Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T03:35:40.491Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 December 2013

Robert H. Sanders
Affiliation:
Kapteyn Astronomical Institute, The Netherlands
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Revealing the Heart of the Galaxy
The Milky Way and its Black Hole
, pp. 185 - 192
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, D.A., Hyland, A.R., and Hillier, D.H. (1990). The source of luminosity at the Galactic Centre. Mon. Not. RAS, 244, 706–713.Google Scholar
Allen, D.A., and Sanders, R.H. (1986). Is the Galactic Centre black hole a dwarf?Nature, 319, 191–194.Google Scholar
Ambartsumian, B.A. (1976). The role of nuclear activity in the overall evolutionary processes in galaxies. Proc. 3rd Europ. Astron. Meeting (Tiflis), 91–96.Google Scholar
Babcock, H.W., (1953). The possiblility of compensating astronomical seeing. Pub. Astron. Soc. Pacific, 65, 229–236.CrossRefGoogle Scholar
Backer, D.C., and Sramek, R.A., (1982). Apparent proper motion of the Galactic Center compact radio source and PSR 1929+10. Astrophys. J., 260, 512–519.CrossRefGoogle Scholar
Baganoff, F.K., Bautz, M.W., Brandt, W.N., Chartas, G., Feigelson, E.D., Garmire, G.P., Maeda, Y., Morris, M., Ricker, G.R., Townsley, L.K., and Walter, F. (2001). Rapid X-ray flaring from the direction of the supermassive black hole at the Galactic Centre. Nature, 413, 45–48.CrossRefGoogle ScholarPubMed
Balick, B., and Brown, R.L., (1974). Intense sub-arcsecond structure in the Galactic Center. Astrophys. J., 194, 265–270.CrossRefGoogle Scholar
Barthel, P.D., (1989). Is every quasar beamed?Astrophys. J., 336, 606–611.CrossRefGoogle Scholar
Becklin, E.E., and Neugebauer, G. (1968). Infrared observations of the Galactic Center. Astrophys. J., 151, 145–161.CrossRefGoogle Scholar
Becklin, E.E., and Neugebauer, (1975). High-resolution maps of the Galactic Center at 2.2 and 10 microns. Astrophys. J., 200, L71–L74.CrossRefGoogle Scholar
Becklin, E.E., Gatley, I., and Werner, M.W., (1982). Far-infrared observations of Sagittarius A: The luminosity and dust density in the central parsec of the Galaxy. Astrophys. J., 258, 135–142.CrossRefGoogle Scholar
Begelman, M.C., Volonteri, M., and Rees, M.J., (2006). Formation of super-massive black holes by direct collapse in pre-galactic haloes. Mon. Not. RAS, 370, 289–298.CrossRefGoogle Scholar
Binney, J., Gerhard, O.E., Stark, A.A., Bally, J., and Uchida, K. (1991). Understanding the kinematics of the Galactic Centre gas. Mon. Not. RAS, 252, 210–218.CrossRefGoogle Scholar
Blandford, R.D., and Rees, M.J., (1974). A ‘twin-exhaust’ model for double radio sources. Mon. Not. RAS, 169, 395–415.CrossRefGoogle Scholar
Blandford, R.D., and Znajek, R.L., (1977). Electromagnetic extraction of energy from Kerr black holes. Mon. Not. RAS, 179, 433–456.CrossRefGoogle Scholar
Blitz, L., and Spergel, D.N., (1991). Direct evidence for a bar at the Galactic Center. Astrophys. J., 379, 631–638.CrossRefGoogle Scholar
Burbidge, G.R., (1959). Estimates of the total energy in particles and magnetic field in the non-thermal radio sources. Astrophys. J., 129, 849–851.CrossRefGoogle Scholar
Burbidge, G.R., Burbidge, E.M., and Sandage, A.R., (1963). Evidence for the occurrence of violent events in the nuclei of galaxies. Rev. Mod. Phys., 35, 947–980.CrossRefGoogle Scholar
Burkert, A., Schartmann, M., Alig, C., Gillessen, S., Genzel, R., Fritz, T.K., and Eisenhauer, F. (2012). Physics of the Galactic Center cloud G2 on its way toward the supermassive black hole. Astrophys. J., 750:58, 17pp.CrossRefGoogle Scholar
Burton, M., and Allen, D.A., (1992). Imaging the hot molecular gas at the Centre of the Galaxy. Proc. Astronom. Soc. Aus., 10, 55–57.Google Scholar
Burton, W.B., (1972). On the kinematic distribution of Galactic neutral hydrogen. Astron. Astrophys., 19, 51–65.Google Scholar
Chandrasekhar, S. (1931). The maximum mass of ideal white dwarfs. Astrophys. J., 74, 81–82.CrossRefGoogle Scholar
Christiansen, W.N., and Hindman, J.V., (1952). 21 cm line radiation from galactic hydrogen. The Observatory, 72, 149–151.Google Scholar
Colgate, S.A., (1967). Stellar coalescence and the multiple supernova interpretation of quasi-stellar sources. Astrophys. J., 150, 163–192.CrossRefGoogle Scholar
Collins, M. (2005). Pele and Polianhu: A tale of fire and ice. Beach House Publishing.Google Scholar
Croton, D.J., Springel, V., White, S.D.M., De Lucia, G., Frenk, C.S., Gao, L., Jenkins, A., Kauffmann, G., Navarro, J.F., and Yoshida, N. (2006). The many lives of active galactic nuclei: Cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. RAS, 365, 11–28.CrossRefGoogle Scholar
de Vaucouleurs, G. (1964). Interpretation of velocity distribution of the inner regions of the Galaxy. In I.A.U. Symp.20, The Galaxy and Magellanic Clouds, (Canberra), ed. F.J., Kerr, 195–199.Google Scholar
Doeleman, S.S., et al. (2008). Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Nature, 455, 78–80.CrossRefGoogle ScholarPubMed
Dressler, A., and Richstone, D. (1988). Stellar dynamics in the nuclei of M31 and M32 - Evidence for massive black holes?Astrophys. J. 324, 701–713.CrossRefGoogle Scholar
Eckart, A., and Genzel, R. (1996). Observations of proper motions near the Galactic Center. Nature, 383, 415–417.CrossRefGoogle Scholar
Eisenhauer, F., Genzel, R., Alexander, T., Abuter, R., Paumard, T., Ott, T., Gilbert, A., Gillessen, S., Horrobin, M., Trippe, S., Bonnet, H., Dumas, C., Hubin, N., Kaufer, A., Kissler-Patig, M., Monnet, G., Ströbele, S., Szeifert, T., Eckart, A., Schödel, R., and Zucker, S. (2005). SINFONI in the Galactic Center: Young stars and infrared flares in the central light month. Astrophys. J., 628, 246–259.CrossRefGoogle Scholar
Ekers, R.D., and Lynden-Bell, D. (1971). High resolution observations of the Galactic Center at 5 GHz. Astrophys. Lett., 9, 189–193.Google Scholar
Ekers, R.D., Goss, W.M., Schwarz, U.J., Downes, D., and Rogstad, D.H., (1975). A full synthesis map of Sgr A at 5 GHz. Astron. Astrophys., 43, 159–166.Google Scholar
Ekers, R.D., van Gorkom, J.H., Schwarz, U.J., and Goss, W.M., (1983). The radio structure of Sgr A. Astron. Astrophys., 122, 143–150.Google Scholar
Emonts, B.H.C., Morganti, R., Tadhunter, C.N., Oosterloo, T.A., Holt, J., and van der Hulst, J.M., (2005). A jet-induced outflow of warm gas in 3C293. Mon. Not. RAS, 362, 931–944.CrossRefGoogle Scholar
Ewen, H.I., and Purcell, E.M., (1951). Observation of a line in the Galactic radio spectrum: Radiation from Galactic hydrogen at 1420 Mc/sec. Nature, 168, 356–359.Google Scholar
Fabian, A.C., Wilman, R.J., and Crawford, C.S., (2002). On the detectability of distant Compton-thick obscured quasars. Mon. Not. RAS, 329, L18–L22.CrossRefGoogle Scholar
Falcke, H., Melia, F., and Agol, E. (2000). Viewing the shadow of the black hole at the Galactic Center. Astrophys. J., 528, L13–L16.CrossRefGoogle ScholarPubMed
Feast, M., and Whitelock, P. (1997). Galactic kinematics of Cepheids from Hipparcos proper motions. Mon. Not. RAS, 291, 683–693.CrossRefGoogle Scholar
Ferrarese, L., and Merritt, D. (2000). A fundamental relation between supermassive black holes and their host galaxies. Astrophys. J., 519, L9–L12.Google Scholar
Field, G.B., (1964). Quasi-stellar radio sources as spherical galaxies in the process of formation. Astrophys. J., 140, 1434–1444.CrossRefGoogle Scholar
Foy, R., and Labeyrie, A. (1985). Feasibility of adaptive telescope with laser probe. Astron. Astrophys., 152, L29–L31.Google Scholar
Gebhardt, K., Bender, R., Bower, G., Dressler, A., Faber, S.M., Filippenko, A.V., Green, R., Grillmair, C., Ho, L.C., Kormendy, J., Lauer, T.R., Magorrian, J., Pinkney, J., Richstone, D., and Tremaine, S. (2000). A relationship between nuclear black hole mass and galaxy velocity dispersion. Astrophys. J., 539, L13–L16.CrossRefGoogle Scholar
Genzel, R., Schödel, R., Ott, T., Eisenhauer, F., Hofmann, R., Lehnert, M., Eckart, A., Alexander, T., Sternberg, A., Lenzen, R., Clénet, Y., Lacombe, F., Rouan, D., Renzini, A., and Tacconi-Garman, L.E., (2003). The stellar cusp around the supermassive black hole in the Galactic Center. Astrophys. J., 594, 812–832.CrossRefGoogle Scholar
Genzel, R., Schödel, , Ott, T., Eckart, A., Alexander, T., Lacombe, F., Rouan, D., and Aschenbach, B. (2003). Near-infrared falres from accreting gas around the supermassive black hole at the Galactic Centre. Nature, 425, 934–937.CrossRefGoogle ScholarPubMed
Genzel, R., Thatte, N., Krabbe, A., Kroker, H., and Tacconi-Garman, L.E., (1996). The dark mass concentration in the central parsec of the Milky Way. Astrophys. J., 472, 152–173.CrossRefGoogle Scholar
Ghez, A.M., Duchêne, G.,Matthews, K., Hornstein, S.D., Tanner, A.,Larkin, J.,Morris, M., Becklin, E.E., Salim, S., Kremenek, T., Thompson, D., Soifer, B.T., Neugebauer, G., and McLean, I. (2012). An ultraviolet-optical flare from the tidal disruption of a heliumfich stellar core. Nature, 485, 217–220.Google Scholar
Ghez, A.M., Duchêne, G., Mathews, K., et al. (2003). The first measurement of spectral lines in a short-period star bound to the Galaxy's central black hole: A paradox of youth. Astrophys. J., 586, L127–L131CrossRefGoogle Scholar
Ghez, A.M., Morris, M.R., Becklin, E.E., Tanner, A., and Kremenek, T. (2000). The accelerations of stars orbiting the Milky Way's central black hole. Nature, 407, 349–351.CrossRefGoogle ScholarPubMed
Ghez, A.M., Salim, S., Hornstein, S.D., Tanner, A., Lu, J.R., Morris, M., Becklin, E.E., and Duchne, G. (2005). Stellar orbits around the Galactic Center black hole. Astrophys. J., 620, 744–757.CrossRefGoogle Scholar
Ghez, A.M., Salim, S., Weinberg, N.N., Lu, J.R., Do, T., Dunn, J.K., Mathews, K., Morris, M.R., Yelda, S., Becklin, E.E., Kremenek, T., Milosavljevc, M., and Naiman, J. (2008). Measuring distance and properties of the Milky Way's central supermassive black hole with stellar orbits. Astrophys. J., 689, 1044–1062.CrossRefGoogle Scholar
Gillessen, S., Eisenhauer, F., Trippe, S., Genzel, R., Martins, F., and Ott, T. (2009). Monitoring stellar orbits around the massive black hole in the Galactic Center. Astrophys. J., 692, 1075–1109.CrossRefGoogle Scholar
Greenstein, J.L., and Schmidt, M. (1964). The quasi-stellar radio sources 3C 48 and 3C 273. Astrophys. J., 140, 1–34.CrossRefGoogle Scholar
Gültekin, K., Richstone, D.O., Gebhardt, K., Lauer, T.R., Tremaine, S., Aller, M.C., Bender, R., Dressler, A., Faber, S.M., Filippenko, A.V., Green, R., Ho, L.C., Kormendy, J., Magorrian, J., Pinkney, J., and Siopis, C. (2009). The M - σ and M – L relations in galactic bulges and determination oftheir intrinsic scatter. Astrophys. J., 698, 198–221.CrossRefGoogle Scholar
Güsten, R., Genzel, R., Wright, M.C.H., Jaffe, D.T., Stutzki, J., and Harris, A.I., (1987). Aperture synthesis observations of the circumnuclear ring in the Galactic Center. Astrophys. J., 318, 124–138.Google Scholar
Hazard, C., Mackey, M.B., and Shimmins, A.J., (1963). Investigation of the radio source 3C 273 by the method oflunar occultations. Nature, 197, 1037–1038.CrossRefGoogle Scholar
Hills, J.G., (1975). Possible power source of Seyfert galaxies and QSOs. Nature, 254, 295–298.CrossRefGoogle Scholar
Hills, J.G., (1988). Hyper-velocity and tidal stars from binaries disrupted by a massive Galactic black hole. Nature, 331, 687–689.CrossRefGoogle Scholar
Hoffmann, W.F., Frederick, C.F., and Emerey, R.J., (1971). 100-micron map of the Galactic Center region. Astrophys. J., 164, L23–L28.CrossRefGoogle Scholar
Hoyle, F., and Fowler, W.A., (1963). On the nature of strong radio sources. Mon. Not. RAS, 125, 169–176.Google Scholar
Jahnke, K., and Macció, A. (2011). The non-causal origin of the black hole-galaxy scaling relations. Astrophys. J., 734:92, 11 pp.CrossRefGoogle Scholar
Kaifu, N., Kato, T., and Iguchi, T. (1972). 270 pc expanding ring at the Galactic Center. Nature Phys. Sci, 238, 105–107.CrossRefGoogle Scholar
Keller, C. (1972). Mitos y Leyendas de Chile, Enciclopedia Moderna de Chile.Google Scholar
Kerr, R.P., (1963). Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett., 11, 237–238.CrossRefGoogle Scholar
Krul, W. (2000) “Kapteyn and Groningen: a Portrait” in The Legacy of J.C. Kapteyn eds. P.C., van der Kruit and K., van Berkel, Kluwer, Dordrecht, the Netherlands, pp. 53–78.Google Scholar
Kormendy, J. (1988). Evidence for a supermassive black hole in the nucleus of M31. Astrophys. J., 325, 128–141.CrossRefGoogle Scholar
Kormendy, J., and Richstone, D. (1995). Inward bound - the search for supermassive black holes in galactic nuclei. Annu. Rev. Astron. Astrophys., 33, 581–624.CrossRefGoogle Scholar
Koyama, K.Maeda, Y., Sonobe, T., Takeshima, T., Tanaka, Y., and Yamauchi, S. (1996). ASCA view of our Galactic Center: Remains of past activities in X-rays?Publ. Astron. Soc. Japan, 48, 249–255.CrossRefGoogle Scholar
Kwee, K.K., Muller, C.A., and Westerhout, G. (1954). The rotation of the inner parts of the Galactic System. Bull. Astron. Inst. Netherlands, 12, 211–222.Google Scholar
Lauer, T.R., Faber, S.M., Groth, E.J., Shaya, E.J., Campbell, B., Code, A., Currie, D.G., Baum, W.A., Ewald, S.P., Hester, J.J., Holtzman, J.A., Kristian, J., Light, R.M., Ligynds, C.R., O'Neil, E.J. Jr., and Westphal, J.A., (1993). Planetary camera observations of the double nucleus of M31. Astron. J., 106, 1436–1447.CrossRefGoogle Scholar
Leavitt, H.S., and Pickering, E.C., (1912). Periods of 25 variable stars in the Small Magellanic Cloud. Harvard Coll. Circ., 173, 1–3.Google Scholar
Levin, Y., and Beloborodov, A.M., (2003). Stellar disk in the Galactic Center: A remnant of a dense accretion disk?. Astrophys. J., 590, L33–L36.CrossRefGoogle Scholar
Liebling, S.L., and Panenzuela, C. (2012). Dynamical boson stars. Liv. Revs. Rel, 15, no. 6Google ScholarPubMed
Light, E.S., Danielson, R.E., and Schwarzschild, M. (1974). The nucleus of M31. Astrophys. J., 194, 257–263.CrossRefGoogle Scholar
Liszt, H.S., and Burton, W.B., (1980). The gas distribution in the central region of the Galaxy. III -A barlike model of the inner-Galaxy gas based on improved H I data. Astrophys. J., 236, 779–797.CrossRefGoogle Scholar
Liszt, H.S., Burton, W.B., and van der Hulst, J.M., (1985). Associations between neutral and ionized gas in SGR A. Astron. Astrophys., 142, 237–244.Google Scholar
Liszt, H.S., van der Hulst, J.M., Burton, W.B., and Ondrechen, M.P., (1983). VLA synthesis of H I absorption toward SGR A. Astron. Astrophys., 126, 341–351.Google Scholar
Lu, J.R., Ghez, A.M., Hornstein, S.D., Morris, M.R., Becklin, E.E., and Mathews, K. (2009). A disk of young stars at the Galactic Center as determined by individual stellar orbits. Astrophys. J., 690, 1463–1487.CrossRefGoogle Scholar
Lynden-Bell, D. (1969). Galactic nuclei as collapsed old quasars. Nature, 223, 690–694.CrossRefGoogle Scholar
Lynds, C.R., and Sandage, A.R., (1963). Evidence for an explosion in the center of the Galaxy M82. Astrophys. J., 137, 1005–1021.CrossRefGoogle Scholar
Magorrian, J., Tremaine, S., Richstone, D., Bender, R., Bower, G., Dressler, A., Faber, S.M., Gebhardt, K., Green, R., Grillmair, C., Kormendy, J., and Lauer, T. (1998). The demography of massive dark objects in galaxy centers. Astron. J., 115, 2285–2305.CrossRefGoogle Scholar
Maiolino, R., Gallerani, S., Neri, R., Cicone, C., Ferrara, A., Genzel, R., Lutz, D., Sturm, E., Tacconi, L.J., Walter, F., Feruglio, C., Fiore, F., and Piconcelli, E. (2012). Evidence of strong quasar feedback in the early Universe. Mon. Not. RAS, 425, L66–L70.Google Scholar
Mathews, T.A., and Sandage, A.R., (1963). Optical identification of 3C 48, 3C 196 and 3C 286 with stellar objects. Astrophys. J., 138, 30–56.CrossRefGoogle Scholar
Menten, K.M., Reid, M.J., Eckart, A., and Genzel, R. (1997). The position of Sagittarius A*: Accurate alignment of the radio and infrared reference frames at the Galactic Center. Astrophys. J., 475, L111–L114.CrossRefGoogle Scholar
Miyoshi, M., Moran, J., Herrnstein, J., Greenhill, L., Nakal, N., Diamond, P., and Makoto, I. (1995). Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC 4258. Nature, 373, 127–129.CrossRefGoogle Scholar
Morris, M., Ghez, A.M., and Becklin, E.E., (1999). The Galactic Center black hole: Clues for the evolution of black holes in galactic nuclei. Adv. Space Res., 23, 959–968.CrossRefGoogle Scholar
Morris, M., Meyer, L., and Ghez, A.M., (2012). Galactic Center research: Manifestations of the central black hole. Res. Astron. Astrophys., 12, 995–1020.CrossRefGoogle Scholar
Mulder, W.A., and Liem, B.T., (1986). Construction of a global gas-dynamical model for our galaxy. Astron. Astrophys., 157, 148–158.Google Scholar
Oort, J.H., (1927). Observational evidence confirming Lindblad's hypothesis of a rotation of the Galactic System. Bull. Astron. Inst. Neth., 3, 275–282.Google Scholar
Oort, J.H., and Muller, C.A., (1952). Observation ofa line in the Galactic radio spectrum: The interstellar hydrogen Line at 1,420 Mc./sec., and an Estimate of galactic rotation. Nature, 168, 357–358.Google Scholar
Oort, J.H., Kerr, F.J., and Westerhout, G. (1958). The galactic system as a spiral nebula. Mon. Not. RAS, 118, 379–389.Google Scholar
Oort, J.H., and Rougoor, G.W., (1960). The position of the galactic centre. Mon. Not. RAS, 121, 171–173.CrossRefGoogle Scholar
Oort, J.H., (1977). The Galactic Center. Ann. Rev. Astron. Astrophys., 15, 295–362.CrossRefGoogle Scholar
Oort, J.H., (1985). The Galactic Nucleus. The Milky Way Galaxy, Proc. IAU Symp. 106, eds. H., van WoerdenR.H., Allen, and W.B., Burton, Dordrecht, The Netherlands: Reidel, 363–365.Google Scholar
Oppenheimer, J.R., and Volkoff, G.M., (1939). On massive neutron cores. Phys. Rev., 55, 374–378.CrossRefGoogle Scholar
Perley, R.A., Dreher, J.W., and Cowan, J.J., (1984). The jet and filaments in Cygnus A. Astrophys. J., 285, L35–L38.CrossRefGoogle Scholar
Phinney, E.S., (1989). Manifestations of a massive black hole in the Galactic Center. In IAU Symp. 136, The Center of the Galaxy, ed. Mark, Morris, Dordrecht, The Netherlands: Kluwer, 543–553.Google Scholar
Readhead, A.C.S., Cohen, M.H., Pearson, T.H., and Wilkinson, P.N., (1978). Bent beams and the overall size of extragalactic radio sources. Nature, 276, 768–771.CrossRefGoogle Scholar
Rees, M.J., (1966). Appearance of relativistically expanding radio sources. 211, 468–470.
Rees, M.J., (1984). Black hole models for active galactic nuclei. Ann. Rev. Astron. Astrophys., 22, 471–506.CrossRefGoogle Scholar
Reid, M.J., Readhead, A.C.,S., Vermeulen, R.C., and Treuhaft, R.N., (1999). The proper motion of Sgr A*. I. First VLBA results. Astrophys. J., 524, 816–823.CrossRefGoogle Scholar
Rieke, G.H., and Low, F.J., (1973). Infrared maps of the Galactic Nucleus. Astrophys. J., 184, 415–425.CrossRefGoogle Scholar
Rieke, G.H., and Lebofsky, M.J., (1982). Comparison of Galactic Center with other galaxies. AIP Conf. Proc., 83, 194–203.Google Scholar
Rougoor, G.W., and Oort, J.H., (1960). Distribution and motion of interstellar hydrogen in the galactic system with particular reference to the region within 3 kiloparsecs of the Center. Proc. Natl. Acad. Sci. USA, 46, 1–13.CrossRefGoogle ScholarPubMed
Ryle, M., Elsmore, B., and Neville, A.C., (1965). High resolution observations of the radio sources in Cygnus and Cassiopeia. Nature, 205, 1259–1262.CrossRefGoogle Scholar
Salpeter, E.E., (1964). Accretion of interstellar matter by massive objects. Astrophys. J., 140, 796–800.CrossRefGoogle Scholar
Sanders, R.H., (1970). The effects of stellar collisions in dense stellar systems. Astrophys. J., 162, 791–809.CrossRefGoogle Scholar
Sanders, R.H., (1998). The circumnuclear material in the Galactic Centre – A clue to the accretion process. Mon. Not. RAS, 294, 35–46.CrossRefGoogle Scholar
Sanders, R.H., and Prendergast, K.H., (1974). The possible relationship of the 3-kiloparsec arm to explosions in the Galactic Nucleus. Astrophys. J., 188, 489–500.CrossRefGoogle Scholar
Saslaw, W.C., Valtonen, M.J., and Aarseth, S.J., (1974). The gravitational slingshot and the structure of extragalactic radio sources. Astrophys. J., 190, 253–270.CrossRefGoogle Scholar
Scheuer, P.A.G. (1974). Models of extragalactic radio sources with a continuous energy supply from a central object. Mon. Not. RAS, 166, 513–528.CrossRefGoogle Scholar
Schödel, R., Ott, T., Genzel, R., Hofmann, R., Lehnert, M., Eckart, A., Mouawad, N., Alexander, T., Reid, M.J., Lenzen, R., Hartung, M., Lacombe, F., Rouan, D., Gendron, E., Rousset, G., Lagrange, A.-M., Brandner, W., Ageorges, N., Lidman, C., Moorwood, A.F.M., Spyromilio, J., Hubin, N., and Menten, K.M., (2002). A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature, 419, 694–696.CrossRefGoogle Scholar
Schödel, R.Ott, T., Genzel, R., Eckart, A., Mouawad, N., and Alexander, T. (2003). Stellar dynamics in the central arcsecond of our Galaxy. Astrophys. J., 596, 1015–1034.CrossRefGoogle Scholar
Scoville, N.Z., (1972). Kinematics of gas near the Galactic Center. Astrophys. J., 175, L127–L132CrossRefGoogle Scholar
Serabyn, E., and Lacy, J.H., (1985). [Ne II] observations of the Galactic Center: Evidence for a massive black hole. Astrophys. J., 293, 445–448.CrossRefGoogle Scholar
Shaver, P.A., Wall, J.V., Kellermann, K.I., Jackson, C.A., and Hawkins, M.R.S. (1996). Decrease in the space density of quasars at high redshift. Nature, 384, 439–441.CrossRefGoogle Scholar
Shklovsky, I.S., (1964). Nature of jets in radio galaxies. Sov. Astron., 7, 748–754.Google Scholar
Silk, J., and Rees, M. (1998). Quasars and galaxy formation. Astron. Astrophys., 331, 1–4.Google Scholar
Soltan, A. (1982). Masses of quasars. Mon. Not. RAS, 200, 115–122.Google Scholar
Spitzer, L., and Saslaw, W.C., (1966). On the evolution of galactic nuclei. Astrophys. J., 143, 400–419.CrossRefGoogle Scholar
Stark, A.A., Martin, C.L., Walsh, W.M., Xiao, K., and Lane, A.P., (2004). Gas density, stability, and starbursts near the inner Lindblad resonance of the Milky Way. Astrophys. J., 614, L41–L44.CrossRefGoogle Scholar
Su, M., and Finkbeiner, D.P., (2012). Evidence for gamma-ray jets in the Milky Way. Astrophys. J., 753:61, 1–13.CrossRefGoogle Scholar
Su, M., Slayter, T.R., and Finkbeiner, D.P., (2010). Giant gamma-ray bubbles from Fermi-LAT: Active Galactic nucleus activity or bipolar Galactic wind. Astrophys. J., 724, 1044–1082.CrossRefGoogle Scholar
Sunyaev, R.A., Markevitch, M., and Pavlinsky, M. (1993). The Center of the Galaxy in the recent past: A view from GRANAT. Astrophys. J., 407, 606–610.CrossRefGoogle Scholar
Tremaine, S. (1995). An eccentric-disk model for the nucleus of M31. Astron. J., 110, 628–633.CrossRefGoogle Scholar
van der Kruit, P.C., (1970). Evidence for a possible expulsion of gas from the Galactic Nucleus. Astron. Astrophys., 4, 462–481.Google Scholar
van der Kruit, P.C., Oort, J.H., and Mathewson, D.S., (1972). The radio emission of NGC 4258 and the possible origin of spiral structure. Astron. Astrophys., 21, 169–184.Google Scholar
van Woerden, H., Rougoor, G.W., and Oort, J.H., (1957). Expansion d'une structure spirale dans le noyau du Systme Galactique, et position de la radiosource Sagittarius A. Compt. Rend. lAcad. Sci., 244, 1691–1695.Google Scholar
Veilleux, S., Cecil, G., and Bland-Hawthorn, J. (2005). Galactic winds. Ann. Rev. Astron. Astrophys., 43, 769–826.CrossRefGoogle Scholar
Viollier, R.D., Trautmann, D., and Tupper, G.B., (1993). Supermassive neutrino stars and galactic nuclei. Phys. Lett. B. 306, 79–85.CrossRefGoogle Scholar
Volonteri, M., and Bellovary, J. (2012). Black holes in the early Universe. Rep. Prog. Phys., 75, 124901.CrossRefGoogle ScholarPubMed
Wardle, M., and Yusef-Zadeh, F. (1992). Origin of the hot gas and radio blobs at the Galactic Center. Nature, 357, 308–310.CrossRefGoogle Scholar
Wilson, A.S., and Ulvestad, J.S., (1982). Radio structures of Seyfert galaxies. IV – Jets in NGC 1068 and NGC 4151. Astrophys. J., 263, 576–594.CrossRefGoogle Scholar
Wollman, E.R., Geballe, T.R., Lacy, J.H., Townes, C.H., and Rank, D.M., (1976). Spectral and spatial resolution of the 12.8 micron Ne II emission from the Galactic Center. Astrophys. J., 205, L5–L9.CrossRefGoogle Scholar
Woltjer, L. (1959). Emission nuclei in galaxies. Astrophys. J., 130, 38–44.CrossRefGoogle Scholar
Woltjer, L. (1964). A source of energy in radio galaxies. Nature, 201, 803–804.CrossRefGoogle Scholar
Zeldovich, Ya.B. (1964). The fate of a star and the evolution of gravitational energy upon accretion. Sov. Phys. Doklady, 9, 195.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Robert H. Sanders, Kapteyn Astronomical Institute, The Netherlands
  • Book: Revealing the Heart of the Galaxy
  • Online publication: 05 December 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139856546.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Robert H. Sanders, Kapteyn Astronomical Institute, The Netherlands
  • Book: Revealing the Heart of the Galaxy
  • Online publication: 05 December 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139856546.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Robert H. Sanders, Kapteyn Astronomical Institute, The Netherlands
  • Book: Revealing the Heart of the Galaxy
  • Online publication: 05 December 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139856546.014
Available formats
×