Skip to main content Accessibility help
×
Home
  • Print publication year: 2017
  • Online publication date: July 2017

5 - Drop Impact onto Dry Surfaces with Complex Morphology

from Part I - Collision of Liquid Jets and Drops with a Dry Solid Wall

Summary

Surface texture, e.g. roughness, porosity, wettability and chemical composition can significantly affect the outcome of drop impact. Section 5.1 deals with the splashing threshold on rough, textured and also porous solid surfaces. In Section 5.2 an impact of a single Newtonian drop near a hole in a flat substrate is considered as a simplified model of drop spreading on a porous substrate. The experiments described in Section 5.3 deal with drop impacts of such different liquids as water and oily Fluorinerts onto suspended thin membranes with microscopic pores of different wettability. They reveal that liquid penetration is possible even through a non-wettable porous medium if the impact velocity is high enough. A similar conclusion stems from the experiments with water drop impacts onto membranes coated with much less permeable nanofiber layers discussed in Section 5.4. In the case of nanofiber mats deposited onto impermeable surfaces, drop splashing and bouncing after impact can be fully suppressed, as the experiments of Section 5.5 show. The reason for the phenomena observed in Sections 5.3–5.5 is the hydrodynamic focusing of liquid brought by a millimeter-sized drop into micron-sized pores. The theory of the hydrodynamic focusing phenomenon is given in Section 5.6, and the results are illustrated experimentally by the amazing fact that liquid velocity in the jets which penetrated through the entire porous medium thickness is higher than that in the impacting drop, even though the viscous dissipation in flow through porous medium is extremely high. Liquid penetration following drop impact onto a nonwettable porous medium is also visualized in the experiments with the entrained seeding particles in Section 5.7, which also contains the evaluation of the critical filter thickness which can be fully penetrated in spite of the viscous dissipation in the pores. Drop impacts onto hot surfaces covered with nanofiber mats also reveal significant enhancement of surface cooling due to the hydrodynamic focusing. The latter sustains the contact of liquid coolant with the hot surface underneath and thus facilitates complete liquid vaporization and significant heat removal in the form of latent heat of evaporation (Section 5.8).

Related content

Powered by UNSILO
Barenblatt, G. I., Entov, V. M. and Ryzhik, V. M. (1989). Theory of Fluid Flows through Natural Rocks, Kluwer Academic Publishers, Dordrecht.
Batchelor, G. K. (2002). An Introduction to Fluid Dynamics, Cambridge University Press.
Bazilevsky, A. V., Yarin, A. L. and Megaridis, C. M. (2008). Pressure-driven fluidic delivery through carbon tube bundles, Lab Chip 8: 152–160.
Beni, G., Hackwood, S. and Jackel, J. L. (1982). Continuous electrowetting effect, Appl. Phys. Lett. 40: 912–914.
Birkhoff, G., MacDougall, D. P., Pugh, E. M. and Taylor, G. I. (1948). Explosives with lined cavities, J. Appl. Phys. 19: 563–582.
Brown, R. C. (1993). Air Filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters, Pergamon Press, Oxford.
Brunet, P., Lapierre, F., Zoueshtiagh, F., Thomy, V. and Merlen, A. (2009). To grate a liquid into tiny droplets by its impact on a hydrophobic microgrid, Appl. Phys. Lett. 95: 254102.
Cassie, A. B. D. and Baxter, S. (1944). Wettability of porous surfaces, Trans. Faraday Soc. 40: 546–551.
Charbeneau, R. J. (2006). Groundwater Hydraulics and Pollutant Transport, Waveland Press, Long Grove.
Clanet, C. and Villermaux, E. (2002). Life of a smooth liquid sheet, J. Fluid Mech. 462: 307–340.
Contal, P., Simao, J., Thomas, D., Frising, T., Callé, S., Appert-Collin, J. C. and Bémer, D. (2004). Clogging of fibre filters by submicron droplets. Phenomena and influence of operating conditions, J. Aerosol Sci. 35: 263–278.
de Gennes, P. (1985). Wetting: statics and dynamics, Rev. Mod. Phys. 57: 827–863.
de Gennes, P. G., Brochard-Wyart, F. and Quéré, D. (2004). Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer, New York.
Deng, X., Mammen, L., Butt, H. J. and Vollmer, D. (2012). Candle soot as a template for a transparent robust superamphiphobic coating, Science 335: 67–70.
Derjaguin, B. V., Muller, V. M. and Toporov, Y. P. (1975). Effect of contact deformations on the adhesion of particles, J. Colloid Interface Sci. 53: 314–326.
Dubois, P., Marchand, G., Fouillet, Y., Berthier, J., Douki, T., Hassine, F., Gmouh, S. and Vaultier, M. (2006). Ionic liquid droplet as e-microreactor, Anal. Chem. 78: 4909–4917.
Eggers, J., Fontelos, M. A., Josserand, C. and Zaleski, S. (2010). Drop dynamics after impact on a solid wall: theory and simulations, Phys. Fluids 22: 062101.
Fan, S. K., Yang, H. P., Wang, T. T. and Hsu, W. (2007). Asymmetric electrowetting moving droplets by a square wave, Lab Chip 7: 1330–1335.
Filatov, Y., Budyka, A. and Kirichenko, V. (2007). Electrospinning of micro-and nanofibers: fundamentals in separation and filtration processes, J. Eng. Fibers Fabrics 3: 488.
Frising, T., Thomas, D., Bémer, D. and Contal, P. (2005). Clogging of fibrous filters by liquid aerosol particles: Experimental and phenomenological modelling study, Chem. Eng. Sci. 60: 2751–2762.
Gao, L. and McCarthy, T. J. (2006). The “Lotus effect” explained: two reasons why two length scales of topography are important, Langmuir 22: 2966–2967.
Gao, L. and McCarthy, T. J. (2008). Teflon is hydrophilic. Comments on definitions of hydrophobic, shear versus tensile hydrophobicity, and wettability characterization, Langmuir 24: 9183–9188.
Gao, L. and McCarthy, T. J. (2009). Wetting 101?, Langmuir 25: 14105–14115.
Garrod, R. P., Harris, L. G., Schofield, W. C. E., McGettrick, J., Ward, L. J., Teare, D. O. H. and Badyal, J. P. S. (2007). Mimicking a Stenocara beetle's back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces, Langmuir 23: 689–693.
Gradshteyn, I. S. and Ryzhik, I. M. (2007). Table of Integrals, Series and Products, 7th edn, Elsevier, Amsterdam.
Han, D. and Steckl, A. J. (2009). Superhydrophobic and oleophobic fibers by coaxial electrospinning, Langmuir 25: 9454–9462.
Han, Z., Tay, B., Tan, C., Shakerzadeh, M. and Ostrikov, K. K. (2009). Electrowetting control of Cassie-to-Wenzel transitions in superhydrophobic carbon nanotube-based nanocomposites, ACS Nano 3: 3031–3036.
Hayes, R. A. and Feenstra, B. J. (2003). Video-speed electronic paper based on electrowetting, Nature 425: 383–385.
He, B., Patankar, N. A. and Lee, J. (2003). Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces, Langmuir 19: 4999–5003.
Henrici, P. (1974). Applied and Computational Complex Analysis, Vol. 3, John Wiley & Sons, New York.
Jiang, L., Zhao, Y. and Zhai, J. (2004). A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics, Angew. Chem. Int. Ed. 116: 4338–4341.
Kandlikar, S. G. and Bapat, A. V. (2007). Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal, Heat Transf. Eng. 28: 911–923.
Kannangara, D., Zhang, H. and Shen, W. (2006). Liquid–paper interactions during liquid drop impact and recoil on paper surfaces, Colloid Surf. A-Physicochem. Eng. 280: 203–215.
Karniadakis, G., Beskok, A. and Aluru, N. (2005). Microflows and Nanoflows: Fundamentals and Simulation, Springer, New York, Heidelberg.
Kellay, H. (2005). Impact of drops on a water-covered sand bed: erosion, entrainement and pattern formation, Europhys. Lett. 71: 400–406.
Kilaru, M. K., Heikenfeld, J., Lin, G. and Mark, J. E. (2007). Strong charge trapping and bistable electrowetting on nanocomposite fluoropolymer: BaTiO3 dielectrics, Appl. Phys. Lett. 90: 212906.
Kim, J. (2007). Spray cooling heat transfer: The state of the art, Int. J. Heat Fluid Flow 28: 753–767.
Krupenkin, T. N., Taylor, J. A., Schneider, T. M. and Yang, S. (2004). From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces, Langmuir 20: 3824–3827.
Kuiper, S. and Hendriks, B. H.W. (2004). Variable-focus liquid lens for miniature cameras, Appl. Phys. Lett. 85: 1128–1130.
Lagubeau, G., Fontelos, M. A., Josserand, C., Maurel, A., Pagneux, V. and Petitjeans, P. (2012). Spreading dynamics of drop impacts, J. Fluid Mech. 713: 50–60.
Lavrentiev, M. A. and Shabat, B. V. (1973). Methods of Theory of Functions of Complex Variable, Nauka, Moscow. (in Russian).
Lee, J. B. and Lee, S. H. (2011). Dynamic wetting and spreading characteristics of a liquid droplet impinging on hydrophobic textured surfaces, Langmuir 27: 6565–6573.
Lee, M. W., Latthe, S. S., Yarin, A. L. and Yoon, S. S. (2013). Dynamic electrowetting-ondielectric (DEWOD) on unstretched and stretched Teflon, Langmuir 29: 7758–7767.
Lembach, A. N., Tan, H. B., Roisman, I. V., Gambaryan-Roisman, T., Zhang, Y., Tropea, C. and Yarin, A. L. (2010). Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats, Langmuir 26: 9516–9523.
Levich, V. G. (1962). Physiochemical Hydrodynamcis, Prentice-Hall, Englewood Cliffs.
Liu, G., Fu, L., Rode, A. V. and Craig, V. S. J. (2011). Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition, Langmuir 27: 2595–2600.
Loitsyanskii, L. G. (1966). Mechanics of Gases and Liquids, Pergamon Press, Oxford.
Lorenceau, E. and Quéré, D. (2003). Drops impacting a sieve, J. Colloid Interface Sci. 263: 244–249.
Luikov, A. V. (1966). Heat and Mass Transfer in Capillary-Porous Bodies, Pergamon Press, Oxford.
Malouin Jr, B. A., Koratkar, N. A., Hirsa, A. H. and Wang, Z. (2010). Directed rebounding of droplets by microscale surface roughness gradients, Appl. Phys. Lett. 96: 234103.
Manglik, R. M. and Jog, M. A. (2009). Molecular-to-large-scale heat transfer with multiphase interfaces: Current status and new directions, J. Heat Transf.-Trans. ASME 131: 121001.
Marmur, A. (1988). Drop penetration into a thin porous medium, J. Colloid Interface Sci. 123: 161–169.
Marmur, A. (2007). The equilibrium contact angle, in C., Tropea, A. L., Yarin and J., Foss (eds.), Springer Handbook of Experimental Fluid Mechanics, Springer, Berlin, chapter 3.3.1, pp. 106– 112.
Mathews, J. H. and Howell, R. W. (2006). Complex Analysis, Jones and Bartlett Publishers, Boston.
Mugele, F. and Baret, J. C. (2005). Electrowetting: from basics to applications, J. Phys. Condens. Matter 17: 705–774.
Mundo, C. H. R., Sommerfeld, M. and Tropea, C. (1995). Droplet-wall collisions: experimental studies of the deformation and breakup process, Int. J. Multiph. Flow 21: 151–173.
Nguyen, T. P. N., Brunet, P., Coffinier, Y. and Boukherroub, R. (2010). Quantitative testing of robustness on superomniphobic surfaces by drop impact, Langmuir 26: 18369–18373.
Ojha, M., Chatterjee, A., Mont, F., Schubert, E. F.,Wayner Jr., P. C. and Plawsky, J. L. (2010). The role of solid surface structure on dropwise phase change processes, Int. J. Heat Mass Transf. 53: 910–922.
Panão, M. R. O. and Moreira, A. L. N. (2009). Heat transfer correlation for intermittent spray impingement: a dynamic approach, Int. J. Therm. Sci. 48: 1853–1862.
Park, M., Im, J., Shin, M., Min, Y., Park, J., Cho, H., Park, S., Shim, M. B., Jeon, S., Chung, D. Y., Bae, J., Park, J., Jeong, U. and Kim, K. (2012). Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres, Nat. Nanotechnol. 7: 803–809.
Polya, G. and Latta, G. (1974). Complex Variables, John Wiley & Sons, New York.
Range, K. and Feuillebois, F. (1998). Influence of surface roughness on liquid drop impact, J. Colloid Interface Sci. 203: 16–30.
Reis, N. C., Griffiths, R. F. and Santos, J. M. (2008). Parametric study of liquid droplets impinging on porous surfaces, Appl. Math. Model. 32: 341–361.
Reneker, D. H. and Yarin, A. L. (2008). Electrospinning jets and polymer nanofibers, Polymer 49: 2387–2425.
Reneker, D. H., Yarin, A. L., Zussman, E. and Xu, H. (2007). Electrospinning of nanofibers from polymer solutions and melts, Adv. Appl. Mech. 41: 43–346.
Reznik, S. N., Yarin, A. L., Theron, A. and Zussman, E. (2004). Transient and steady shapes of droplets attached to a surface in a strong electric field, J. Fluid Mech. 516: 349–377.
Rohsenow, W.M., Hartnett, J. P. and Cho, Y. I. (1998). Handbook of Heat Transfer,McGraw-Hill, New York.
Roisman, I. V. (2009). Inertia dominated drop collisions. II. An analytical solution of the Navier– Stokes equations for a spreading viscous film, Phys. Fluids 21: 052104.
Roisman, I. V., Berberović, E. and Tropea, C. (2009). Inertia dominated drop collisions. I. On the universal flow in the lamella, Phys. Fluids 21: 052103.
Roisman, I. V., Lembach, A. and Tropea, C. (2015). Drop splashing induced by target roughness and porosity: the size plays no role, Adv. Colloid Interface Sci. 222: 615–621.
Roisman, I. V., Rioboo, R. and Tropea, C. (2002). Normal impact of a liquid drop on a dry surface: model for spreading and receding, Proc. R. Soc. London Ser. A-Math. 458: 1411–1430.
Russel, W. B., Saville, D. A. and Schowalter, W. R. (1989). Colloidal Dispersions, Cambridge University Press.
Sahu, R. P., Sett, S., Yarin, A. L. and Pourdeyhimi, B. (2015). Impact of aqueous suspension drops onto non-wettable porous membranes: Hydrodynamic focusing and penetration of nanoparticles, Colloid Surf. A-Physicochem. Eng. 467: 31–45.
Sahu, R. P., Sinha-Ray, S., Yarin, A. L. and Pourdeyhimi, B. (2012). Drop impacts on electrospun nanofiber membranes, Soft Matter 8: 3957–3970.
Scheller, B. L. and Bousfield, D. W. (1995). Newtonian drop impact with a solid surface, AIChE J. 41: 1357–1367.
Shapiro, B., Moon, H., Garrell, R. L. and Kim, C. J. (2003). Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations, J. Appl. Phys. 93: 5794–5811.
Shinoda, K., Yamada, A., Kambara, M., Kojima, Y. and Yoshida, T. (2007). Deformation of alumina droplets on micro-patterned substrates under plasma spraying conditions, J. Therm. Spray Technol. 16: 300–305.
Sinha-Ray, S. and Yarin, A. L. (2014). Drop impact cooling enhancement on nano-textured surfaces. Part I: Theory and results of the ground (1g) experiments, Int. J. Heat Mass Transf. 70: 1095–1106.
Sinha-Ray, S., Zhang, Y. and Yarin, A. L. (2011). Thorny devil nanotextured fibers: the way to cooling rates on the order of 1 kW/cm2, Langmuir 27: 215–226.
Sivakumar, D., Katagiri, K., Sato, T. and Nishiyama, H. (2005). Spreading behavior of an impacting drop on a structured rough surface, Phys. Fluids 17: 100608.
Sodtke, C. and Stephan, P. (2007). Spray cooling on micro structured surfaces, Int. J. Heat Mass Transf. 50: 4089–4097.
Srikar, R., Gambaryan-Roisman, T., Steffes, C., Stephan, P., Tropea, C. and Yarin, A. L. (2009). Nanofiber coating of surfaces for intensification of drop or spray impact cooling, Int. J. Heat Mass Transf. 52: 5814–5826.
Starov, V. M., Zhdanov, S. A., Kosvintsev, S. R., Sobolev, V. D. and Velarde, M. G. (2003). Spreading of liquid drops over porous substrates, Adv. Colloid Interface Sci. 104: 123–158.
Thoroddsen, S. T. (2002). The ejecta sheet generated by the impact of a drop, J. Fluid Mech. 451: 373–381.
Thoroddsen, S. T., Etoh, T. G. and Takehara, K. (2008). High-speed imaging of drops and bubbles, Annu. Rev. Fluid Mech. 40: 257–285.
Tien, C. (1989). Granular Filtration of Aerosols and Hydrosols, Butterworths, Boston.
Tsai, P., Pacheco, S., Pirat, C., Lefferts, L. and Lohse, D. (2009). Drop impact upon micro- and nanostructured superhydrophobic surfaces, Langmuir 25: 12293–12298.
Tsai, P., van der Veen, R. C. A., van de Raa, M. and Lohse, D. (2010). How micropatterns and air pressure affect splashing on surfaces, Langmuir 26: 16090–16095.
Vallet, M., Vallade, M. and Berge, B. (1999). Limiting phenomena for the spreading of water on polymer films by electrowetting, Eur. Phys. J. B 11: 583–591.
Visaria, M. and Mudawar, I. (2009). Application of two-phase spray cooling for thermal management of electronic devices, IEEE Trans. Components Packag. Technol. 32: 784–793.
Wang, K. L. and Jones, T. B. (2005). Saturation effects in dynamic electrowetting, Appl. Phys. Lett. 86: 054104.
Wang, Z., Ci, L., Chen, L., Nayak, S., Ajayan, P. M. and Koratkar, N. (2007). Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes, Nano Lett. 7: 697–702.
Washburn, E. W. (1921). The dynamics of capillary flow, Phys. Rev. 17: 273–283.
Weickgenannt, C. M., Zhang, Y., Lembach, A. N., Roisman, I. V., Gambaryan-Roisman, T., Yarin, A. L. and Tropea, C. (2011a). Nonisothermal drop impact and evaporation on polymer nanofiber mats, Phys. Rev. E 83: 036305.
Weickgenannt, C. M., Zhang, Y., Sinha-Ray, S., Roisman, I. V., Gambaryan-Roisman, T., Tropea, C. and Yarin, A. L. (2011b). Inverse-Leidenfrost phenomenon on nanofiber mats on hot surfaces, Phys. Rev. E 84: 036310.
Weiss, D. A. and Yarin, A. L. (1999). Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation, J. Fluid Mech. 385: 229–254.
Welters, W. J. J. and Fokkink, L. G. J. (1998). Fast electrically switchable capillary effects, Langmuir 14: 1535–1538.
Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28: 988–994.
Wong, T. S., Kang, S. H., Tang, S. K. Y., Smythe, E. J., Hatton, B. D., Grinthal, A. and Aizenberg, J. (2011). Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity, Nature 477: 443–447.
Xu, L. (2007). Liquid drop splashing on smooth, rough, and textured surfaces, Phys. Rev. E 75: 056316.
Yan, Z. B., Toh, K. C., Duan, F., Wong, T. N., Choo, K. F., Chan, P. K. and Chua, Y. S. (2010). Experimental study of impingement spray cooling for high power devices, Appl. Therm. Eng. 30: 1225–1230.
Yang, S., Krupenkin, T. N., Mach, P. and Chandross, E. A. (2003). Tunable and latchable liquid microlens with photopolymerizable components, Adv. Mater. 15: 940–943.
Yarin, A. L. (2006). Drop impact dynamics: splashing, spreading, receding, bouncing … , Annu. Rev. Fluid Mech. 38: 159–192.
Yarin, A. L., Chase, G. G., Liu, W., Doiphode, S. V. and Reneker, D. H. (2005). Liquid drop growth on a fiber, AIChE J. 52: 217–227.
Yarin, A. L., Pourdeyhimi, B. and Ramakrishna, S. (2014). Fundamentals and Applications of Micro- and Nanofibers, Cambridge University Press.
Yarin, L. P., Mosyak, A. and Hetsroni, G. (2009). Fluid Flow, Heat Transfer and Boiling in Micro- Channels, Springer, Heidelberg.
Zhao, Y. and Cho, S. K. (2007). Micro air bubble manipulation by electrowetting on dielectric (EWOD): transporting, splitting, merging and eliminating of bubbles, Lab Chip 7: 273–280.
Zheng, Q. S., Yu, Y. and Zhao, Z. H. (2005). Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces, Langmuir 21: 12207–12212.
Zhu, L., Xu, J., Xiu, Y., Sun, Y., Hess, D. W. and Wong, C. P. (2006). Electrowetting of aligned carbon nanotube films, J. Phys. Chem. B 110: 15945–15950.