Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-28T22:13:24.687Z Has data issue: false hasContentIssue false

5 - Drop Impact onto Dry Surfaces with Complex Morphology

from Part I - Collision of Liquid Jets and Drops with a Dry Solid Wall

Published online by Cambridge University Press:  13 July 2017

Alexander L. Yarin
Affiliation:
University of Illinois, Chicago
Ilia V. Roisman
Affiliation:
Technische Universität, Darmstadt, Germany
Cameron Tropea
Affiliation:
Technische Universität, Darmstadt, Germany
Get access

Summary

Surface texture, e.g. roughness, porosity, wettability and chemical composition can significantly affect the outcome of drop impact. Section 5.1 deals with the splashing threshold on rough, textured and also porous solid surfaces. In Section 5.2 an impact of a single Newtonian drop near a hole in a flat substrate is considered as a simplified model of drop spreading on a porous substrate. The experiments described in Section 5.3 deal with drop impacts of such different liquids as water and oily Fluorinerts onto suspended thin membranes with microscopic pores of different wettability. They reveal that liquid penetration is possible even through a non-wettable porous medium if the impact velocity is high enough. A similar conclusion stems from the experiments with water drop impacts onto membranes coated with much less permeable nanofiber layers discussed in Section 5.4. In the case of nanofiber mats deposited onto impermeable surfaces, drop splashing and bouncing after impact can be fully suppressed, as the experiments of Section 5.5 show. The reason for the phenomena observed in Sections 5.3–5.5 is the hydrodynamic focusing of liquid brought by a millimeter-sized drop into micron-sized pores. The theory of the hydrodynamic focusing phenomenon is given in Section 5.6, and the results are illustrated experimentally by the amazing fact that liquid velocity in the jets which penetrated through the entire porous medium thickness is higher than that in the impacting drop, even though the viscous dissipation in flow through porous medium is extremely high. Liquid penetration following drop impact onto a nonwettable porous medium is also visualized in the experiments with the entrained seeding particles in Section 5.7, which also contains the evaluation of the critical filter thickness which can be fully penetrated in spite of the viscous dissipation in the pores. Drop impacts onto hot surfaces covered with nanofiber mats also reveal significant enhancement of surface cooling due to the hydrodynamic focusing. The latter sustains the contact of liquid coolant with the hot surface underneath and thus facilitates complete liquid vaporization and significant heat removal in the form of latent heat of evaporation (Section 5.8).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barenblatt, G. I., Entov, V. M. and Ryzhik, V. M. (1989). Theory of Fluid Flows through Natural Rocks, Kluwer Academic Publishers, Dordrecht.
Batchelor, G. K. (2002). An Introduction to Fluid Dynamics, Cambridge University Press.
Bazilevsky, A. V., Yarin, A. L. and Megaridis, C. M. (2008). Pressure-driven fluidic delivery through carbon tube bundles, Lab Chip 8: 152–160.Google Scholar
Beni, G., Hackwood, S. and Jackel, J. L. (1982). Continuous electrowetting effect, Appl. Phys. Lett. 40: 912–914.Google Scholar
Birkhoff, G., MacDougall, D. P., Pugh, E. M. and Taylor, G. I. (1948). Explosives with lined cavities, J. Appl. Phys. 19: 563–582.Google Scholar
Brown, R. C. (1993). Air Filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters, Pergamon Press, Oxford.
Brunet, P., Lapierre, F., Zoueshtiagh, F., Thomy, V. and Merlen, A. (2009). To grate a liquid into tiny droplets by its impact on a hydrophobic microgrid, Appl. Phys. Lett. 95: 254102.Google Scholar
Cassie, A. B. D. and Baxter, S. (1944). Wettability of porous surfaces, Trans. Faraday Soc. 40: 546–551.Google Scholar
Charbeneau, R. J. (2006). Groundwater Hydraulics and Pollutant Transport, Waveland Press, Long Grove.
Clanet, C. and Villermaux, E. (2002). Life of a smooth liquid sheet, J. Fluid Mech. 462: 307–340.Google Scholar
Contal, P., Simao, J., Thomas, D., Frising, T., Callé, S., Appert-Collin, J. C. and Bémer, D. (2004). Clogging of fibre filters by submicron droplets. Phenomena and influence of operating conditions, J. Aerosol Sci. 35: 263–278.Google Scholar
de Gennes, P. (1985). Wetting: statics and dynamics, Rev. Mod. Phys. 57: 827–863.Google Scholar
de Gennes, P. G., Brochard-Wyart, F. and Quéré, D. (2004). Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer, New York.
Deng, X., Mammen, L., Butt, H. J. and Vollmer, D. (2012). Candle soot as a template for a transparent robust superamphiphobic coating, Science 335: 67–70.Google Scholar
Derjaguin, B. V., Muller, V. M. and Toporov, Y. P. (1975). Effect of contact deformations on the adhesion of particles, J. Colloid Interface Sci. 53: 314–326.Google Scholar
Dubois, P., Marchand, G., Fouillet, Y., Berthier, J., Douki, T., Hassine, F., Gmouh, S. and Vaultier, M. (2006). Ionic liquid droplet as e-microreactor, Anal. Chem. 78: 4909–4917.Google Scholar
Eggers, J., Fontelos, M. A., Josserand, C. and Zaleski, S. (2010). Drop dynamics after impact on a solid wall: theory and simulations, Phys. Fluids 22: 062101.Google Scholar
Fan, S. K., Yang, H. P., Wang, T. T. and Hsu, W. (2007). Asymmetric electrowetting moving droplets by a square wave, Lab Chip 7: 1330–1335.Google Scholar
Filatov, Y., Budyka, A. and Kirichenko, V. (2007). Electrospinning of micro-and nanofibers: fundamentals in separation and filtration processes, J. Eng. Fibers Fabrics 3: 488.Google Scholar
Frising, T., Thomas, D., Bémer, D. and Contal, P. (2005). Clogging of fibrous filters by liquid aerosol particles: Experimental and phenomenological modelling study, Chem. Eng. Sci. 60: 2751–2762.Google Scholar
Gao, L. and McCarthy, T. J. (2006). The “Lotus effect” explained: two reasons why two length scales of topography are important, Langmuir 22: 2966–2967.Google Scholar
Gao, L. and McCarthy, T. J. (2008). Teflon is hydrophilic. Comments on definitions of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization, Langmuir 24: 9183–9188.Google Scholar
Gao, L. and McCarthy, T. J. (2009). Wetting 101?, Langmuir 25: 14105–14115.Google Scholar
Garrod, R. P., Harris, L. G., Schofield, W. C. E., McGettrick, J., Ward, L. J., Teare, D. O. H. and Badyal, J. P. S. (2007). Mimicking a Stenocara beetle's back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces, Langmuir 23: 689–693.Google Scholar
Gradshteyn, I. S. and Ryzhik, I. M. (2007). Table of Integrals, Series and Products, 7th edn, Elsevier, Amsterdam.
Han, D. and Steckl, A. J. (2009). Superhydrophobic and oleophobic fibers by coaxial electrospinning, Langmuir 25: 9454–9462.Google Scholar
Han, Z., Tay, B., Tan, C., Shakerzadeh, M. and Ostrikov, K. K. (2009). Electrowetting control of Cassie-to-Wenzel transitions in superhydrophobic carbon nanotube-based nanocomposites, ACS Nano 3: 3031–3036.Google Scholar
Hayes, R. A. and Feenstra, B. J. (2003). Video-speed electronic paper based on electrowetting, Nature 425: 383–385.Google Scholar
He, B., Patankar, N. A. and Lee, J. (2003). Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces, Langmuir 19: 4999–5003.Google Scholar
Henrici, P. (1974). Applied and Computational Complex Analysis, Vol. 3, John Wiley & Sons, New York.
Jiang, L., Zhao, Y. and Zhai, J. (2004). A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics, Angew. Chem. Int. Ed. 116: 4338–4341.Google Scholar
Kandlikar, S. G. and Bapat, A. V. (2007). Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal, Heat Transf. Eng. 28: 911–923.Google Scholar
Kannangara, D., Zhang, H. and Shen, W. (2006). Liquid–paper interactions during liquid drop impact and recoil on paper surfaces, Colloid Surf. A-Physicochem. Eng. 280: 203–215.Google Scholar
Karniadakis, G., Beskok, A. and Aluru, N. (2005). Microflows and Nanoflows: Fundamentals and Simulation, Springer, New York, Heidelberg.
Kellay, H. (2005). Impact of drops on a water-covered sand bed: erosion, entrainement and pattern formation, Europhys. Lett. 71: 400–406.Google Scholar
Kilaru, M. K., Heikenfeld, J., Lin, G. and Mark, J. E. (2007). Strong charge trapping and bistable electrowetting on nanocomposite fluoropolymer: BaTiO3 dielectrics, Appl. Phys. Lett. 90: 212906.Google Scholar
Kim, J. (2007). Spray cooling heat transfer: The state of the art, Int. J. Heat Fluid Flow 28: 753–767.Google Scholar
Krupenkin, T. N., Taylor, J. A., Schneider, T. M. and Yang, S. (2004). From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces, Langmuir 20: 3824–3827.Google Scholar
Kuiper, S. and Hendriks, B. H.W. (2004). Variable-focus liquid lens for miniature cameras, Appl. Phys. Lett. 85: 1128–1130.Google Scholar
Lagubeau, G., Fontelos, M. A., Josserand, C., Maurel, A., Pagneux, V. and Petitjeans, P. (2012). Spreading dynamics of drop impacts, J. Fluid Mech. 713: 50–60.Google Scholar
Lavrentiev, M. A. and Shabat, B. V. (1973). Methods of Theory of Functions of Complex Variable, Nauka, Moscow. (in Russian).
Lee, J. B. and Lee, S. H. (2011). Dynamic wetting and spreading characteristics of a liquid droplet impinging on hydrophobic textured surfaces, Langmuir 27: 6565–6573.Google Scholar
Lee, M. W., Latthe, S. S., Yarin, A. L. and Yoon, S. S. (2013). Dynamic electrowetting-ondielectric (DEWOD) on unstretched and stretched Teflon, Langmuir 29: 7758–7767.Google Scholar
Lembach, A. N., Tan, H. B., Roisman, I. V., Gambaryan-Roisman, T., Zhang, Y., Tropea, C. and Yarin, A. L. (2010). Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats, Langmuir 26: 9516–9523.Google Scholar
Levich, V. G. (1962). Physiochemical Hydrodynamcis, Prentice-Hall, Englewood Cliffs.
Liu, G., Fu, L., Rode, A. V. and Craig, V. S. J. (2011). Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition, Langmuir 27: 2595–2600.Google Scholar
Loitsyanskii, L. G. (1966). Mechanics of Gases and Liquids, Pergamon Press, Oxford.
Lorenceau, E. and Quéré, D. (2003). Drops impacting a sieve, J. Colloid Interface Sci. 263: 244–249.Google Scholar
Luikov, A. V. (1966). Heat and Mass Transfer in Capillary-Porous Bodies, Pergamon Press, Oxford.
Malouin Jr, B. A., Koratkar, N. A., Hirsa, A. H. and Wang, Z. (2010). Directed rebounding of droplets by microscale surface roughness gradients, Appl. Phys. Lett. 96: 234103.Google Scholar
Manglik, R. M. and Jog, M. A. (2009). Molecular-to-large-scale heat transfer with multiphase interfaces: Current status and new directions, J. Heat Transf.-Trans. ASME 131: 121001.Google Scholar
Marmur, A. (1988). Drop penetration into a thin porous medium, J. Colloid Interface Sci. 123: 161–169.Google Scholar
Marmur, A. (2007). The equilibrium contact angle, in C., Tropea, A. L., Yarin and J., Foss (eds.), Springer Handbook of Experimental Fluid Mechanics, Springer, Berlin, chapter 3.3.1, pp. 106– 112.
Mathews, J. H. and Howell, R. W. (2006). Complex Analysis, Jones and Bartlett Publishers, Boston.
Mugele, F. and Baret, J. C. (2005). Electrowetting: from basics to applications, J. Phys. Condens. Matter 17: 705–774.Google Scholar
Mundo, C. H. R., Sommerfeld, M. and Tropea, C. (1995). Droplet-wall collisions: experimental studies of the deformation and breakup process, Int. J. Multiph. Flow 21: 151–173.Google Scholar
Nguyen, T. P. N., Brunet, P., Coffinier, Y. and Boukherroub, R. (2010). Quantitative testing of robustness on superomniphobic surfaces by drop impact, Langmuir 26: 18369–18373.Google Scholar
Ojha, M., Chatterjee, A., Mont, F., Schubert, E. F.,Wayner Jr., P. C. and Plawsky, J. L. (2010). The role of solid surface structure on dropwise phase change processes, Int. J. Heat Mass Transf. 53: 910–922.Google Scholar
Panão, M. R. O. and Moreira, A. L. N. (2009). Heat transfer correlation for intermittent spray impingement: a dynamic approach, Int. J. Therm. Sci. 48: 1853–1862.Google Scholar
Park, M., Im, J., Shin, M., Min, Y., Park, J., Cho, H., Park, S., Shim, M. B., Jeon, S., Chung, D. Y., Bae, J., Park, J., Jeong, U. and Kim, K. (2012). Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres, Nat. Nanotechnol. 7: 803–809.Google Scholar
Polya, G. and Latta, G. (1974). Complex Variables, John Wiley & Sons, New York.
Range, K. and Feuillebois, F. (1998). Influence of surface roughness on liquid drop impact, J. Colloid Interface Sci. 203: 16–30.Google Scholar
Reis, N. C., Griffiths, R. F. and Santos, J. M. (2008). Parametric study of liquid droplets impinging on porous surfaces, Appl. Math. Model. 32: 341–361.Google Scholar
Reneker, D. H. and Yarin, A. L. (2008). Electrospinning jets and polymer nanofibers, Polymer 49: 2387–2425.Google Scholar
Reneker, D. H., Yarin, A. L., Zussman, E. and Xu, H. (2007). Electrospinning of nanofibers from polymer solutions and melts, Adv. Appl. Mech. 41: 43–346.Google Scholar
Reznik, S. N., Yarin, A. L., Theron, A. and Zussman, E. (2004). Transient and steady shapes of droplets attached to a surface in a strong electric field, J. Fluid Mech. 516: 349–377.Google Scholar
Rohsenow, W.M., Hartnett, J. P. and Cho, Y. I. (1998). Handbook of Heat Transfer,McGraw-Hill, New York.
Roisman, I. V. (2009). Inertia dominated drop collisions. II. An analytical solution of the Navier– Stokes equations for a spreading viscous film, Phys. Fluids 21: 052104.Google Scholar
Roisman, I. V., Berberović, E. and Tropea, C. (2009). Inertia dominated drop collisions. I. On the universal flow in the lamella, Phys. Fluids 21: 052103.Google Scholar
Roisman, I. V., Lembach, A. and Tropea, C. (2015). Drop splashing induced by target roughness and porosity: the size plays no role, Adv. Colloid Interface Sci. 222: 615–621.Google Scholar
Roisman, I. V., Rioboo, R. and Tropea, C. (2002). Normal impact of a liquid drop on a dry surface: model for spreading and receding, Proc. R. Soc. London Ser. A-Math. 458: 1411–1430.Google Scholar
Russel, W. B., Saville, D. A. and Schowalter, W. R. (1989). Colloidal Dispersions, Cambridge University Press.
Sahu, R. P., Sett, S., Yarin, A. L. and Pourdeyhimi, B. (2015). Impact of aqueous suspension drops onto non-wettable porous membranes: Hydrodynamic focusing and penetration of nanoparticles, Colloid Surf. A-Physicochem. Eng. 467: 31–45.Google Scholar
Sahu, R. P., Sinha-Ray, S., Yarin, A. L. and Pourdeyhimi, B. (2012). Drop impacts on electrospun nanofiber membranes, Soft Matter 8: 3957–3970.Google Scholar
Scheller, B. L. and Bousfield, D. W. (1995). Newtonian drop impact with a solid surface, AIChE J. 41: 1357–1367.Google Scholar
Shapiro, B., Moon, H., Garrell, R. L. and Kim, C. J. (2003). Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations, J. Appl. Phys. 93: 5794–5811.Google Scholar
Shinoda, K., Yamada, A., Kambara, M., Kojima, Y. and Yoshida, T. (2007). Deformation of alumina droplets on micro-patterned substrates under plasma spraying conditions, J. Therm. Spray Technol. 16: 300–305.Google Scholar
Sinha-Ray, S. and Yarin, A. L. (2014). Drop impact cooling enhancement on nano-textured surfaces. Part I: Theory and results of the ground (1g) experiments, Int. J. Heat Mass Transf. 70: 1095–1106.Google Scholar
Sinha-Ray, S., Zhang, Y. and Yarin, A. L. (2011). Thorny devil nanotextured fibers: the way to cooling rates on the order of 1 kW/cm2, Langmuir 27: 215–226.Google Scholar
Sivakumar, D., Katagiri, K., Sato, T. and Nishiyama, H. (2005). Spreading behavior of an impacting drop on a structured rough surface, Phys. Fluids 17: 100608.Google Scholar
Sodtke, C. and Stephan, P. (2007). Spray cooling on micro structured surfaces, Int. J. Heat Mass Transf. 50: 4089–4097.Google Scholar
Srikar, R., Gambaryan-Roisman, T., Steffes, C., Stephan, P., Tropea, C. and Yarin, A. L. (2009). Nanofiber coating of surfaces for intensification of drop or spray impact cooling, Int. J. Heat Mass Transf. 52: 5814–5826.Google Scholar
Starov, V. M., Zhdanov, S. A., Kosvintsev, S. R., Sobolev, V. D. and Velarde, M. G. (2003). Spreading of liquid drops over porous substrates, Adv. Colloid Interface Sci. 104: 123–158.Google Scholar
Thoroddsen, S. T. (2002). The ejecta sheet generated by the impact of a drop, J. Fluid Mech. 451: 373–381.Google Scholar
Thoroddsen, S. T., Etoh, T. G. and Takehara, K. (2008). High-speed imaging of drops and bubbles, Annu. Rev. Fluid Mech. 40: 257–285.Google Scholar
Tien, C. (1989). Granular Filtration of Aerosols and Hydrosols, Butterworths, Boston.
Tsai, P., Pacheco, S., Pirat, C., Lefferts, L. and Lohse, D. (2009). Drop impact upon micro- and nanostructured superhydrophobic surfaces, Langmuir 25: 12293–12298.Google Scholar
Tsai, P., van der Veen, R. C. A., van de Raa, M. and Lohse, D. (2010). How micropatterns and air pressure affect splashing on surfaces, Langmuir 26: 16090–16095.Google Scholar
Vallet, M., Vallade, M. and Berge, B. (1999). Limiting phenomena for the spreading of water on polymer films by electrowetting, Eur. Phys. J. B 11: 583–591.Google Scholar
Visaria, M. and Mudawar, I. (2009). Application of two-phase spray cooling for thermal management of electronic devices, IEEE Trans. Components Packag. Technol. 32: 784–793.Google Scholar
Wang, K. L. and Jones, T. B. (2005). Saturation effects in dynamic electrowetting, Appl. Phys. Lett. 86: 054104.Google Scholar
Wang, Z., Ci, L., Chen, L., Nayak, S., Ajayan, P. M. and Koratkar, N. (2007). Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes, Nano Lett. 7: 697–702.Google Scholar
Washburn, E. W. (1921). The dynamics of capillary flow, Phys. Rev. 17: 273–283.Google Scholar
Weickgenannt, C. M., Zhang, Y., Lembach, A. N., Roisman, I. V., Gambaryan-Roisman, T., Yarin, A. L. and Tropea, C. (2011a). Nonisothermal drop impact and evaporation on polymer nanofiber mats, Phys. Rev. E 83: 036305.Google Scholar
Weickgenannt, C. M., Zhang, Y., Sinha-Ray, S., Roisman, I. V., Gambaryan-Roisman, T., Tropea, C. and Yarin, A. L. (2011b). Inverse-Leidenfrost phenomenon on nanofiber mats on hot surfaces, Phys. Rev. E 84: 036310.Google Scholar
Weiss, D. A. and Yarin, A. L. (1999). Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation, J. Fluid Mech. 385: 229–254.Google Scholar
Welters, W. J. J. and Fokkink, L. G. J. (1998). Fast electrically switchable capillary effects, Langmuir 14: 1535–1538.Google Scholar
Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28: 988–994.Google Scholar
Wong, T. S., Kang, S. H., Tang, S. K. Y., Smythe, E. J., Hatton, B. D., Grinthal, A. and Aizenberg, J. (2011). Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity, Nature 477: 443–447.Google Scholar
Xu, L. (2007). Liquid drop splashing on smooth, rough, and textured surfaces, Phys. Rev. E 75: 056316.Google Scholar
Yan, Z. B., Toh, K. C., Duan, F., Wong, T. N., Choo, K. F., Chan, P. K. and Chua, Y. S. (2010). Experimental study of impingement spray cooling for high power devices, Appl. Therm. Eng. 30: 1225–1230.Google Scholar
Yang, S., Krupenkin, T. N., Mach, P. and Chandross, E. A. (2003). Tunable and latchable liquid microlens with photopolymerizable components, Adv. Mater. 15: 940–943.Google Scholar
Yarin, A. L. (2006). Drop impact dynamics: splashing, spreading, receding, bouncing … , Annu. Rev. Fluid Mech. 38: 159–192.Google Scholar
Yarin, A. L., Chase, G. G., Liu, W., Doiphode, S. V. and Reneker, D. H. (2005). Liquid drop growth on a fiber, AIChE J. 52: 217–227.Google Scholar
Yarin, A. L., Pourdeyhimi, B. and Ramakrishna, S. (2014). Fundamentals and Applications of Micro- and Nanofibers, Cambridge University Press.
Yarin, L. P., Mosyak, A. and Hetsroni, G. (2009). Fluid Flow, Heat Transfer and Boiling in Micro- Channels, Springer, Heidelberg.
Zhao, Y. and Cho, S. K. (2007). Micro air bubble manipulation by electrowetting on dielectric (EWOD): transporting, splitting, merging and eliminating of bubbles, Lab Chip 7: 273–280.Google Scholar
Zheng, Q. S., Yu, Y. and Zhao, Z. H. (2005). Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces, Langmuir 21: 12207–12212.Google Scholar
Zhu, L., Xu, J., Xiu, Y., Sun, Y., Hess, D. W. and Wong, C. P. (2006). Electrowetting of aligned carbon nanotube films, J. Phys. Chem. B 110: 15945–15950.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×