Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-01T16:54:55.351Z Has data issue: false hasContentIssue false

4 - Constitutive laws for earthquake ruptures

Published online by Cambridge University Press:  05 April 2013

Mitiyasu Ohnaka
Affiliation:
University of Tokyo
Get access

Summary

Basic foundations for constitutive formulations

The constitutive law that governs the behavior of earthquake ruptures provides the basis of earthquake physics, and the governing law plays a fundamental role in accounting for the entire process of an earthquake rupture, from its nucleation to its dynamic propagation to its arrest, quantitatively, in a unified and consistent manner. Without a rational law to govern real earthquake rupture processes, the physics of earthquakes cannot be a quantitative science in the true sense. It is therefore of great urgency and importance to establish a rational law strictly formulated for real earthquake ruptures. In this chapter, we will review the constitutive formulations so far proposed for earthquakes, and will rigorously and thoroughly discuss what the governing law for earthquake ruptures ought to be, and how it should be formulated, on the basis of positive facts, from a comprehensive viewpoint. This is a necessary step toward the strict formulation of a constitutive law for real earthquake ruptures, and cannot be avoided if the physics of earthquakes is to be a quantitative science in the true sense.

A shallow earthquake source at crustal depths is a shear rupture instability taking place on a preexisting fault, in geological and tectonic settings, embedded in the seismogenic crust composed of rocks. As described in Chapter 1, the seismogenic crust and preexisting faults embedded therein are inherently heterogeneous. In particular, individual faults contain local strong areas (called “asperities” or “barriers”) that are highly resistant to rupture growth, with the rest of the fault having low (or little) resistance to rupture growth. Some local stress drops at these strong areas on faults are high enough to equal the breakdown stress drop of intact rock tested under seismogenic crustal conditions simulated in the laboratory (for example, see Figure 3.23). Hence, it is obvious that the earthquake rupture process at crustal depths is not a simple process of frictional slip failure on a uniformly precut weak fault, but a more complex process, including the fracture of initially intact rock at some local strong areas on a heterogeneous fault.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×