Skip to main content Accessibility help
×
Home
Revealing the Heart of the Galaxy
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

Written in an informal and engaging style, this volume traces the discoveries that led to our understanding of the size and structure of the Milky Way, and the conclusive evidence for a massive black hole at its center. Robert H. Sanders, an astronomer who witnessed many of these developments, describes how we parted the veil of interstellar dust to probe the strange phenomena within. We now know that the most luminous objects in the Universe - quasars and radio galaxies - are powered by massive black holes at their hearts. But how did black holes emerge from being a mathematical peculiarity, a theoretical consequence of Einstein's theory of gravity, to become part of the modern paradigm that explains active galactic nuclei and galaxy evolution in normal galaxies such as the Milky Way? This story, aimed at non-specialist readers and students and historians of astronomy, will both inform and entertain.

Reviews

‘In his captivating book Sanders gives an authoritative and entertaining, easy-to-read account of this ‘detective story', from the beginnings in the last century to the most recent developments. As he tells his story, [he] conveys to the reader the fascination of research, the often unexpected discoveries, but also the meandering path of the research towards better understanding and knowledge, including the ‘human' side of some of the major players in the story. I highly recommend this book to readers who want to understand and get captivated by one of the highlight discoveries of modern astronomy.'

Reinhard Genzel - Max Planck Institute for Extraterrestrial Physics

‘This book gives a personal enthusiastic and well informed view of the exciting discoveries in astronomy since 1950. Major advances in astronomy are led by technology, but the theme of this engagingly written book is the development of ideas, and how they are tested and refined as new observations become possible. Sanders' central subject is the revelation of the structure of our Milky Way galaxy with its ‘rather small' four million solar mass central black hole. However the reader will gain also insight into how astronomy and science develop via world-wide cooperation and debate. It is fun to read!'

Donald Lynden-Bell - University of Cambridge

'Sanders … [inserts] helpful summaries after particularly dense sections. Those interludes contain charmingly personal reflections on both the practice and development of astronomy and help to ensure that interested readers of all backgrounds can share in the thrill of a wondrous discovery.'

Matthew Walker Source: Physics Today

'… even readers familiar with the subject will probably learn something new but at the same time the book is accessible to a general readership … I enjoyed reading the book and recommend it.'

Source: The Observatory

'Highly recommended.'

S.P. Maran Source: Choice

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Allen, D.A., Hyland, A.R., and Hillier, D.H. (1990). The source of luminosity at the Galactic Centre. Mon. Not. RAS, 244, 706–713.
Allen, D.A., and Sanders, R.H. (1986). Is the Galactic Centre black hole a dwarf?Nature, 319, 191–194.
Ambartsumian, B.A. (1976). The role of nuclear activity in the overall evolutionary processes in galaxies. Proc. 3rd Europ. Astron. Meeting (Tiflis), 91–96.
Babcock, H.W., (1953). The possiblility of compensating astronomical seeing. Pub. Astron. Soc. Pacific, 65, 229–236.
Backer, D.C., and Sramek, R.A., (1982). Apparent proper motion of the Galactic Center compact radio source and PSR 1929+10. Astrophys. J., 260, 512–519.
Baganoff, F.K., Bautz, M.W., Brandt, W.N., Chartas, G., Feigelson, E.D., Garmire, G.P., Maeda, Y., Morris, M., Ricker, G.R., Townsley, L.K., and Walter, F. (2001). Rapid X-ray flaring from the direction of the supermassive black hole at the Galactic Centre. Nature, 413, 45–48.
Balick, B., and Brown, R.L., (1974). Intense sub-arcsecond structure in the Galactic Center. Astrophys. J., 194, 265–270.
Barthel, P.D., (1989). Is every quasar beamed?Astrophys. J., 336, 606–611.
Becklin, E.E., and Neugebauer, G. (1968). Infrared observations of the Galactic Center. Astrophys. J., 151, 145–161.
Becklin, E.E., and Neugebauer, (1975). High-resolution maps of the Galactic Center at 2.2 and 10 microns. Astrophys. J., 200, L71–L74.
Becklin, E.E., Gatley, I., and Werner, M.W., (1982). Far-infrared observations of Sagittarius A: The luminosity and dust density in the central parsec of the Galaxy. Astrophys. J., 258, 135–142.
Begelman, M.C., Volonteri, M., and Rees, M.J., (2006). Formation of super-massive black holes by direct collapse in pre-galactic haloes. Mon. Not. RAS, 370, 289–298.
Binney, J., Gerhard, O.E., Stark, A.A., Bally, J., and Uchida, K. (1991). Understanding the kinematics of the Galactic Centre gas. Mon. Not. RAS, 252, 210–218.
Blandford, R.D., and Rees, M.J., (1974). A ‘twin-exhaust’ model for double radio sources. Mon. Not. RAS, 169, 395–415.
Blandford, R.D., and Znajek, R.L., (1977). Electromagnetic extraction of energy from Kerr black holes. Mon. Not. RAS, 179, 433–456.
Blitz, L., and Spergel, D.N., (1991). Direct evidence for a bar at the Galactic Center. Astrophys. J., 379, 631–638.
Burbidge, G.R., (1959). Estimates of the total energy in particles and magnetic field in the non-thermal radio sources. Astrophys. J., 129, 849–851.
Burbidge, G.R., Burbidge, E.M., and Sandage, A.R., (1963). Evidence for the occurrence of violent events in the nuclei of galaxies. Rev. Mod. Phys., 35, 947–980.
Burkert, A., Schartmann, M., Alig, C., Gillessen, S., Genzel, R., Fritz, T.K., and Eisenhauer, F. (2012). Physics of the Galactic Center cloud G2 on its way toward the supermassive black hole. Astrophys. J., 750:58, 17pp.
Burton, M., and Allen, D.A., (1992). Imaging the hot molecular gas at the Centre of the Galaxy. Proc. Astronom. Soc. Aus., 10, 55–57.
Burton, W.B., (1972). On the kinematic distribution of Galactic neutral hydrogen. Astron. Astrophys., 19, 51–65.
Chandrasekhar, S. (1931). The maximum mass of ideal white dwarfs. Astrophys. J., 74, 81–82.
Christiansen, W.N., and Hindman, J.V., (1952). 21 cm line radiation from galactic hydrogen. The Observatory, 72, 149–151.
Colgate, S.A., (1967). Stellar coalescence and the multiple supernova interpretation of quasi-stellar sources. Astrophys. J., 150, 163–192.
Collins, M. (2005). Pele and Polianhu: A tale of fire and ice. Beach House Publishing.
Croton, D.J., Springel, V., White, S.D.M., De Lucia, G., Frenk, C.S., Gao, L., Jenkins, A., Kauffmann, G., Navarro, J.F., and Yoshida, N. (2006). The many lives of active galactic nuclei: Cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. RAS, 365, 11–28.
de Vaucouleurs, G. (1964). Interpretation of velocity distribution of the inner regions of the Galaxy. In I.A.U. Symp.20, The Galaxy and Magellanic Clouds, (Canberra), ed. F.J., Kerr, 195–199.
Doeleman, S.S., et al. (2008). Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Nature, 455, 78–80.
Dressler, A., and Richstone, D. (1988). Stellar dynamics in the nuclei of M31 and M32 - Evidence for massive black holes?Astrophys. J. 324, 701–713.
Eckart, A., and Genzel, R. (1996). Observations of proper motions near the Galactic Center. Nature, 383, 415–417.
Eisenhauer, F., Genzel, R., Alexander, T., Abuter, R., Paumard, T., Ott, T., Gilbert, A., Gillessen, S., Horrobin, M., Trippe, S., Bonnet, H., Dumas, C., Hubin, N., Kaufer, A., Kissler-Patig, M., Monnet, G., Ströbele, S., Szeifert, T., Eckart, A., Schödel, R., and Zucker, S. (2005). SINFONI in the Galactic Center: Young stars and infrared flares in the central light month. Astrophys. J., 628, 246–259.
Ekers, R.D., and Lynden-Bell, D. (1971). High resolution observations of the Galactic Center at 5 GHz. Astrophys. Lett., 9, 189–193.
Ekers, R.D., Goss, W.M., Schwarz, U.J., Downes, D., and Rogstad, D.H., (1975). A full synthesis map of Sgr A at 5 GHz. Astron. Astrophys., 43, 159–166.
Ekers, R.D., van Gorkom, J.H., Schwarz, U.J., and Goss, W.M., (1983). The radio structure of Sgr A. Astron. Astrophys., 122, 143–150.
Emonts, B.H.C., Morganti, R., Tadhunter, C.N., Oosterloo, T.A., Holt, J., and van der Hulst, J.M., (2005). A jet-induced outflow of warm gas in 3C293. Mon. Not. RAS, 362, 931–944.
Ewen, H.I., and Purcell, E.M., (1951). Observation of a line in the Galactic radio spectrum: Radiation from Galactic hydrogen at 1420 Mc/sec. Nature, 168, 356–359.
Fabian, A.C., Wilman, R.J., and Crawford, C.S., (2002). On the detectability of distant Compton-thick obscured quasars. Mon. Not. RAS, 329, L18–L22.
Falcke, H., Melia, F., and Agol, E. (2000). Viewing the shadow of the black hole at the Galactic Center. Astrophys. J., 528, L13–L16.
Feast, M., and Whitelock, P. (1997). Galactic kinematics of Cepheids from Hipparcos proper motions. Mon. Not. RAS, 291, 683–693.
Ferrarese, L., and Merritt, D. (2000). A fundamental relation between supermassive black holes and their host galaxies. Astrophys. J., 519, L9–L12.
Field, G.B., (1964). Quasi-stellar radio sources as spherical galaxies in the process of formation. Astrophys. J., 140, 1434–1444.
Foy, R., and Labeyrie, A. (1985). Feasibility of adaptive telescope with laser probe. Astron. Astrophys., 152, L29–L31.
Gebhardt, K., Bender, R., Bower, G., Dressler, A., Faber, S.M., Filippenko, A.V., Green, R., Grillmair, C., Ho, L.C., Kormendy, J., Lauer, T.R., Magorrian, J., Pinkney, J., Richstone, D., and Tremaine, S. (2000). A relationship between nuclear black hole mass and galaxy velocity dispersion. Astrophys. J., 539, L13–L16.
Genzel, R., Schödel, R., Ott, T., Eisenhauer, F., Hofmann, R., Lehnert, M., Eckart, A., Alexander, T., Sternberg, A., Lenzen, R., Clénet, Y., Lacombe, F., Rouan, D., Renzini, A., and Tacconi-Garman, L.E., (2003). The stellar cusp around the supermassive black hole in the Galactic Center. Astrophys. J., 594, 812–832.
Genzel, R., Schödel, , Ott, T., Eckart, A., Alexander, T., Lacombe, F., Rouan, D., and Aschenbach, B. (2003). Near-infrared falres from accreting gas around the supermassive black hole at the Galactic Centre. Nature, 425, 934–937.
Genzel, R., Thatte, N., Krabbe, A., Kroker, H., and Tacconi-Garman, L.E., (1996). The dark mass concentration in the central parsec of the Milky Way. Astrophys. J., 472, 152–173.
Ghez, A.M., Duchêne, G.,Matthews, K., Hornstein, S.D., Tanner, A.,Larkin, J.,Morris, M., Becklin, E.E., Salim, S., Kremenek, T., Thompson, D., Soifer, B.T., Neugebauer, G., and McLean, I. (2012). An ultraviolet-optical flare from the tidal disruption of a heliumfich stellar core. Nature, 485, 217–220.
Ghez, A.M., Duchêne, G., Mathews, K., et al. (2003). The first measurement of spectral lines in a short-period star bound to the Galaxy's central black hole: A paradox of youth. Astrophys. J., 586, L127–L131
Ghez, A.M., Morris, M.R., Becklin, E.E., Tanner, A., and Kremenek, T. (2000). The accelerations of stars orbiting the Milky Way's central black hole. Nature, 407, 349–351.
Ghez, A.M., Salim, S., Hornstein, S.D., Tanner, A., Lu, J.R., Morris, M., Becklin, E.E., and Duchne, G. (2005). Stellar orbits around the Galactic Center black hole. Astrophys. J., 620, 744–757.
Ghez, A.M., Salim, S., Weinberg, N.N., Lu, J.R., Do, T., Dunn, J.K., Mathews, K., Morris, M.R., Yelda, S., Becklin, E.E., Kremenek, T., Milosavljevc, M., and Naiman, J. (2008). Measuring distance and properties of the Milky Way's central supermassive black hole with stellar orbits. Astrophys. J., 689, 1044–1062.
Gillessen, S., Eisenhauer, F., Trippe, S., Genzel, R., Martins, F., and Ott, T. (2009). Monitoring stellar orbits around the massive black hole in the Galactic Center. Astrophys. J., 692, 1075–1109.
Greenstein, J.L., and Schmidt, M. (1964). The quasi-stellar radio sources 3C 48 and 3C 273. Astrophys. J., 140, 1–34.
Gültekin, K., Richstone, D.O., Gebhardt, K., Lauer, T.R., Tremaine, S., Aller, M.C., Bender, R., Dressler, A., Faber, S.M., Filippenko, A.V., Green, R., Ho, L.C., Kormendy, J., Magorrian, J., Pinkney, J., and Siopis, C. (2009). The M - σ and M – L relations in galactic bulges and determination oftheir intrinsic scatter. Astrophys. J., 698, 198–221.
Güsten, R., Genzel, R., Wright, M.C.H., Jaffe, D.T., Stutzki, J., and Harris, A.I., (1987). Aperture synthesis observations of the circumnuclear ring in the Galactic Center. Astrophys. J., 318, 124–138.
Hazard, C., Mackey, M.B., and Shimmins, A.J., (1963). Investigation of the radio source 3C 273 by the method oflunar occultations. Nature, 197, 1037–1038.
Hills, J.G., (1975). Possible power source of Seyfert galaxies and QSOs. Nature, 254, 295–298.
Hills, J.G., (1988). Hyper-velocity and tidal stars from binaries disrupted by a massive Galactic black hole. Nature, 331, 687–689.
Hoffmann, W.F., Frederick, C.F., and Emerey, R.J., (1971). 100-micron map of the Galactic Center region. Astrophys. J., 164, L23–L28.
Hoyle, F., and Fowler, W.A., (1963). On the nature of strong radio sources. Mon. Not. RAS, 125, 169–176.
Jahnke, K., and Macció, A. (2011). The non-causal origin of the black hole-galaxy scaling relations. Astrophys. J., 734:92, 11 pp.
Kaifu, N., Kato, T., and Iguchi, T. (1972). 270 pc expanding ring at the Galactic Center. Nature Phys. Sci, 238, 105–107.
Keller, C. (1972). Mitos y Leyendas de Chile, Enciclopedia Moderna de Chile.
Kerr, R.P., (1963). Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett., 11, 237–238.
Krul, W. (2000) “Kapteyn and Groningen: a Portrait” in The Legacy of J.C. Kapteyn eds. P.C., van der Kruit and K., van Berkel, Kluwer, Dordrecht, the Netherlands, pp. 53–78.
Kormendy, J. (1988). Evidence for a supermassive black hole in the nucleus of M31. Astrophys. J., 325, 128–141.
Kormendy, J., and Richstone, D. (1995). Inward bound - the search for supermassive black holes in galactic nuclei. Annu. Rev. Astron. Astrophys., 33, 581–624.
Koyama, K.Maeda, Y., Sonobe, T., Takeshima, T., Tanaka, Y., and Yamauchi, S. (1996). ASCA view of our Galactic Center: Remains of past activities in X-rays?Publ. Astron. Soc. Japan, 48, 249–255.
Kwee, K.K., Muller, C.A., and Westerhout, G. (1954). The rotation of the inner parts of the Galactic System. Bull. Astron. Inst. Netherlands, 12, 211–222.
Lauer, T.R., Faber, S.M., Groth, E.J., Shaya, E.J., Campbell, B., Code, A., Currie, D.G., Baum, W.A., Ewald, S.P., Hester, J.J., Holtzman, J.A., Kristian, J., Light, R.M., Ligynds, C.R., O'Neil, E.J. Jr., and Westphal, J.A., (1993). Planetary camera observations of the double nucleus of M31. Astron. J., 106, 1436–1447.
Leavitt, H.S., and Pickering, E.C., (1912). Periods of 25 variable stars in the Small Magellanic Cloud. Harvard Coll. Circ., 173, 1–3.
Levin, Y., and Beloborodov, A.M., (2003). Stellar disk in the Galactic Center: A remnant of a dense accretion disk?. Astrophys. J., 590, L33–L36.
Liebling, S.L., and Panenzuela, C. (2012). Dynamical boson stars. Liv. Revs. Rel, 15, no. 6
Light, E.S., Danielson, R.E., and Schwarzschild, M. (1974). The nucleus of M31. Astrophys. J., 194, 257–263.
Liszt, H.S., and Burton, W.B., (1980). The gas distribution in the central region of the Galaxy. III -A barlike model of the inner-Galaxy gas based on improved H I data. Astrophys. J., 236, 779–797.
Liszt, H.S., Burton, W.B., and van der Hulst, J.M., (1985). Associations between neutral and ionized gas in SGR A. Astron. Astrophys., 142, 237–244.
Liszt, H.S., van der Hulst, J.M., Burton, W.B., and Ondrechen, M.P., (1983). VLA synthesis of H I absorption toward SGR A. Astron. Astrophys., 126, 341–351.
Lu, J.R., Ghez, A.M., Hornstein, S.D., Morris, M.R., Becklin, E.E., and Mathews, K. (2009). A disk of young stars at the Galactic Center as determined by individual stellar orbits. Astrophys. J., 690, 1463–1487.
Lynden-Bell, D. (1969). Galactic nuclei as collapsed old quasars. Nature, 223, 690–694.
Lynds, C.R., and Sandage, A.R., (1963). Evidence for an explosion in the center of the Galaxy M82. Astrophys. J., 137, 1005–1021.
Magorrian, J., Tremaine, S., Richstone, D., Bender, R., Bower, G., Dressler, A., Faber, S.M., Gebhardt, K., Green, R., Grillmair, C., Kormendy, J., and Lauer, T. (1998). The demography of massive dark objects in galaxy centers. Astron. J., 115, 2285–2305.
Maiolino, R., Gallerani, S., Neri, R., Cicone, C., Ferrara, A., Genzel, R., Lutz, D., Sturm, E., Tacconi, L.J., Walter, F., Feruglio, C., Fiore, F., and Piconcelli, E. (2012). Evidence of strong quasar feedback in the early Universe. Mon. Not. RAS, 425, L66–L70.
Mathews, T.A., and Sandage, A.R., (1963). Optical identification of 3C 48, 3C 196 and 3C 286 with stellar objects. Astrophys. J., 138, 30–56.
Menten, K.M., Reid, M.J., Eckart, A., and Genzel, R. (1997). The position of Sagittarius A*: Accurate alignment of the radio and infrared reference frames at the Galactic Center. Astrophys. J., 475, L111–L114.
Miyoshi, M., Moran, J., Herrnstein, J., Greenhill, L., Nakal, N., Diamond, P., and Makoto, I. (1995). Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC 4258. Nature, 373, 127–129.
Morris, M., Ghez, A.M., and Becklin, E.E., (1999). The Galactic Center black hole: Clues for the evolution of black holes in galactic nuclei. Adv. Space Res., 23, 959–968.
Morris, M., Meyer, L., and Ghez, A.M., (2012). Galactic Center research: Manifestations of the central black hole. Res. Astron. Astrophys., 12, 995–1020.
Mulder, W.A., and Liem, B.T., (1986). Construction of a global gas-dynamical model for our galaxy. Astron. Astrophys., 157, 148–158.
Oort, J.H., (1927). Observational evidence confirming Lindblad's hypothesis of a rotation of the Galactic System. Bull. Astron. Inst. Neth., 3, 275–282.
Oort, J.H., and Muller, C.A., (1952). Observation ofa line in the Galactic radio spectrum: The interstellar hydrogen Line at 1,420 Mc./sec., and an Estimate of galactic rotation. Nature, 168, 357–358.
Oort, J.H., Kerr, F.J., and Westerhout, G. (1958). The galactic system as a spiral nebula. Mon. Not. RAS, 118, 379–389.
Oort, J.H., and Rougoor, G.W., (1960). The position of the galactic centre. Mon. Not. RAS, 121, 171–173.
Oort, J.H., (1977). The Galactic Center. Ann. Rev. Astron. Astrophys., 15, 295–362.
Oort, J.H., (1985). The Galactic Nucleus. The Milky Way Galaxy, Proc. IAU Symp. 106, eds. H., van WoerdenR.H., Allen, and W.B., Burton, Dordrecht, The Netherlands: Reidel, 363–365.
Oppenheimer, J.R., and Volkoff, G.M., (1939). On massive neutron cores. Phys. Rev., 55, 374–378.
Perley, R.A., Dreher, J.W., and Cowan, J.J., (1984). The jet and filaments in Cygnus A. Astrophys. J., 285, L35–L38.
Phinney, E.S., (1989). Manifestations of a massive black hole in the Galactic Center. In IAU Symp. 136, The Center of the Galaxy, ed. Mark, Morris, Dordrecht, The Netherlands: Kluwer, 543–553.
Readhead, A.C.S., Cohen, M.H., Pearson, T.H., and Wilkinson, P.N., (1978). Bent beams and the overall size of extragalactic radio sources. Nature, 276, 768–771.
Rees, M.J., (1966). Appearance of relativistically expanding radio sources. 211, 468–470.
Rees, M.J., (1984). Black hole models for active galactic nuclei. Ann. Rev. Astron. Astrophys., 22, 471–506.
Reid, M.J., Readhead, A.C.,S., Vermeulen, R.C., and Treuhaft, R.N., (1999). The proper motion of Sgr A*. I. First VLBA results. Astrophys. J., 524, 816–823.
Rieke, G.H., and Low, F.J., (1973). Infrared maps of the Galactic Nucleus. Astrophys. J., 184, 415–425.
Rieke, G.H., and Lebofsky, M.J., (1982). Comparison of Galactic Center with other galaxies. AIP Conf. Proc., 83, 194–203.
Rougoor, G.W., and Oort, J.H., (1960). Distribution and motion of interstellar hydrogen in the galactic system with particular reference to the region within 3 kiloparsecs of the Center. Proc. Natl. Acad. Sci. USA, 46, 1–13.
Ryle, M., Elsmore, B., and Neville, A.C., (1965). High resolution observations of the radio sources in Cygnus and Cassiopeia. Nature, 205, 1259–1262.
Salpeter, E.E., (1964). Accretion of interstellar matter by massive objects. Astrophys. J., 140, 796–800.
Sanders, R.H., (1970). The effects of stellar collisions in dense stellar systems. Astrophys. J., 162, 791–809.
Sanders, R.H., (1998). The circumnuclear material in the Galactic Centre – A clue to the accretion process. Mon. Not. RAS, 294, 35–46.
Sanders, R.H., and Prendergast, K.H., (1974). The possible relationship of the 3-kiloparsec arm to explosions in the Galactic Nucleus. Astrophys. J., 188, 489–500.
Saslaw, W.C., Valtonen, M.J., and Aarseth, S.J., (1974). The gravitational slingshot and the structure of extragalactic radio sources. Astrophys. J., 190, 253–270.
Scheuer, P.A.G. (1974). Models of extragalactic radio sources with a continuous energy supply from a central object. Mon. Not. RAS, 166, 513–528.
Schödel, R., Ott, T., Genzel, R., Hofmann, R., Lehnert, M., Eckart, A., Mouawad, N., Alexander, T., Reid, M.J., Lenzen, R., Hartung, M., Lacombe, F., Rouan, D., Gendron, E., Rousset, G., Lagrange, A.-M., Brandner, W., Ageorges, N., Lidman, C., Moorwood, A.F.M., Spyromilio, J., Hubin, N., and Menten, K.M., (2002). A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature, 419, 694–696.
Schödel, R.Ott, T., Genzel, R., Eckart, A., Mouawad, N., and Alexander, T. (2003). Stellar dynamics in the central arcsecond of our Galaxy. Astrophys. J., 596, 1015–1034.
Scoville, N.Z., (1972). Kinematics of gas near the Galactic Center. Astrophys. J., 175, L127–L132
Serabyn, E., and Lacy, J.H., (1985). [Ne II] observations of the Galactic Center: Evidence for a massive black hole. Astrophys. J., 293, 445–448.
Shaver, P.A., Wall, J.V., Kellermann, K.I., Jackson, C.A., and Hawkins, M.R.S. (1996). Decrease in the space density of quasars at high redshift. Nature, 384, 439–441.
Shklovsky, I.S., (1964). Nature of jets in radio galaxies. Sov. Astron., 7, 748–754.
Silk, J., and Rees, M. (1998). Quasars and galaxy formation. Astron. Astrophys., 331, 1–4.
Soltan, A. (1982). Masses of quasars. Mon. Not. RAS, 200, 115–122.
Spitzer, L., and Saslaw, W.C., (1966). On the evolution of galactic nuclei. Astrophys. J., 143, 400–419.
Stark, A.A., Martin, C.L., Walsh, W.M., Xiao, K., and Lane, A.P., (2004). Gas density, stability, and starbursts near the inner Lindblad resonance of the Milky Way. Astrophys. J., 614, L41–L44.
Su, M., and Finkbeiner, D.P., (2012). Evidence for gamma-ray jets in the Milky Way. Astrophys. J., 753:61, 1–13.
Su, M., Slayter, T.R., and Finkbeiner, D.P., (2010). Giant gamma-ray bubbles from Fermi-LAT: Active Galactic nucleus activity or bipolar Galactic wind. Astrophys. J., 724, 1044–1082.
Sunyaev, R.A., Markevitch, M., and Pavlinsky, M. (1993). The Center of the Galaxy in the recent past: A view from GRANAT. Astrophys. J., 407, 606–610.
Tremaine, S. (1995). An eccentric-disk model for the nucleus of M31. Astron. J., 110, 628–633.
van der Kruit, P.C., (1970). Evidence for a possible expulsion of gas from the Galactic Nucleus. Astron. Astrophys., 4, 462–481.
van der Kruit, P.C., Oort, J.H., and Mathewson, D.S., (1972). The radio emission of NGC 4258 and the possible origin of spiral structure. Astron. Astrophys., 21, 169–184.
van Woerden, H., Rougoor, G.W., and Oort, J.H., (1957). Expansion d'une structure spirale dans le noyau du Systme Galactique, et position de la radiosource Sagittarius A. Compt. Rend. lAcad. Sci., 244, 1691–1695.
Veilleux, S., Cecil, G., and Bland-Hawthorn, J. (2005). Galactic winds. Ann. Rev. Astron. Astrophys., 43, 769–826.
Viollier, R.D., Trautmann, D., and Tupper, G.B., (1993). Supermassive neutrino stars and galactic nuclei. Phys. Lett. B. 306, 79–85.
Volonteri, M., and Bellovary, J. (2012). Black holes in the early Universe. Rep. Prog. Phys., 75, 124901.
Wardle, M., and Yusef-Zadeh, F. (1992). Origin of the hot gas and radio blobs at the Galactic Center. Nature, 357, 308–310.
Wilson, A.S., and Ulvestad, J.S., (1982). Radio structures of Seyfert galaxies. IV – Jets in NGC 1068 and NGC 4151. Astrophys. J., 263, 576–594.
Wollman, E.R., Geballe, T.R., Lacy, J.H., Townes, C.H., and Rank, D.M., (1976). Spectral and spatial resolution of the 12.8 micron Ne II emission from the Galactic Center. Astrophys. J., 205, L5–L9.
Woltjer, L. (1959). Emission nuclei in galaxies. Astrophys. J., 130, 38–44.
Woltjer, L. (1964). A source of energy in radio galaxies. Nature, 201, 803–804.
Zeldovich, Ya.B. (1964). The fate of a star and the evolution of gravitational energy upon accretion. Sov. Phys. Doklady, 9, 195.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.