeConte Bay, Alaska, where we ran five time-lapse cameras between April 2016 and September 2017, capturing more than 400 000 photos at frame rates of 0.5–4.0 min−1. Hourly to daily average velocity fields in map coordinates illustrate dynamic currents in the bay, with dominant downfjord velocities (exceeding 0.5 m s−1 intermittently) and several eddies. Comparisons with simultaneous Acoustic Doppler Current Profiler (ADCP) measurements yield best agreement for the uppermost ADCP levels (~ 12 m and above), in line with prevalent small icebergs that trace near-surface currents. Tracking results from multiple cameras compare favorably, although cameras with lower frame rates (0.5 min−1) tend to underestimate high flow speeds. Tests to determine requisite temporal and spatial image resolution confirm the importance of high image frame rates, while spatial resolution is of secondary importance. Application of our procedure to other fjords will be successful if iceberg concentrations are high enough and if the camera frame rates are sufficiently rapid (at least 1 min−1 for conditions similar to LeConte Bay).
We provide the first in situ measurements of antenna element beam shapes of the Murchison Widefield Array. Most current processing pipelines use an assumed beam shape, which can cause absolute and relative flux density errors and polarisation ‘leakage’. Understanding the primary beam is then of paramount importance, especially for sensitive experiments such as a measurement of the 21-cm line from the epoch of reionisation, where the calibration requirements are so extreme that tile to tile beam variations may affect our ability to make a detection. Measuring the primary beam shape from visibilities is challenging, as multiple instrumental, atmospheric, and astrophysical factors contribute to uncertainties in the data. Building on the methods of Neben et al. [Radio Sci., 50, 614], we tap directly into the receiving elements of the telescope before any digitisation or correlation of the signal. Using ORBCOMM satellite passes we are able to produce all-sky maps for four separate tiles in the XX polarisation. We find good agreement with the beam model of Sokolowski et al. [2017, PASA, 34, e062], and clearly observe the effects of a missing dipole from a tile in one of our beam maps. We end by motivating and outlining additional on-site experiments.
We describe the motivation and design details of the ‘Phase II’ upgrade of the Murchison Widefield Array radio telescope. The expansion doubles to 256 the number of antenna tiles deployed in the array. The new antenna tiles enhance the capabilities of the Murchison Widefield Array in several key science areas. Seventy-two of the new tiles are deployed in a regular configuration near the existing array core. These new tiles enhance the surface brightness sensitivity of the array and will improve the ability of the Murchison Widefield Array to estimate the slope of the Epoch of Reionisation power spectrum by a factor of ∼3.5. The remaining 56 tiles are deployed on long baselines, doubling the maximum baseline of the array and improving the array u, v coverage. The improved imaging capabilities will provide an order of magnitude improvement in the noise floor of Murchison Widefield Array continuum images. The upgrade retains all of the features that have underpinned the Murchison Widefield Array’s success (large field of view, snapshot image quality, and pointing agility) and boosts the scientific potential with enhanced imaging capabilities and by enabling new calibration strategies.
Seven half-day regional listening sessions were held between December 2016 and April 2017 with groups of diverse stakeholders on the issues and potential solutions for herbicide-resistance management. The objective of the listening sessions was to connect with stakeholders and hear their challenges and recommendations for addressing herbicide resistance. The coordinating team hired Strategic Conservation Solutions, LLC, to facilitate all the sessions. They and the coordinating team used in-person meetings, teleconferences, and email to communicate and coordinate the activities leading up to each regional listening session. The agenda was the same across all sessions and included small-group discussions followed by reporting to the full group for discussion. The planning process was the same across all the sessions, although the selection of venue, time of day, and stakeholder participants differed to accommodate the differences among regions. The listening-session format required a great deal of work and flexibility on the part of the coordinating team and regional coordinators. Overall, the participant evaluations from the sessions were positive, with participants expressing appreciation that they were asked for their thoughts on the subject of herbicide resistance. This paper details the methods and processes used to conduct these regional listening sessions and provides an assessment of the strengths and limitations of those processes.
Herbicide resistance is ‘wicked’ in nature; therefore, results of the many educational efforts to encourage diversification of weed control practices in the United States have been mixed. It is clear that we do not sufficiently understand the totality of the grassroots obstacles, concerns, challenges, and specific solutions needed for varied crop production systems. Weed management issues and solutions vary with such variables as management styles, regions, cropping systems, and available or affordable technologies. Therefore, to help the weed science community better understand the needs and ideas of those directly dealing with herbicide resistance, seven half-day regional listening sessions were held across the United States between December 2016 and April 2017 with groups of diverse stakeholders on the issues and potential solutions for herbicide resistance management. The major goals of the sessions were to gain an understanding of stakeholders and their goals and concerns related to herbicide resistance management, to become familiar with regional differences, and to identify decision maker needs to address herbicide resistance. The messages shared by listening-session participants could be summarized by six themes: we need new herbicides; there is no need for more regulation; there is a need for more education, especially for others who were not present; diversity is hard; the agricultural economy makes it difficult to make changes; and we are aware of herbicide resistance but are managing it. The authors concluded that more work is needed to bring a community-wide, interdisciplinary approach to understanding the complexity of managing weeds within the context of the whole farm operation and for communicating the need to address herbicide resistance.