Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T19:11:55.973Z Has data issue: false hasContentIssue false

7 - Eosinophils

from PART II - INDIVIDUAL CELL TYPES

Published online by Cambridge University Press:  05 April 2014

Sophie Fillon
Affiliation:
University of Colorado Denver School of Medicine
Steven J. Ackerman
Affiliation:
University of Illinois
Glenn T. Furuta
Affiliation:
University of Colorado Denver, School of Medicine
Charles N. Serhan
Affiliation:
Harvard Medical School
Peter A. Ward
Affiliation:
University of Michigan, Ann Arbor
Derek W. Gilroy
Affiliation:
University College London
Get access

Summary

INTRODUCTION

Eosinophilic granulocytes, commonly referred to as eosinophils, or less commonly as acidophils, were first identified by Paul Ehrlich in 1879. He named these bilobed nucleated cells as eosinophils because of their intense staining with the acidic dye eosin. Ehrlich completed his original studies that defined the eosinophil's morphological features during a time when he was committed to a clinical practice as well as basic research, an early example of a physician scientist. Combining his clinical expertise with his laboratory discoveries, he proposed a variety of functions for eosinophils that included phagocytosis, granule secretion, and chemotaxis.

Eosinophils are normally present as a minority of the peripheral blood leukocyte pool and primarily reside within tissues containing mucosal surfaces such as the uterus and gastrointestinal tract. While their exact function is not certain, eosinophils are thought to possess both beneficial and deleterious properties as participants in both innate and adaptive host immune responses. As an arm of the innate defense system, eosinophils are strongly proposed to be responsible in part for combating parasitic infections, particularly with helminths. When recruited in excess, eosinophils are currently thought to participate in mediating the pathogenesis of allergic diseases such as asthma, atopic dermatitis, gastrointestinal diseases, and hypereosinophilic syndromes.

EOSINOPHIL MORPHOLOGY

Eosinophils are approximately 12–17 μm in diameter, and represent 1%–6% of the total blood leukocyte population (Figure 7.1).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sparrevohn, S., and Wulff, H. R. 1967. The nuclear segmentation of eosinophils under normal and pathological conditions. Acta Haematol 37:120.CrossRefGoogle ScholarPubMed
2. Afshar, K., Vucinic, V., and Sharma, O.P. 2007. Eosinophil cell: pray tell us what you do!Curr Opin Pulmon Med 13:414.CrossRefGoogle Scholar
3. Weller, P. F., Bozza, P. T., Yu, W., et al. 1999. Cytoplasmic lipid bodies in eosinophils: central roles in eicosanoid generation. Int Arch Allergy Immunol 118:450.CrossRefGoogle ScholarPubMed
4. Weller, P. F., Monahan-Earley, R. A., Dvorak, H. F., et al. 1991. Cytoplasmic lipid bodies of human eosinophils. Subcellular isolation and analysis of arachidonate incorporation. Am J Pathol 138:141.Google ScholarPubMed
5. Bozza, P. T., Yu, W., Penrose, J. F., et al. 1997. Eosinophil lipid bodies: specific, inducible intracellular sites for enhanced eicosanoid formation. J Exp Med 186:909.CrossRefGoogle ScholarPubMed
6. Gleich, G. J., Adolphson, C. R., and Leiferman, K. M. 1993. The biology of the eosinophilic leukocyte. Annu Rev Med 44:85.CrossRefGoogle ScholarPubMed
7. Leiferman, K. M. 1991. A current perspective on the role of eosinophils in dermatologic diseases. J Am Acad Dermatol 24:1101.CrossRefGoogle ScholarPubMed
8. Weiss, S. J., Test, S. T., Eckmann, C. M., et al. 1986. Brominating oxidants generated by human eosinophils. Science 234:200.CrossRefGoogle ScholarPubMed
9. Moqbel, R., and Lacy, P. 2000. New concepts in effector functions of eosinophil cytokines. Clin Exp Allergy 30:1667.CrossRefGoogle ScholarPubMed
10. Spencer, L. A., Szela, C. T., Perez, S. A., et al. 2009. Human eosinophils constitutively express multiple Th1, Th2, and immunoregulatory cytokines that are secreted rapidly and differentially. J Leukoc Biol 85:117.CrossRefGoogle Scholar
11. Lacy, P., and Moqbel, R. 2000. Eosinophil cytokines. Chem Immunol 76:134.CrossRefGoogle ScholarPubMed
12. Rosenberg, H. F., Phipps, S., and Foster, P. S. 2007. Eosinophil trafficking in allergy and asthma. J Allergy Clin Immunol 119:1303.CrossRefGoogle ScholarPubMed
13. Flood-Page, P. T., Menzies-Gow, A. N., Kay, A. B., et al. 2003. Eosinophil's role remains uncertain as anti-inter-leukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med 167:199.CrossRefGoogle ScholarPubMed
14. Foster, P. S., Hogan, S. P., Ramsay, A. J., et al. 1996. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 183:195.CrossRefGoogle Scholar
15. Hamelmann, E., and Gelfand, E.W. 2001. IL-5-induced airway eosinophilia – the key to asthma?Immunol Rev 179:182.CrossRefGoogle Scholar
16. Boyce, J. A., and Austen, K.F. 2005. No audible wheezing: nuggets and conundrums from mouse asthma models. J Exp Med 201:1869.CrossRefGoogle ScholarPubMed
17. Foster, P. S., Mould, A. W., Yang, M., et al. 2001. Elemental signals regulating eosinophil accumulation in the lung. Immunol Rev 179:173.CrossRefGoogle ScholarPubMed
18. Hogan, S. P., Koskinen, A., Matthaei, K. I., et al. 1998. Interleukin-5-producing CD4+ T cells play a pivotal role in aeroallergen-induced eosinophilia, bronchial hyperre-activity, and lung damage in mice. Am J Respir Crit Care Med 157:210.CrossRefGoogle Scholar
19. Mattes, J., Yang, M., Mahalingam, S., et al. 2002. Intrinsic defect in T cell production of interleukin (IL)-13 in the absence of both IL-5 and eotaxin precludes the development of eosinophilia and airways hyperreactivity in experimental asthma. J Exp Med 195:1433.CrossRefGoogle Scholar
20. Lee, J. J., McGarry, M. P., Farmer, S. C., et al. 1997. Interleukin-5 expression in the lung epithelium of trans-genic mice leads to pulmonary changes pathognomonic of asthma. J Exp Med 185:2143.CrossRefGoogle Scholar
21. Lee, N. A., McGarry, M. P., Larson, K. A., et al. 1997. Expression of IL-5 in thymocytes/T cells leads to the development of a massive eosinophilia, extramedul-lary eosinophilopoiesis, and unique histopathologies. J Immunol 158:1332.Google ScholarPubMed
22. Mishra, A., Hogan, S. P., Brandt, E. B., et al. 2002. Enterocyte expression of the eotaxin and interleukin-5 transgenes induces compartmentalized dysregulation of eosinophil trafficking. J Biol Chem 277:4406.CrossRefGoogle ScholarPubMed
23. Terada, N., Hamano, N., Nomura, T., et al. 2000. Interleukin-13 and tumour necrosis factor-alpha syn-ergistically induce eotaxin production in human nasal fibroblasts. Clin Exp Allergy 30:348.CrossRefGoogle ScholarPubMed
24. LaPorte, S. L., Juo, Z. S., Vaclavikova, J., et al. 2008. Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. Cell 132:259.CrossRefGoogle ScholarPubMed
25. Wills-Karp, M. 2004. Interleukin-13 in asthma pathogen-esis. Immunol Rev 202:175.CrossRefGoogle Scholar
26. Zimmermann, N., Hershey, G. K., Foster, P. S., et al. 2003. Chemokines in asthma: cooperative interaction between chemokines and IL-13. J Allergy Clin Immunol 111:227.Google ScholarPubMed
27. Kita, H. 1996. The eosinophil: a cytokine-producing cell?J Allergy Clin Immunol 97:889.CrossRefGoogle ScholarPubMed
28. Liu, L.Y., Bates, M. E., Jarjour, N. N., et al. 2007. Generation of Th1 and Th2 chemokines by human eosinophils: evidence for a critical role of TNF-alpha. J Immunol 179:4840.CrossRefGoogle ScholarPubMed
29. Straumann, A., and Simon, H. U. 2004. The physiological and pathophysiological roles of eosinophils in the gastrointestinal tract. Allergy 59:15.CrossRefGoogle ScholarPubMed
30. Bisset, L. R., and Schmid-Grendelmeier, P. 2005. Che-mokines and their receptors in the pathogenesis of allergic asthma: progress and perspective. Curr Opin Pulmon Med 11:35.CrossRefGoogle ScholarPubMed
31. Rincon, M., Anguita, J., Nakamura, T., et al. 1997. Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J Exp Med 185:461.CrossRefGoogle ScholarPubMed
32. Ottonello, L., Montecucco, F., Bertolotto, M., et al. 2005. CCL3 (MIP-1alpha) induces in vitro migration of GM-CSF-primed human neutrophils via CCR5-dependent activation of ERK 1/2. Cell Signal 17:355.CrossRefGoogle ScholarPubMed
33. Surquin, M., Le Moine, A., Flamand, V., et al. 2002. Skin graft rejection elicited by beta 2-microglobulin as a minor transplantation antigen involves multiple effector pathways: role of Fas-Fas ligand interactions and Th2-dependent graft eosinophil infiltrates. J Immunol 169:500.CrossRefGoogle ScholarPubMed
34. Debinski, W., Obiri, N. I., Pastan, I., et al. 1995. A novel chimeric protein composed of interleukin 13 and Pseudomonas exotoxin is highly cytotoxic to human carcinoma cells expressing receptors for interleukin 13 and interleukin 4. J Biol Chem 270:16775.CrossRefGoogle ScholarPubMed
35. Cormier, S. A., Taranova, A. G., Bedient, C., et al. 2006. Pivotal advance: eosinophil infiltration of solid tumors is an early and persistent inflammatory host response. J Leukoc Biol 79:1131.CrossRefGoogle ScholarPubMed
36. Jacobsen, E. A., Taranova, A. G., Lee, N. A., et al. 2007. Eosinophils: singularly destructive effector cells or purveyors of immunoregulation?J Allergy Clin Immunol 119:1313.CrossRefGoogle ScholarPubMed
37. Aceves, S. S., Newbury, R. O., Dohil, R., et al. 2007. Esophageal remodeling in pediatric eosinophilic esophagitis. J Allergy Clin Immunol 119:206.CrossRefGoogle ScholarPubMed
38. Wang, H., Tan, X., Chang, H., et al. 1999. Platelet-activating factor receptor mRNA is localized in eosino-phils and epithelial cells in rat small intestine: regulation by dexamethasone and gut flora. Immunology 97:447.CrossRefGoogle Scholar
39. Fujii, M., Tanaka, H., and Abe, S. 2005. Interferon-gamma up-regulates expression of cysteinyl leukotriene type 2 receptors on eosinophils in asthmatic patients. Chest 128:3148.CrossRefGoogle ScholarPubMed
40. Zinchuk, O., Fukushima, A., Zinchuk, V., et al. 2005. Direct action of platelet activating factor (PAF) induces eosinophil accumulation and enhances expression of PAF receptors in conjunctivitis. Mol Vis 11:114.Google ScholarPubMed
41. Bandeira-Melo, C., Bozza, P. T., Diaz, B. L., et al. 2000. Cutting edge: lipoxin (LX) A4 and aspirin-triggered 15-epi-LXA4 block allergen-induced eosinophil trafficking. J Immunol 164:2267.CrossRefGoogle ScholarPubMed
42. Ohshima, N., Nagase, H., Koshino, T., et al. 2002. A functional study on CysLT(1) receptors in human eosinophils. Int Arch Allergy Immunol 129:67.CrossRefGoogle ScholarPubMed
43. Powell, W. S., Chung, D., and Gravel, S. 1995. 5-Oxo-6, 8,11,14-eicosatetraenoic acid is a potent stimulator of human eosinophil migration. J Immunol 154:4123.Google ScholarPubMed
44. Rothenberg, M. E., and Hogan, S. P. 2006. The eosinophil. Annu Rev Immunol 24:147.CrossRefGoogle ScholarPubMed
45. Mori, Y., Iwasaki, H., Kohno, K., et al. 2008. Identification of the human eosinophil lineage-committed progenitor: revision of phenotypic definition of the human common myeloid progenitor. J Exp Med. 206:183–193.Google ScholarPubMed
46. Bedi, R, Du, J., Sharma, A. K., et al. 2009. Human C/EBP-epsilon activator and repressor isoforms differentially reprogram myeloid lineage commitment and differentiation. Blood 113:317.CrossRefGoogle Scholar
47. McNagny, K., and Graf, T. 2002. Making eosinophils through subtle shifts in transcription factor expression. J Exp Med 195:F43.CrossRefGoogle ScholarPubMed
48. Yu, C., Cantor, A. B., Yang, H., et al. 2002. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med 195:1387.CrossRefGoogle ScholarPubMed
49. Du, J., Stankiewicz, M. J., Liu, Y., et al. 2002. Novel combinatorial interactions of GATA-1, PU.1, and C/EBPepsilon isoforms regulate transcription of the gene encoding eosinophil granule major basic protein. J Biol Chem 277:43481.CrossRefGoogle Scholar
50. Zimmermann, N., Daugherty, B. L., Kavanaugh, J. L., et al. 2000. Analysis of the CC chemokine receptor 3 gene reveals a complex 5' exon organization, a functional role for untranslated exon 1, and a broadly active promoter with eosinophil-selective elements. Blood 96:2346.Google Scholar
51. Metcalf, D., Begley, C. G., Nicola, N. A., et al. 1987. Quantitative responsiveness of murine hemopoietic populations in vitro and in vivo to recombinant multi-CSF (IL-3). Exp Hematol 15:288.Google Scholar
52. Metcalf, D., Burgess, A. W., Johnson, G. R., et al. 1986. In vitro actions on hemopoietic cells of recombinant murine GM-CSF purified after production in Escherichia coli: comparison with purified native GM-CSF. J Cell Physiol 128:421.CrossRefGoogle Scholar
53. Yamaguchi, Y., Suda, T., Suda, J., et al. 1988. Purified interleukin 5 supports the terminal differentiation and proliferation of murine eosinophilic precursors. J Exp Med 167:43.CrossRefGoogle ScholarPubMed
54. Sanderson, C. J. 1992. Interleukin-5, eosinophils, and disease. Blood 79:3101.Google ScholarPubMed
55. Collins, P. D., Marleau, S., Griffiths-Johnson, D. A., et al. 1995. Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J Exp Med 182:1169.CrossRefGoogle ScholarPubMed
56. Capra, V., and Rovati, G. E. 2004. Leukotriene modifiers in asthma management. IDrugs 7:659.Google ScholarPubMed
57. Wardlaw, A. J., Walsh, G. M., and Symon, F. A. 1994. Mechanisms of eosinophil and basophil migration. Allergy 49:797.CrossRefGoogle ScholarPubMed
58. Wardlaw, A. J. 2000. The role of adhesion in eosinophil function. Chem Immunol 78:93.CrossRefGoogle ScholarPubMed
59. Sriramarao, P., von Andrian, U. H., Butcher, E. C., et al. 1994. L-selectin and very late antigen-4 integrin promote eosinophil rolling at physiological shear rates in vivo. J Immunol 153:4238.Google ScholarPubMed
60. Rankin, S. M., Conroy, D. M., Williams, T. J. 2000. Eotaxin and eosinophil recruitment: implications for human disease. Mol Med Today 6:20.CrossRefGoogle ScholarPubMed
61. Hogan, S. P., Rothenberg, M. E., Forbes, E., et al. 2004. Chemokines in eosinophil-associated gastrointestinal disorders. Curr Allergy Asthma Rep 4:74.CrossRefGoogle ScholarPubMed
62. Bochner, B. S., and Schleimer, R.P. 1994. The role of adhesion molecules in human eosinophil and basophil recruitment. J Allergy Clin Immunol 94:427.CrossRefGoogle ScholarPubMed
63. Elices, M. J., Osborn, L., Takada, Y., et al. 1990. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronec-tin binding site. Cell 60:577.CrossRefGoogle Scholar
64. Ponath, P. D., Qin, S., Post, T. W., et al. 1996. Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. J Exp Med 183:2437.CrossRefGoogle ScholarPubMed
65. Phillips, R. M., Stubbs, V. E., Henson, M. R., et al. 2003. Variations in eosinophil chemokine responses: an investigation of CCR1 and CCR3 function, expression in atopy, and identification of a functional CCR1 promoter. J Immunol 170:6190.CrossRefGoogle ScholarPubMed
66. Elsner, J., Dulkys, Y., Gupta, S., et al. 2005. Differential pattern of CCR1 internalization in human eosinophils: prolonged internalization by CCL5 in contrast to CCL3. Allergy 60:1386.CrossRefGoogle ScholarPubMed
67. Sullivan, S. K., McGrath, D. A., Liao, F., et al. 1999. MIP-3alpha induces human eosinophil migration and activation of the mitogen-activated protein kinases (p42/ p44 MAPK). J Leukoc Biol 66:674.CrossRefGoogle Scholar
68. Nagase, H., Miyamasu, M., Yamaguchi, M., et al. 2000. Glucocorticoids preferentially upregulate functional CXCR4 expression in eosinophils. J Allergy Clin Immunol 106:1132.CrossRefGoogle ScholarPubMed
69. Oliveira, S. H., Lira, S., Martinez, A. C., et al. 2002. Increased responsiveness of murine eosinophils to MIP-1beta (CCL4) and TCA-3 (CCL1) is mediated by their specific receptors, CCR5 and CCR8. J Leukoc Biol 71:1019.Google ScholarPubMed
70. Zhu, Z., Zheng, T., Homer, R. J., et al. 2004. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science 304:1678.CrossRefGoogle ScholarPubMed
71. Moser, R., Fehr, J., and Bruijnzeel, P. L. 1992. IL-4 controls the selective endothelium-driven transmigration of eosinophils from allergic individuals. J Immunol 149:1432.Google ScholarPubMed
72. Sher, A., Coffman, R. L., Hieny, S., et al. 1990. Ablation of eosinophil and IgE responses with anti-IL-5 or anti-IL-4 antibodies fails to affect immunity against Schistosoma mansoni in the mouse. J Immunol 145:3911.Google ScholarPubMed
73. Kita, H., Adolphson, C. R., and Gleich, G. J. 2003. Biology of eosinophils. In Allergy Principles and Practice, Adkinson, J., Yunginger, J. W., Busse, W. W., et al. (eds.), 6th Ed., p. 305Philadelphia: Mosby.Google Scholar
74. Kayaba, H., Dombrowicz, D., Woerly, G., et al. 2001. Human eosinophils and human high affinity IgE receptor transgenic mouse eosinophils express low levels of high affinity IgE receptor, but release IL-10 upon receptor activation. J Immunol 167:995.CrossRefGoogle ScholarPubMed
75. Kita, H., Kaneko, M., Bartemes, K. R., et al. 1999. Does IgE bind to and activate eosinophils from patients with allergy?J. Immunol 162:6901.Google ScholarPubMed
76. Sihra, B. S., Kon, O. M., Grant, J. A., et al. 1997. Expression of high-affinity IgE receptors (FceRI) on peripheral blood basophils, monocytes, and eosinophils in atopic and nonatopic subjects: relationship to total serum IgE concentrations. J Allergy Clin Immunol 99:699.CrossRefGoogle Scholar
77. Bandeira-Melo, C., and Weller, P.F. 2003. Eosinophils and cysteinyl leukotrienes. Prostaglandins Leukot Essent Fatty Acids 69:135.CrossRefGoogle ScholarPubMed
78. Gharaee-Kermani, M., and Phan, S. H. 1998. The role of eosinophils in pulmonary fibrosis (Review). Int J Mol Med 1:43.Google Scholar
79. Gomes, I., Mathur, S. K., Espenshade, B. M., et al. 2005. Eosinophil-fibroblast interactions induce fibroblast IL-6 secretion and extracellular matrix gene expression: implications in fibrogenesis. J Allergy Clin Immunol 116:796.CrossRefGoogle ScholarPubMed
80. Levi-Schaffer, F., Garbuzenko, E., Rubin, A., et al. 1999. Human eosinophils regulate human lung- and skin-derived fibroblast properties in vitro: a role for transforming growth factor beta (TGF-beta). Proc Natl Acad Sci USA 96:9660.CrossRefGoogle Scholar
81. Spry, C. J. 1989. The pathogenesis of endomyocar-dial fibrosis: the role of the eosinophil. Springer Semin Immunopathol 11:471.CrossRefGoogle Scholar
82. Dvorak, A. M., Ackerman, S. J., Furitsu, T., et al. 1992. Mature eosinophils stimulated to develop in humancord blood mononuclear cell cultures supplemented with recombinant human interleukin-5. II. Vesicular transport of specific granule matrix peroxidase, a mechanism for effecting piecemeal degranulation. Am J Pathol 140:795.Google ScholarPubMed
83. Melo, R. C., Perez, S. A., Spencer, L. A., et al. 2005. Intragranular vesiculotubular compartments are involved in piecemeal degranulation by activated human eosinophils. Traffic 6:866.CrossRefGoogle ScholarPubMed
84. Logan, M. R., Odemuyiwa, S. O., and Moqbel, R. 2003. Understanding exocytosis in immune and inflammatory cells: the molecular basis of mediator secretion. J Allergy Clin Immunol 111:923.CrossRefGoogle ScholarPubMed
85. Moqbel, R., and Coughlin, J.J. 2006. Differential secretion of cytokines. Sci STKE 2006:pe26.Google ScholarPubMed
86. Moqbel, R., and Lacy, P. 1999. Exocytotic events in eosinophils and mast cells. Clin Exp Allergy 29:1017.CrossRefGoogle ScholarPubMed
87. Dvorak, A. M., Ackerman, S. J., and Weller, P. F. 1990. Subcellular morphology and biochemistry of eosinophils. In Blood Cell Biochemistry: Megakaryocytes, Platelets, Macrophages and Eosinophils. Harris, J. R. (ed.), Vol 2, p. 237. London: Plenum Publishing Corporation.CrossRefGoogle Scholar
88. Gleich, G. J. 2000. Mechanisms of eosinophil-associated inflammation. J Allergy Clin Immunol 105:651.CrossRefGoogle ScholarPubMed
89. Martin, L. B., Kita, H., Leiferman, K. M., et al. 1996. Eosinophils in allergy: role in disease, degranulation, and cytokines. Int Arch Allergy Immunol 109:207.CrossRefGoogle ScholarPubMed
90. Thomas, L. L., and Page, S. M. 2000. Inflammatory cell activation by eosinophil granule proteins. Chem Immunol 76:99.CrossRefGoogle ScholarPubMed
91. Jacoby, D. B., Costello, R. M., and Fryer, A. D. 2001. Eosinophil recruitment to the airway nerves. J Allergy Clin Immunol 107:211.CrossRefGoogle ScholarPubMed
92. Rochester, C. L., Ackerman, S. J., Zheng, T., et al. 1996. Eosinophil-fibroblast interactions. Granule major basic protein interacts with IL-1 and transforming growth factor-beta in the stimulation of lung fibroblast IL-6-type cytokine production. J Immunol 156:4449.Google ScholarPubMed
93. Sedgwick, J. B., Calhoun, W. J., Vrtis, R. F., et al. 1992. Comparison of airway and blood eosinophil function after in vivo antigen challenge. J Immunol 149:3710.Google ScholarPubMed
94. Holub, A., Byrnes, J., Anderson, S., et al. 2003. Ligand density modulates eosinophil signaling and migration. J Leukoc Biol 73:657.CrossRefGoogle ScholarPubMed
95. Meerschaert, J., Kelly, E. A., Mosher, D. F., et al. 1999. Segmental antigen challenge increases fibronectin in bronchoalveolar lavage fluid. Am J Respir Crit Care Med 159:619.CrossRefGoogle ScholarPubMed
96. Meerschaert, J., Vrtis, R. F., Shikama, Y., et al. 1999. Engagement of alpha4beta7 integrins by monoclonal antibodies or ligands enhances survival of human eosinophils in vitro. J Immunol 163:6217.Google ScholarPubMed
97. Anwar, A. R., Moqbel, R., Walsh, G. M., et al. 1993. Adhesion to fibronectin prolongs eosinophil survival. J Exp Med 177:839.CrossRefGoogle ScholarPubMed
98. Neves, J. S., Perez, S. A., Spencer, L. A., et al. 2008. Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proc Natl Acad Sci USA 105:18478.CrossRefGoogle ScholarPubMed
99. Walsh, M. T., Curran, D. R., Kingham, P. J., et al. 2004. Effect of eosinophil adhesion on intracellular signaling in cholinergic nerve cells. Am J Respir Cell Mol Biol 30:333.CrossRefGoogle ScholarPubMed
Fillon, S., Robinson, Z. D., Colgan, S. P., and Furuta, G. T. 2009. Epithelial function in eosinophilic gastrointestinal diseases. Immunol Allergy Clin North Am 29(1):171–178.CrossRefGoogle ScholarPubMed
Gleich, G. J., and Leiferman, K. M. 2009. The hypereosino-philic syndromes: current concepts and treatments. Br J Haematol 145(3):271–285.CrossRefGoogle ScholarPubMed
Hogan, S. P., Rosenberg, H. F., Moqbel, R., et al. 2008. Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 38(5):709–750.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×